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Abstract 
The output of Chinese word segmentation can vary according to different 
linguistic definitions of words and different engineering requirements, and no 
single standard can satisfy all linguists and all computer applications.  Most of 
the disagreements in language processing come from the segmentation of 
morphologically derived words (MDWs).  This paper presents a system that can 
be conveniently customized to meet various user-defined standards in the 
segmentation of MDWs.  In this system, all MDWs contain word trees where the 
root nodes correspond to maximal words and leaf nodes to minimal words.  
Each non-terminal node in the tree is associated with a resolution parameter 
which determines whether its daughters are to be displayed as a single word or 
separate words.  Different outputs of segmentation can then be obtained from 
the different cuts of the tree, which are specified by the user through the 
different value combinations of those resolution parameters.  We thus have a 
single system that can be customized to meet different segmentation 
specifications. 

Keywords: segmentation standards, morphologically derive words, customizable 
systems, word-internal structures  

1. Introduction 

A written sentence in Chinese consists of a string of evenly spaced characters with no 
delimiters between the words1.  In any word-based Chinese language processing2, therefore, 
segmenting each sentence into words is a prerequisite.  However, due to some special 
linguistic properties of Chinese words, there is not a generally accepted standard that can be 
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1 See Sproat [2000] for a theoretical account of this orthographic convention. 
2 Character-based processing is also possible and has performed well in certain applications. 
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used to unambiguously determine “wordhood” in every case. 3   While native speakers of 
Chinese are often able to agree on how to segment a string of characters into words, there are 
a substantial number of cases where no agreement can be reached [Sproat et al. 1996].   
Besides, different natural language processing (NLP) applications may have different 
requirements that call for different definitions of words and different granularities of word 
segmentation.  This presents a challenging problem for the development of annotated Chinese 
corpora that are expected to be useful for training multiple types of NLP systems.  It is also a 
challenge to any Chinese word segmentation system that claims to be capable of supporting 
multiple user applications.  In what follows, we will discuss this problem mainly from the 
viewpoint of NLP and propose a solution that we have implemented and evaluated in an 
existing Chinese NLP system4. 

In Section 2, we will look at the problem areas where disagreements among different 
standards are most likely to arise.  We will identify the alternatives in each case, discuss the 
computational motivation behind each segmentation option, and suggest possible solutions.  
This section can be skipped by readers who are already familiar with Chinese morphology and 
the associated segmentation problems. Section 3 presents a customizable system where most 
of the solutions suggested in Section 2 are implemented.  The implementation will be 
described in detail and evaluation results will be presented.  We also offer a proposal for the 
development of linguistic resources that can be customized for different purposes.  In Section 
4, we conclude that, with the preservation of word-internal structures and a set of resolution 
parameters, we can have a Chinese system or a single annotated corpus that can be 
conveniently customized to meet different word segmentation requirements. 

2. Target Areas for Customization 

How to identify words in Chinese has been a long-standing research topic in Chinese 
linguistics and Chinese language processing.  Many different criteria have been proposed and 
any serious discussion of this issue will take no less than a book such as [Packard 2000].  
Among the reasons that make this a hard and intriguing problem are:  

• Chinese orthography has no indication of word boundaries except punctuation marks. 

• The criteria for wordhood can vary depending on whether we are talking about the 
phonological word, lexical word, morphological word, syntactic word, semantic word, or 
psychological word [Packard 2000, Di Sciullo and Williams 1987, Dai 1992, Dai 1997, 
Duanmu 1997, Anderson 1992, Sadock 1991, Selkirk 1982, etc.]. 

                                                
3 For a comprehensive review of this problem, see Packard [2000].   
4 This system is developed at Microsoft Research in the general framework of Jensen et al [1993] and 

Heidorn [2000].  Details of the Chinese system can be found in Wu et al [2000, 1998].  
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• Unlike Japanese, Chinese has very little inflectional morphology that can provide clues to 
word boundaries.  

• Many bound morphemes in Chinese used to be free morphemes and they are still used as 
free morphemes occasionally.  Therefore the distinction between bound morphemes and 
words can be fuzzy. 

• The character sequence of many Chinese words can be made discontinuous through 
morphological processes. 

• Word-internal structures look similar to syntactic structures.  As a result, there is often 
confusion between words and phrases [Dai 1992]. 

• Structural information is not always sufficient for identifying a sequence of characters as 
a word.  Frequency of the sequence, mutual information between the component syllables, 
and the number of syllables in that sequence also play a role (Summarized in [Sproat 
2002]). 

As a result, native speakers of Chinese often disagree on whether a given character string is a 
word.  As reported in [Sproat et al, 1996], the rate of agreement among human judges was 
only 76%.  It is not hard to understand, then, why Chinese linguists have had such a hard time 
defining words. 

However, we do not have to wait for linguists to reach a consensus before we do 
segmentation in NLP.  In computer applications, we are more concerned with “segmentation 
units” than “words”.  While words are supposed to be well-defined, unambiguous and static 
linguistic entities, segmentation units are not.  In fact, segmentation units are expected to vary 
from application to application.  In information retrieval, for example, the segmentation units 
are search terms, whose sizes may vary according to specific needs.  A system aimed at 
precision will require “larger” units while a system aimed at recall will require “smaller” ones.   
A good Chinese IR system should be flexible with the output of word segmentation so that 
search terms of different sizes can be generated.  In machine translation, the segmentation 
units are strings that can be mapped onto the words of another language.  An MT system 
should not be committed to a single segmentation, since the granularity of that segmentation 
may be good for some mappings but not for others.  We can do better if a variety of 
segmentation units are generated so that all possible words are made available as candidates 
for alignment.  In an N-gram language model, the segmentation units are the “grams” and 
their sizes may need to be adjusted against the perplexity of the model or the sparseness of 
data.  In text-to-speech systems, the segmentation units can be prosodic units and the units 
that are good for IR may not be good for TTS.  In short, a segmentation system can be much 
more useful if it can provide alternative segmentation units. Alternative units provide 
linguistic information at different levels and each alternative can serve a specific purpose.  We 
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will see some concrete examples in the remainder of this section.  To facilitate the use of 
terminology, we will use “words” to mean “segmentation units” in the rest of this paper. 

Now where does the variability in segmentation units come from?  If we compare the 
outputs of various word segmentation systems, we will find that they actually have far more 
similarities than differences.  This is mainly due to the fact that the word lists used by 
different segmenters have a lot in common. The actual differences we observe usually involve 
words that are not typically listed in the dictionary.  These words are more dynamic in nature 
and are usually formed through productive morphological processes.  It is those 
morphologically derived words (MDWs hereafter) that are most controversial and most likely 
to be treated differently in different standards and different systems.  This is the main focus of 
this paper.  

The morphological processes we will be looking at have all been discussed extensively 
in the literature and a brief summary of them can be found in [Sproat 2002].  We will not 
attempt to review the literature here.  Instead, we will concentrate on cases where differences 
in segmentation are likely to arise.  Here are the main categories of morphological processes 
we will go through: 

• Reduplication 

• Affixation 

• Directional and resultative compounding 

• Merging and splitting  

• Named entities and factoids 

During the discussion, we will make frequent reference to the following four existing 
segmentation standards: 

(1) The segmentation guidelines for the Penn Chinese Treebank [Xia 2000] (“CHTB” 
hereafter). 

(2) The guidelines for the Beijing University Institute of Computational Linguistics 
Corpus [Yu 1999] (“BU” hereafter).  These guidelines closely follow the GB 
standard [GB/T 13715-92, 1993] but have some additional specifications.  

(3) The ROCLING standard developed at Academia Sinica in Taiwan.  [Huang et al. 
1997,  ROCLING 1997] ( “ROCLING” hereafter). 

(4) The standard used in our own system.   

Our segmentation system is developed as an integral part of a Chinese parser where initial 
word segmentation produces a weighted word lattice.  The word lattice contains all the 
dictionary words plus the MDWs formed by morphological rules.  Syntactic parsing takes this 
word lattice as its input and the final segmentation corresponds to the leaves of the best parse 
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tree 5 .  Segmentation ambiguities are resolved in the parsing process and the correct 
segmentation is the one that enables a successful parse.  In cases where parsing fails, we back 
off to partial parsing and use dynamic programming to assemble a tree that consists of the 
largest partial trees.  

2.1 Reduplication 
The main patterns of reduplication in Chinese are AA, ABAB, AABB, AXA, AXAY, XAYA, 
AAB and ABB.  Examples of these patterns can be found in Appendix 1. Existing standards 
do not have much disagreement over the segmentation of AA, AABB, AXAY, XAYA, AAB 
and ABB.  These are all considered single words for the simple reason that, except in the case 
of AA, breaking them up will result in segments that are not independent words.  The problem 
cases are ABAB and AXA. 

2.1.1 ABAB 
A representative example of this is “ ! !” (taolun-taolun: discuss-discuss “have a 
discussion”).  It is considered a single word in the CHTB and ROCLING standards, but two 
separate words in the BU standard.  According to CHTB and ROCLING, ABAB is just a 
variation of AA, where the reduplicated word is made of two characters instead of one.  Since 
the meaning of AA (such as “""” (kan-kan: look-look “take a look”)) or ABAB is not 
compositional,6 they should be both considered single words.  According to the BU standard, 
however, “ ! !” should be broken up because “ !” can be looked up in the dictionary 
but “ ! !” can not.   

Different NLP applications can also have different requirements.  The one-word 
segmentation may simplify syntactic analysis but the two-word segmentation might be better 
for information retrieval or word-based statistical summarization. For pinyin-to-character 
conversion, adding the reduplicated form to the word list should improve accuracy but may 
not have the desired effect if the data is too sparse.  In machine translation, it will be desirable 
to have both: the one-word analysis will make it easier for us to learn mappings between, say, 
“ ! !” and “have a discussion”, whereas the two-word analysis will let us translate “ 
!” into “discuss” in case no mapping is found for “ ! !” in the training data.  In our 
system, we treat ABAB as a single word with internal structure, i.e. [ !   !], so that we 
can have access to both kinds of information.  The word also has a “lemma” attribute 
indicating that the “underlying form” is “ !”. 

                                                
5 The weights in the word lattice are considered in the selection of the best parse. 
6 The meaning of AA is not “A and A”.  The verb or adjective is duplicated here to represent certain 

grammatical aspects, such as short duration or attempted action.   
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2.1.2 AXA 
This covers cases like the following: 

 #$#          shi-yi-shi: try-one-try              “give it a try” 

 #%#          shi-le-shi: try-LE-try7              “gave it a try” 

 #%$#      shi-le-yi-shi: try-LE-one-try         “gave it a try” 

Both BU and ROCLING regard those expressions as separate words, while CHTB treats them 
as single words with internal structures.  Our system also analyzes them as single words. To 
represent the fact that AXA is an instance of A with additional aspectual information, we store 
two additional attributes in this word: a “lemma” attribute that holds the “underlying form” of 
the MDW (e.g. “#” for “#%#”) and an “aspect” attribute whose value(s) record the 
aspectual information carried by “$” and/or “%”. 

The lemma attribute is in fact assigned in each type of reduplication.  This is especially 
important for AABB, AAB and ABB.  In the case of AABB such as “&&''” (qing-qing-
chu-chu “very clear”), for instance, we will not get “&'” (qingchu “clear”) unless we 
segment it into “& / &' / '” which is not acceptable by any standard because of the 
dangling bound morphemes on the two sides.  This problem disappears once we have “&'” 
represented as the lemma of the whole reduplicated form.   

2.2 Affixation 
Affixation is a very productive morphological process in Chinese.  Examples of various 
derivational processes can be found in Appendix II.  As we can see, the morphological rules 
that combine stems with affixes are almost indistinguishable from the syntactic rules that 
attach a modifier to a head.  The only difference is that the modifier (in the case of prefixation) 
or the head (in the case of suffixation) is supposed to be a bound morpheme.  However, the 
line between free morphemes and bound morphemes is often hard to draw in Chinese. 8  There 
are some relatively clear cases, such as ( (fei “non-“) and ) (chao “super-“) as prefixes and 
* (zhe “-er”) and + (xue “-ology”) as suffixes, but the distinction is fuzzy in many cases.  

                                                
7 Function words like % have no English translation and therefore will be glossed by the uppercase 

versions of their pronunciation. 
8 Here are a few borderline cases: 
 ,-./ zong-gongchenshi “chief engineer” 
 012 fu-zhuxi  “vice-chairman” 
 345 zuqiu-chang  “soccer field” 
 678 jingcha-ju  “police station” 
 9:; meiqi-lu  “gas stove”  

Are they words or phrases?   
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Even the agentive suffix* can act as a free morpheme in cases like “<=>?@A*” (chi-
qiang-chuang-ru-min-zhai-zhe: carry-gun-break-into-civilian-residence-er “people who broke 
into houses with guns”) where* is the head of a noun phrase modified by a relative clause.  
To avoid this thorny issue, different segmentation standards resorted to different definitions of 
affixation.  In the CHTB standard, the term “affixation” is not explicitly used.  Instead, it 
describes prefixation as JJ+N where JJ is monosyllabic, and suffixation as N+N where the 
second N is monosyllabic.  The ROCLING standard distinguishes between affixes, “word 
beginning” (BCD jietouci) and “word endings” (BED jieweici), but they are functionally 
equivalent in derivational rules.  The BU standard tries to distinguish between affixation and 
modifier-head phrases by restricting affixation to words that end in a pre-specified list of 
affixes.   

In terms of segmentation, all the standards agree that MDWs derived from affixation 
should be treated as single words.   In actual NLP applications, however, we often wish to 
have access to both the derived word as a whole as well as its components as separate words.  
In machine translation, for instance, it might be desirable to have a choice of translating either 
the whole or the parts: translate the whole if a translation for the whole can be found and back 
off to the parts otherwise.  Take FGH (honggan-ji: dry-machine “dryer”) as an example.  
Ideally the whole word should be translated into “dryer”.  However, if our translation 
knowledge base has no translation forFGH but does have translations for FG andH, we 
should be able to translate it as “drying machine” given that the parts are also available.  In 
information retrieval, we may also want to search for the parts if the query term as a whole is 
not found.  For example, we may want to retrieve texts containing67 (jingcha “police”) 
when the query term is678 (jingcha-ju:police-bureau, “police station”) .   

In our system, we treat complex words derived from affixation as single words, just as 
the other standards do, but we also keep their internal structures.  For example, the complex 
word IJK+L (he-wuli-xue-jia: nuclear-physics-science-expert “nuclear- physicist”) is 
represented as [[[I  JK] +] L].  Each derived word contains such as a sub-tree.  The sub-
tree functions as a single leaf node in syntactic analysis but it can be made visible after 
parsing to become part of the parse tree if necessary. 

2.3 Directional and Resultative Compounding 
There are many kinds of compounding in Chinese.  In terms of word segmentation, the most 
problematic ones are directional compounding and resultative compounding.  In directional 
compounding, a verb is followed by a directional complement, such as M (shang, “up”), N 
(xia “down”),  OP (jinqu “into”), QR (chulai “out”), which indicates the direction of the 
action expressed by the verb.  In resultative compounding, a verb is followed by a resultative 
complement which is a verb or adjective that indicates what results from the action of the first 
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verb.  In both cases, the verb and the complement can be separated by S (de) or T (bu) to 
express the possibility of the verb-complement relationship.  Here are some examples: 

Directional compounding: 

UO        zou-jin: walk-enter                       “walk into” 

UOP       zou-jinqu: walk-enter                   “walk in” 

USOP  zou-de-jinqu: walk-DE-enter         “can walk in” 

Resultative compounding: 

VU        dai-zou : take-go                       “take away” 

VSU       dai-de-zou: take-DE-go                  “can take away” 

VTU       dai-bu-zou: take-not-go                 “cannot take away” 

"&'       kan-qingchu: see-clear                     “see clearly” 

"S&'  kan-de-qingchu: see-DE-clear         “can see clearly” 

"T&'  kan-bu-qingchu: see-not-clear         “cannot see clearly” 

The segmentation of those compounds depends on many factors:  

(1) Type of compounding.  Directional compounds are more likely to be treated as 
single words than resultative compounds.  Both CHTB and ROCLING follow this 
principle. 

(2) Word length.  Those compounds are more likely to be treated as separate units if 
their total length is more than 2.  CHTB provides internal structures when the 
compound is longer than 2 characters.  ROCLING treats “"&” (kan-qing: see-clear 
“see clearly”) as one word but “"&'” (kan-qingcu: see-clear “see clearly”) as two 
words.   

(3) Frequency.  Compounds that are more frequent, either synchronically or 
diachronically, tend to be treated as one word. Compare WX (da-po: hit-break “hit 
and make it break”) and WY (da-tong: hit-hurt “hit and make someone hurt”).  
These two compounds have exactly the same internal structure and the same word 
length, but former is more likely to be regarded as a single word than the latter, 
simply because WX  is more frequent.  The BU standard assumes that all the 
frequent compounds are already in its lexicon.  Therefore non-lexicalized 
compounds are to be broken up into independent words. 

(4) Mutual information [Sproat and Shih 1990].  Compounds whose components have 
strong mutual information between them are usually taken as single words.  For 
example, Z[ (si-lie: tear-split “tear open”) is not as frequent as Z\ (si-huai: tear-
bad “tear and break”), butZ[ is lexicalized in the BU dictionary whileZ\ is not. 
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(5) Some resultative verbs are more independent and therefore more likely to stand on 
their own.  Typical examples are ] (wan “finish”) and “^” (gei “give”) which have 
some special grammatical functions9 in addition to being resultative complements. 

(6) “V + S/T + complement” structures are segmented into separate words in BU and 
ROCLING but kept as single items with internal structures in CHTB 10.  The main 
reason for keeping them together is that the verb and the complement can usually 
form a single word.   

NLP applications have considerations that are not always compatible with human judgment.  
In machine translation, it often makes more sense to break up directional compounds into 
independent words and keep resultative compounds as single words, contrary to the tendencies 
we observed above.  Directional compounds often correspond to verb-preposition sequences 
in other languages.  The compound “UO”, for example, corresponds to “walk into” in 
English. If “UO” is segmented into two words, we will be able to align “U” with “walk” and 
“O” with “into”.  After seeing other instances of Verb+O, such as “_O” (pao-jin: run-enter 
“run into”) and “`O” (tiao-jin: jump-enter “jump into”), we can come to the generalization 
that Verb+O is to be translated as Verb+into in English.  If those compounds are reduced to 
single words, we can still learn the correspondence between “UO” and “walk into”, but the 
generalization is not so easy to reach.   Resultative compounds, on the other hand, are much 
more likely to correspond to single words in languages that are unrelated to Chinese.  “WX”, 
for example, will most likely align with “break” in English rather than “hit and break” or 
“break by hitting”.   

In the case of “V + S /T  + complement” structures, it is important to know the 
relationship between the verb and the complement.  We need a representation where aSN 
(chi-de-xia: eat-DE-down “can eat up”), for instance, can be interpreted as having more or less 
the same meaning of “b aN” (neng-chi-xia: can-eat-down “can eat up”).  This is crucial not 
only for semantic analysis, but for such seemingly simple computer applications as various 
types of Chinese input methods where a language model is used to select the best sequence of 
characters.  Most existing IME systems are error-prone when the input contains the “V + S/
T + complement” structure.  They are unable to relate the verb and the complement even 
though the verb-complement bigram is in the language model. 

To meet the needs of as many standards and applications as possible, our system treats 
all directional and resultative compounds as single words while preserving their internal 

                                                
9  ] can be viewed as an aspectual marker indicating the completion of an action while ^ may have a 

role similar to the English “to” in dative constructions. 
10 Except in cases likeaT% (chi-bu-liao:eat-not-done “unable to eat anymore”) where 

V+complement” is not a legitimate compound. 
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structures.  In cases of “V + S/T + complement”, we also represent the “lemma” which is 
equivalent to “V + complement”.  The result is a word tree, where the root node contains the 
lemma of the compound. 

2.4 Merging and Splitting 
Both merging and splitting result in word fragments, which often creates a dilemma as to 
whether to keep those strings as single units or not.  We will look at them one by one. 

2.4.1 Merging 
This morphological process, also known as “telescopic compounding” [Huang et al. 1997], 
can be considered a sub-case of abbreviation, but unlike other kinds of abbreviation, it has a 
fixed pattern and a predictable semantic interpretation.  It applies to cases where two adjacent 
and semantically related words have some characters in common.  The common characters 
may be at the beginning or end of the words.  Here are some examples. 

 Common beginnings (AB+AC => ABC) 

 cd+ce => cde guo-nei-wai: country-inside-outside 

 “domestic + foreign” => “domestic and foreign” 

 Common endings (AC+BC => ABC) 

 Of+Qf => OQf jin-chu-kou: enter-exit-port   

 “import + export” => “import and export” 

 Ending = Beginning (AB+BC => ABC) 

 Mgh+hi => Mghi shanghai-shi-zhang: Shanghai-city-head 

 “Shanghai City + city mayor” => “mayor of Shanghai” 

All existing standards agree that we have a single word in the AB+AC and AC+BC cases11 
and two words in the AB+BC case.  The problem in the first two cases is that, unless we store 
ABC in the dictionary as a whole, we will not be able to assign good semantic interpretations 
to them.  However, not all words of this kind can be stored in the dictionary, since merging is 
a productive morphological process.  To interpret a newly merged word, such as jkl (cun-
dai-kuan: deposit-borrow-fund “deposits and loans”), which is unlikely to be in the dictionary, 
we seem to need a level of representation where ABC shows up in its underlying form, i.e. AB 
AC or AC BC.  jkl should then be represented as jl  kl , not at the surface 
segmentation, but as the “lemmas” ofjkl.  This is what we do in our system where every 
merged word contains a tree where the lemmas are conjoined. 

                                                
11 Unless the sequence is interrupted by a punctuation mark, as in cdme andOmQf. 
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2.4.2 Splitting 
Splitting is an active morphological process where a multiple-character word with an internal 
verb-object structure is split into two non-consecutive parts by the insertion of an aspect 
marker, a measure word or other functional elements.   Here are some examples: 

Insertion of an aspect marker 

n%o        xi-le-zao: wash-LE-bath                                                    “took a bath” 

Insertion of a measure word 

npo        xi-ge-zao: wash-one-bath                                                  “take a bath” 

Insertion of both an aspect marker and a measure word 

n%po     xi-le-ge-zao: wash-LE-one-bath                                        “took a bath” 

Insertion of even more words 

n%pqqrrso  xi-le-ge-shushufufu-de-zao: wash-LE-one-comfortable-DE-bath 

                                                          “took a comfortable bath” 

Most segmentation standards require such expressions to be segmented into multiple words, 
such asn / % / o.  This can result in segments that are not independent words, as we see in 
the case of o which is a bound morpheme.  One may argue that in such cases the bound 
morpheme is acting as a free morpheme.  But it would still be desirable to have a 
representation which indicates that n and o actually form a single word and n%o has 
more or less the same meaning as no+%.  In other words, the lemma ofn%o should be
no.  Such a representation can be difficult in the case of n%pqqrrso, but even 
there n and o still form a single unit in some sense.   

The lemma representation of a split word is obviously useful in the realm of information 
retrieval since it makes it possible to establish links between the split and non-split forms of 
the same verbs.  As in the verb-complement case (2.3), it may also be beneficial to Chinese 
input methods that use an N-gram language model to select the correct character sequences.  
Most existing systems perform poorly when the input contains split words.  While the non-
split forms of those words (such as no) are usually in the N-gram model, the split forms are 
not.  If future systems employ word segmentation where the split form is recognized as a 
single unit with its lemma represented, we will be able to relate n and o in n%o as long 
as we have the bigram “no” in the model. 

A special case of splitting is found in expressions like `tuR (tiao-qi-wu-lai “start 
dancing”) where two words (`u and tR in this case) cross each other.  Here again we 
need a level of representation to encode the fact that`tuR actually means `u+tR. 

Our system regards a split word as a single unit with a single lemma and a subtree if the 
intervening characters are no more than 2.  Syntactic analysis treats the unit as a single leaf 
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and has the option of exposing the subtree as part of the parse tree after parsing is done.  For 
cases like n%pqqrrso, we parse them as separate words and, if o is found to be the 
object of n in the parse, we will concatenate the lemmas of the verb and the object (i.e. n+
o), look up no in the dictionary, and make it the lemma of the subtree if it exists as a 
dictionary entry.  This can also be done in the case of n%o but we choose to make it a 
single unit at the lexical level just to reduce the complexity of syntactic analysis.  Once its 
subtree (which also has the verb-object structure in it) is merged into the main parse, we will 
have a unified representation forn%o andn%pqqrrso. 

2.5 Named entities and factoids 
This is an area with the greatest amount of variation among segmentation standards.  This is 
also an area where linguistic theory has very little to say on the justification of a given 
standard.  The differences are mostly computationally motivated and the main concern here is 
the granularity of segmentation.  Different segmentation standards prefer different levels of 
granularity, but the differences are fairly systematic and can be easily specified in 
segmentation guidelines.   Listed below are the most common types of named entities and 
factoids whose segmentation may vary across different standards. 

2.5.1 Personal names 
A personal name is usually composed of a first name and a last name.  The BU standard 
segments a Chinese name into these two parts and treats a foreign name as a single unit if the 
first name and last name are connected by “v”, as in “wxyvz{|}  nuoluodun-
xihanuke “Norodom Sihanouk”.  Other standards treat both Chinese and foreign names as 
single words.  In our system, a personal name is a single word with an internal structure which 
indicates not only the family name and the given name but the components of the given name 
as well.   

2.5.2 Place names and organization names 
There are many levels of granularity here.  For instance, “~� !"#$” (jiangsu-sheng-
yancheng-diqu: Jiangsu-province-Yancheng-prefecture, “Yancheng Prefecture, Jiangsu 
Province”) can be segmented as “~� !"#$”, “~�  / !"#$”, “~�  / !" / 
#$” or “~� /   / !" / #$”.  Likewise, “%&'()*” (shijie-maoyi-zuzhi: world-
trade-organization “World Trade Organization”) can be segmented as “%&'()*” or “%
& / '( / )*”. Existing standards usually break those names up as long as it does not 
result in single-character segments.  So place names with single-character place-type suffixes 
(such as ~� ) tend to be kept as one word while place names with multiple-character 
place-type suffixes (such as !"#$ ) will be separate words.  The BU standard has 
additional annotation to represent the internal structure of place names.  “%&'()*”, for 
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example, is tagged as [%&/n '(/n )*/n]nt. 

Each level of granularity has its pros and cons.  On the one hand, “%&'()*” has a 
better chance of being aligned with “WTO” in the automatic acquisition of translation 
knowledge if it is segmented as one word.  On the other hand, “~� ” can be more easily 
related to “~�” in information retrieval or automatic summarization if it is segmented into 
two words.  All of this points to the need of a hierarchical structure for all the place names and 
organization names that contain multiple words.  This is what has been done in our system. 

2.5.3 Factoids 
Word trees are also needed for numbers and other factoids.  The reasons are obvious and 
therefore we will simply list some common cases where internal structures exist and different 
kinds of segmentation are possible.   

• Numbers 

 +,-. si-bai-wu-shi-liu: four-hundred-five-ten-six “ four hundred and fifty-six” 

 +,-./;  +, / -./;  +, / -. / /; + / , / - / . / / 

 012$ san-fen-zhi-yi: three-divide-ZHI-one “one third” 

 012$; 0 / 12 / $; 0 / 1 / 2 / $ 

 0.3 san-shi-duo: three-ten-more “thirty or so” 

 0.3;  0. / 3;  0 / . / 3; 

 45 shu-qian:several-thousand “several thousand” 

 45; 4 / 5 

• Dates 

 $667809-: yijiujiuqi-nian-san-yue-wu-ri: 1997-year-3-month-5-date 

 “March 5, 1997” 

 $667809-:;  $6678 / 09 / -:;  $667 / 8 / 0 / 9 / - / :; 

• Time 

 .;<- shi-dian-ling-wu-fen: ten-clock-zero-five-minute “five minutes past ten” 

 .;<-1;  .; / < / -1;  . / ; / < / - / 1; 

• Money 

 /=6>0  liu-kuai-jiu-mao-san: six-dollar-nine-dime-three 

 “Six dollars and ninety-three cents” 

 /=6>0;  /= / 6> / 0; / / = / 6 / > / 0  
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• Scores 

 0?$  san-bi-yi: three-match-one  “three to one” 

 0?$; 0 / ? / $ 

• Range 

 0@-A san-zhi-wu-tian: three-to-five-day  “three to five days” 

 0@- / A;  0 / @ / - / A; 0 / @ / -A 

These are just simple cases.  The structure can be much more complicated when one 
kind of named entity is embedded in another.  However, no matter how complicated they are, 
clear guidelines can be set up to make them segmented consistently as long as their internal 
structures are available. 

3. A Customizable System 
In this section, we give a detailed description of how our system has been designed to address 
the problems and requirements discussed in the previous section.  We will see how the word-
internal structures are built, how the system can be customized to produce different outputs, 
and what the initial evaluation results are.  Suggestions will also be made as to how the design 
principle here can be applied to the development of annotated corpora. 

3.1 Dynamic Words 
There are two types of words in our system: static words and dynamic words.  Generally 
speaking, static words are those words that are stored in the dictionary while dynamic words 
are constructed at run time.  All the MDWs belong in the category of dynamic words.  These 
words are not supposed to be stored as headwords in our lexicon.  Instead, they are to be built 
dynamically during sentence analysis through the application of a set of word-formation rules.   

There are about 50 word-formation rules in our system, covering all the cases listed in 
Section 2 and more 12.  They are augmented phrase structure rules that have the form of 
A(conditions)+B(conditions) => C{actions} and each rule has a unique name that describes 
the particular morphological process involved.  The rules are executed like a small grammar 
in a morphological parser before sentence-level parsing begins.  They interact with each other, 
with some rules feeding into others, but they do not interact with the grammar rules used in 
sentence analysis.13  The derivational history from the rule application then forms a tree that 
represents the internal structure of a given word.  Figure 1 is the word tree for a fictional 
                                                
12 Some of these rules assemble unknown words that are not discussed in Section 2. 
13 We do have the option to run these rules together with the grammar rules, but that has been found to 

affect the system negatively both in efficiency and accuracy.   
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organization name, where the labels of non-terminal nodes represent the rules that are applied 
in constructing the tree. 

BCDEF+GHI 

zhao-yuanren-yuyan-xue-jijin-hui:Zhao-Yuanren-language-science-fund-committee 
“Yuan-Ren Chao Linguistics Foundation” 

OrgName

Ful lName      OrgName

        GivenName  NounSfx  NounSfx

    Char     Char         Char       Noun        Suf f ix     Noun       Suf f ix

        !    "    #$          % &'   (

 

Figure 1 

Trees of this kind are built for all types of MDWs, so that all of them can be treated as single 
words if necessary.  These “maximal word trees” or “maximal words” are submitted to the 
sentence parser as single lexical units, which significantly reduces parsing complexity.   

In all cases of merging, splitting and reduplication, the feature structure of the parent 
node also has an attribute that holds the lemma of the word, as we have already mentioned in 
Section 2.  The value of the lemma is computed by piecing together the relevant characters to 
hypothesize a word and then checking this word against the dictionary.  In the case of AABB 
reduplication, for instance, the hypothesized word will be AB, such as &' in &&''.  
Since &' is a word in the dictionary, it becomes the value of the lemma attribute of &&'
'.  Similarly, the lemma of n%o is no.14  In the case of AC+BC => ABC merging, both 
AC and BC will be hypothesized and put into the lemma attribute of ABC if verified in the 
dictionary.  For example, the lemma ofOQf is Of+Qf.  These operations all take place 
in the “actions” part on the right-hand side of the rule.    

An interesting question that arises naturally at this point is what words should be listed 

                                                
14 In addition to the lemma, we also have attributes that record the information associated with the 

inserted part.  In n%o, we store the tense/aspect information contributed by %, so thatn%o as a 
single verb will be equivalent to n%o as a verb phrase in terms of semantic content.   
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in the dictionary.  According to our design, none of the MDWs should go into the dictionary.  
This way the word trees we get will have the maximal word at the top node, the minimal 
words at the leaves, and the intermediate words at the other nodes.  We can thus accommodate 
the widest range of segmentation variations.  In practice, however, there are some 
complications that need to be dealt with. 

First of all, none of the existing dictionaries has been built strictly in line with this 
“minimal word” principle.  They do have the minimal words, but they usually also contain 
words that are supposed to be dynamic in our system.  It is not hard to imagine that a 
dictionary may contain words likeJKLM (yidali-shi:Italy-style “Italian-style”, NO (juan-
jin:move-enter “move into”), and OP+  (zhong-xiao-xue:middle-small-school “middle 
school and elementary school”).  Since our original dictionary was acquired rather than 
created in house, we do have this problem.  We do not add any MDW to our dictionary, but 
we have to find a way to deal with those words that are already in the lexicon. 

The easy way out is to leave the existing dictionary alone, with the assumption that 
words like JKLM, UO, and OQf are lexicalized in the dictionary because they have 
been lexicalized in a Chinese speaker’s mind.  We can also assume that they are all high-
frequency words or words with strong mutual information between their components.  
Therefore they should stay unsegmented for probabilistic reasons.  Yet another assumption is 
that the dictionary has listed all the exceptional MDWs that should never be segmented.  If 
any of these assumptions turns out to be true, we should respect the dictionary entries, 
regarding every word in the dictionary as a minimal word, and build word trees only for words 
that are not in the dictionary.   

These assumptions do not always hold, of course.  We do find many dictionary words 
that can be further segmented.  The solution we adopted is to keep those MDWs in the 
dictionary while assigning internal structures to them at run time.  For all the lexicalized 
words that need internal structures, we mark them with two simple attributes: Type and Segs.  

15   The value of Type is the name of the rule that would have been used to construct the word 
dynamically had this word not been lexicalized.  Segs marks the potential internal word 
boundaries in the word.  For EF+ (yuyan-xue, language-study, “linguistics”), for example, 
we will have Type = “NounSfx” and Segs = “EF_+”.  With these two pieces of information, 
we are able to reconstruct the internal word tree at run time.  In terms of structure, therefore, a 
lexicalizedEF+ will be identical to a dynamically constructedEF+.  This enables us to 
handle all MDWs in a unified way in later stages of processing, regardless of whether they are 

                                                
15 The addition of such information to the dictionary was done semi-automatically.  We automatically 

extracted from the dictionary candidates for a given type of MDWs and then had a human evaluator 
remove the invalid ones. 



 

 

Customizable Segmentation of Morphologically Derived Words in Chinese              17 

from the lexicon or from the rules. 

3.2 Multi-resolution parameters 
Once every MDW is assigned a word tree representing its internal structure, how to segment 
those words becomes merely a display problem, since different segmentations of the same 
word can now be obtained by taking different cuts of the word tree. Borrowing a term from 
the graphical world, we can say that we just have to decide on the degree of “resolution” in 
displaying the internal structure or the granularity of output.   

To control the resolution, we let every non-terminal node in the tree be associated with a 
multi-resolution parameter.  Since every non-terminal node corresponds to a word formation 
rule with which the node was built, the parameter is in effect associated with a given rule or a 
particular type of morphological process.  In the current system, those parameters are binary-
valued: 0 if the daughters of a node are to be displayed as a single word and 1 if they are to be 
displayed as separate words.  To illustrate this, we go back to the MDW in Figure 1: BCD
EF+GHI.  We find four different types of node labels in its word tree – OrgName, 
NounSfx, FullName and GivenName – which are the names of the rules that are used to 
construct this MDW.  Each of them has a multi-resolution parameter: P(OrgName), 
P(NounSfx), P(FullName) and P(GivenName).  Different settings of those parameters then 
result in different granularities of segmentation: 

•  P(OrgName) = 0:  

BCDEF+GHI 

•  P(OrgName) = 1; P(NounSfx) = 0;  P(FullName) = 0: 

BCD / EF+ / GHI 

•  P(OrgName) = 1; P(NounSfx) = 1;  P(FullName) = 0: 

BCD / EF / + / GH / I 

•  P(OrgName) = 1; P(NounSfx) = 0;  P(FullName) = 1; P(GivenName) = 0: 

B / CD / EF+ / GHI 

•  P(OrgName) = 1; P(NounSfx) = 0;  P(FullName) = 1; P(GivenName) = 1: 

B / C / D / EF+ / GHI 

•  P(OrgName) = 1; P(NounSfx) = 1;  P(FullName) = 1; P(GivenName) = 0: 

B / CD / EF / + / GH / I 

•  P(OrgName) = 1; P(NounSfx) = 1;  P(FullName) = 1; P(GivenName) = 1: 

B / C / D / EF / + / GH / I 

We notice that the values of these parameters are not independent in a given structure.  
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When the parameter of a node is set to 0, the parameter values of all the nodes dominated by 
that node must be 0 as well.  It is impossible to keep a MDW as a single word while 
separating some of its sub-words at the same time.  The value of a parameter can be 1 only if 
the parameter of its parent node is set to 1.  Therefore, although we have about 50 rules and 
consequently about 50 parameters, there do not exist 250 different ways of segmenting 
sentences even theoretically.  But we do provide enough options to adapt the segmentation to 
any reasonable standard.  A user of our system can set those parameters according to any 
specification to produce the desired segmentation without making any modification in the 
system itself.  The system is thus easily customizable. 

Our current system also provides a parameter whose value determines whether word 
length is to be taken into consideration.  As we have seen in Sections 2.3, words formed 
through directional and resultative compounding are sensitive to word length when it comes to 
segmentation.  These MDWs are more likely to be treated as single words if it has fewer than 
three characters.  The additional parameter covers this case.  When it is set to 1, all MDWs 
built through derivational and resultative compounding will be segmented into separate words 
if it contains more than two characters, regardless of the values of other parameters.  Suppose 
the name of the directional compounding rule is “DirCmpd”.  When the length parameter is 
set to 0, UO and UOR will both be kept as single words if P(DirCmpd) is set to 0. They 
will be segmented into two words if P(DirCmpd) is set to 1.  When the length parameter is set 
to 1, however, UO will be kept as one word butUOR will be cut into two words even if 
P(DirCmpd) is set to 0. 

We also added a parameter whose value determines whether the lemma or the surface 
string of a MDW is to be displayed.  When this parameter is set to 1, the lemma will be 
displayed and `tuR  will be displayed as `u  tR .  This is of course more like 
stemming than word segmentation, but this is a functionality that some applications may 
require.  In fact, this might be one of the steps we have to take to go from the “truthful” level 
of segmentation to the “graceful” level [Huang et al. 1997].  

3.3 Evaluation 
To find out the degree of customization that can be achieved by the parameterization 
described above, we evaluated our system against two annotated corpora that were made 
publicly available for SIGHAN’s First International Chinese Word Segmentation Bakeoff: the 
training data of the Penn Chinese Tree Bank and the Beijing University Institute of 
Computational Linguistics Corpus.  These two annotated corpora follow very different 
guidelines and it should be interesting to see how well our system can adapt to them.  The 
evaluation metric we used to measure our performance was the scoring tool written by 
Richard Sproat for the First International Chinese Word Segmentation Bakeoff.  This scoring 
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tool measures word recall, word precision, the F-measure, the OOV rate, and the OOV recall 
rate, among other things.  Given a reference (the gold standard) and a hypothesis (the 
segmentation hypothesized by the word segmenter), word recall is the percentage of words in 
the reference that are also in the hypothesis,  and word precision is the percentage of words in 
the hypothesis that are also in the reference.  The F-measure is a simple average of precision 
and recall.  The OOV rate is the percentage of words in the reference that are not found in the 
dictionary, and the OOV recall rate is the percentage of OOV words that are found in the 
hypothesis.  The OOV scores are of interest in this paper because many of the OOV words are 
MDWs according to our dictionary and the OOV recall rate tells us how many OOV words are 
covered by the word-formation rules.   The wordlist used in running the scoring tool consists 
of all the 89,845 entries in our dictionary.  

In the evaluation, we first segmented the text using our default setting where every 
parameter was set to 0.  This gave us the maximal word in each case.  We then did a quick 
resetting of the parameters following the relevant guidelines.  Results of both the default 
segmentation and the adjusted segmentation were evaluated against the CHTB and BU gold 
standards respectively.  The differences between the default setting scores and the scores after 
parameter value adjustment thus reflect the amount of customization that has been achieved: 

When evaluated against the CHTB gold standard, our system received the following 
scores when the default setting was used: 

 

      Word Recall:         83.4 % 

      Word Precision:      90.1% 

      F-measure:        86.6% 

     OOV Rate:              8.4% 

     OOV Recall Rate:  58.8% 

 

After a quick adjustment, during which 19 parameters were reset from 0 to 1, the scores 
became:  

     Word Recall:         96.5% 

     Word Precision:      96.3% 

     F-measure:        96.4% 

    OOV Rate:                8.4% 

    OOV Recall Rate:    86.5% 
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When evaluated against the BU gold standard, our system received the following scores when 
the default setting was used: 

 

    Word Recall:            84.4% 

    Word Precision:       90.4% 

    F-measure:               87.3% 

    OOV Rate:                 7.5% 

    OOV Recall Rate:     49.2% 

 

After the resetting of 22 parameters from 0 to 1, the scores became 

 

   Word Recall:              96.8% 

   Word Precision:         95.9% 

   F-measure:              96.3% 

   OOV Rate:                7.5% 

   OOV Recall Rate:       81.1% 

 

We see that the scores improved dramatically across the board in both the CHTB and BU data 
after the parameter values were adjusted to the relevant standards.  In particular, there is a 
high correlation between the rise of OOV Recall Rate and the F-measure, which indicates that 
the improvements indeed came from the area of MDWs.     

We also tried the setting where every parameter was set to 1, which resulted in the 
display of minimal words.  Here are the scores: 

 

   CHTB:  Word Recall:         86.4 % 

                Word Precision:      78.6 % 

                F-measure:        82.3 % 

                OOV Rate:             8.4 % 

                OOV Recall Rate:    12.7 % 
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    BU:       Word Recall:            91.8 % 

                Word Precision:        86.1% 

                 F-measure:               88.9 % 

                 OOV Rate:                 7.5 % 

                 OOV Recall Rate:     21.9 % 

 

This is the result we would get if we depended only on our dictionary and no MDWs rules 
were applied.  The scores dropped sharply in both the CHTB and BU cases.  Of particular 
interest is the drop in the OOV recall rates.  If all the OOV words were constructed by MDW 
rules, the OOV recall rate would be 0 when we display the minimal words, which are all in the 
dictionary.  However, there are other processes in our system that assemble dictionary words 
into bigger units and these units are invariably displayed as single words.  For example, 
“1978” always appears as a single word in spite of the fact that it is assembled from “1”, “9”, 
“7” and “8” at run time.  Another example is English words in Chinese texts, such as “IBM” 
which is not in our dictionary.  MDWs thus account for 85.8% of the OOV recall rate in 
CHTB and 73.1% of the OOV recall rate in BU.  

The evaluation results show clearly that (1) the variation among different standards does 
come largely from the area of MDWs and (2) our system can adapt to different standards 
successfully by parameterizing the display of MDWs. 

3.4 Customizable resources 
So far we have focused on the customization of a single segmentation system to produce 
different outputs.  We can also envision an approach where segmenters for different standards 
are built by training them on texts that have been segmented according to those standards.  
This leads to the question of whether we can develop language resources that can be 
customized to serve different purposes.  The annotated corpora that are currently being 
developed in the Chinese NLP community mostly follow a single standard and they are 
usually not designed for the training of segmenters that do not follow the same standard.  
However, we cannot afford to build a different tagged corpus for each different standard.   It 
will be highly desirable, therefore, to develop resources that are customizable.  The 
requirement for segmented texts, then, is that it should be capable of being converted to 
segmentations of varying granularity.  To achieve this goal, we have to tag our texts in such a 
way that (1) the internal structures of words (at least the MDWs) are represented and (2) word 
boundaries of different types can be selectively kept or removed with ease.   

Certain word-internal structures are already preserved in some annotated corpora.  In 
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CHTB, for example, verbs and their directional/resultative complements are grouped into 
single units with internal word boundaries.  UOP is thus tagged as “(U  OP)” andUTO
P as “(U  T  OP)”.   The bracketing of named entities in the BU corpora is another step in 
this direction. The ROCLING standard has set even higher goals.  It classifies segmentation 
into three increasingly demanding levels: faithful (Q xin), truthful (R  da) and graceful (S 
ya) [Huang et al. 1997].16   The segmentation units at the faithful level basically correspond to 
the minimal words in our system.  Those at the truthful level are usually MDWs.  
Segmentation units at the graceful level are not as well defined, but some of them correspond 
to the maximal words in our system, such as company names.  Units at these levels are to be 
tagged with different SGML tags:  faithful-level words tagged as <w0>, truthful-level words 
tagged as <w1>, and graceful-level words tagged as <w2>.  “BCDEF+GHI” will 
probably be tagged as the following in this scheme, assuming B , C  and D  are in the 
dictionary butBCD and CD are not: 

<w2> 

<w1> <w0>B</w0> <w0>C</w0> <w0>D</w0> </w1> 

<w1> <w0>EF</w0> <w0>+</w0> </w1> 

<w1> <w0>GH</w0> <w0>I</w0> </w1> 

</w2> 

This tagging scheme makes the tagged data customizable, since all the potential word 
boundaries are preserved.  But it does not distinguish between different types of MDWs and 
therefore the choices for customization are more limited.  To preserve the type information of 
MDWs, we will need the following representation: 
<OrgName> 

<FullName>  
    <Char>B</ Char >  
    <GivenName> < Char >C</ Char > < Char >D</ Char > < /GivenName >  
</FullName > 

    <OrgName> 
        <NounSfx> <Noun>EF</ Noun > <Suffix>+</ Suffix > </ NounSfx > 
        < NounSfx > < Noun >GH</ Noun > < Suffix >I</ Suffix > </ NounSfx > 
     </OrgName> 
</ OrgName > 

This representation is equivalent to the word tree in Figure 1.   It is somewhat clumsy, 

                                                
16 (a) Faithful (Q xin): All segmentation units listed in the reference lexicon should be successfully 

segmented; (b)Truthful (R da): In addition to (a), all segmentation units derivable by morphological 
rules should be successfully segmented; Graceful (S ya): Segmentation units are ideal linguistic 
words for fully automated language understanding. 
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however, and may not be optimal when it comes to large-scale tagging.  A simpler 
representation might be:   

B<3>C<4>D<1>EF<2>+<1>GH<2>I 

where each number corresponds to a label, namely 1 = OrgName, 2 = NounSfx, 3 = Fullname, 
and 4 = GivenName.  Since each label represents the morphological rule that assembles the 
pieces into a single unit, we replace each word-internal boundary with the relevant number 
that corresponds to the rule that puts the pieces together.  We can then obtain different 
segmentations by specifying the types of boundaries to be kept or removed.  During 
customization, the boundaries to be kept will be replaced by spaces and the ones to be 
removed will disappear.  In the above example, if we want to treat personal names and words 
derived from suffixation as single words while keeping components of an organization name 
apart, we can remove <2>, <3> and <4> and turn the other numbers into spaces.  The result 
will be “BCD  EF+  GHI”.  We will get “B  CD  EF  +  GH  I” if the number 
to be removed is just 4. It should be noted that, just like the case of parameter setting in our 
system, not all the number combinations are possible in the replacement/removal.  For 
example, we cannot remove <1> and replace all the other numbers with spaces, since we 
cannot keep the whole organization name as a single piece if we break up its components.  
Therefore, there need to be a partial order of those numbers where the removal of a given 
number implies the removal of some other numbers.  The original motivation of this 
representation was to avoid the need to process the same text N times to get N different 
segmentations.  We were able to process the corpus just once and use the same output for 
multiple purposes.   It seems that this can be an option in the future development of Chinese 
language resources.   

In principle, all the information represented in the word trees of our system can be 
represented in a tagged corpus.  In practice, however, textual representation of certain 
information (e.g. the lemma attribute) can be cumbersome and it can be labor-intensive for the 
annotators.  Besides, the tagging is not easy to change once it is done.  The main advantage of 
a customizable system over a customizable corpus is that the former can adapt to new 
specifications of representation very quickly,   with large-scale systematic changes made 
within a very short time.  This is especially so in cases of “bracketing paradoxes” where 
incompatible representations might have to be generated for different purposes.  Of course, 
the output of an automatic system may be inferior in accuracy to a hand-tagged corpus, but we 
can maintain a set of surface sentences which are known to have the correct output from the 
system.  Every time the “spec” changes, we can modify the system and process those 
sentences again to produce the updated output instead of modifying the whole tagged corpus. 
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3.5 Future refinement 
In our current implementation of the multi-resolution parameters, the parameter values are not 
probabilistic in nature.  They are either 0 or 1 and therefore it is not able to make the finer 
distinctions that we sometimes need when we try to determine wordhood on the basis of 
statistical information.  As we have seen in Section 2, the segmentation of certain MDWs can 
depend on the frequency of those MDWs and the mutual information between their 
components.  To make our customization more fine-tuned, we need to take such probabilistic 
information into account.  One way to do it is to gather statistical information for every MDW 
and normalize it into a value between 0 and 1.  This value can then be combined with the 
parameter values that we set by hand to produce a probability that represents the likelihood of 
a MDW being broken into individual words.  We can then set a threshold to determine the 
“resolution” of the segmentation.   

4. Conclusion 

The standards for Chinese word segmentation can vary according to different definitions of 
words and the different requirements of NLP applications.  It is therefore important that the 
segmentation systems we develop or the tagged corpora we construct be capable of being 
customized to meet different needs.   In this paper, we have concentrated on the segmentation 
of morphologically derived words (MDWs).  We have demonstrated that a segmentation 
system can be customized to produce different outputs for different standards if the word-
internal structures of MDWs are preserved in a tree structure and different types of nodes in 
the tree are associated with different resolution parameters.  Different settings of those 
parameters then result in segmentations of different granularities.  Evaluation shows that the 
effect of customization is significant and MDWs are indeed the main area where 
customization is most needed.  A similar approach can also be used in the development of 
linguistic resources where a single annotated corpus can be customized to provide training and 
testing data for different applications. 
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Appendix 
I. Examples of reduplication 
• AA 
""  kan-kan: look-look       “take a look” 
TT hong-hong: red-red      “very red / kind of red” 
UU man-man: slow-slow “slowly” 
88 nian-nian: year-year      “every year” 

• ABAB 
VWVW yanjiu-yanjiu: research-research              “do some research” 
qrqr shufu-shufu: comfortable-comfortable     “have a comfortable time” 

• AABB 
XXYY fang-fang-mian-mian                                    “every aspect”    
&&'' qing-qing-chu-chu                                       “very clear” 
YYZZ tong-tong-kuai-kuai                                       “thoroughly” 
8899 nian-nian-yue-yue: year-year-month-month  “year after year, month after month” 

• AXA 
#$# shi-yi-shi: try-one-try               “give it a try” 
#%# shi-le-shi: try-LE-try                   “gave it a try” 
#%$# shi-le-yi-shi: try-LE-one-try        “gave it a try” 

• AXAY 
_R_P pao-lai-pao-qu: run-come-run-go                      “run around” 
[\[] song-yi-song-yao:send-doctor-send-medicine      “deliver medical aid” 
$^$_ yi-zhuan-yi-wa: one-brick-one-tile                      “every brick / brick by brick” 
`F`a suo-yan-suo-xing: SUO-speak-SUO-do               “every word and deed” 

• XAYA 
b"z" dong-kan-xi-kan: east-look-west-look        “look here and there” 

 cded zuo-tiao-you-tiao: pick-left-pick-right        “pick and choose” 
• AA" 
##" shi-shi-kan: try-try-look     “give it a try” 

• AAB 
 ffg chong-chong-dian:                “charge the battery a bit” 
 hhi liu-liu-guang                     “very smooth” 
• ABB 
 jkk liang-tang-tang                    “very bright ” 

II. Examples of Derivational Affixation 
1. Prefixation  
• Prefix + Noun => Noun 
       lgm  wei-dianzi                      “micro-electronics” 
• Prefix + Noun => Adj 
       nopqrst fang-bingdu   “anti-virus” 
• Prefix + Verb => Adj 
       uvw qbxt ke-zaisheng        “re-usable” 
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• Prefix + Number => Number 
       y$  di-yi                            “first” 
2. Suffixation 
• Noun + Suffix => Noun 
       z+L  kexue-jia                     “scientist” 
• Noun + Suffix => Adj 
       JKLM  yidali-shi               “Italian-style” 
• Verb + Suffix => Noun 
       {|}  youdi-yuan                   “mail-man” 
• Verb + Suffix => Adj 
       ~OM  jianjin-shi                   “gradual-mode” 
• Adj + Suffix => Noun 
       � !  jiji-xing                        “proactive-ness” 
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Chinese Word Segmentation as Character Tagging 

Nianwen Xue* 

Abstract 

In this paper we report results of a supervised machine-learning approach to 
Chinese word segmentation. A maximum entropy tagger is trained on manually 
annotated data to automatically assign to Chinese characters, or hanzi, tags that 
indicate the position of a hanzi within a word. The tagged output is then converted 
into segmented text for evaluation. Preliminary results show that this approach is 
competitive against other supervised machine-learning segmenters reported in 
previous studies, achieving precision and recall rates of 95.01% and 94.94% 
respectively, trained on a 237K-word training set.  

Key Words: Chinese word segmentation, supervised machine-learning, maximum 
entropy, character tagging   

1. Introduction 

It is generally agreed among researchers that word segmentation is a necessary first step in 
Chinese language processing. However, unlike English text in which sentences are sequences 
of words delimited by white spaces, in Chinese text, sentences are represented as strings of 
Chinese characters or hanzi without similar natural delimiters. Therefore, the first step in a 
Chinese language processing task is to identify the sequence of words in a sentence and mark 
boundaries in appropriate places. This may sound simple enough but in reality identifying 
words in Chinese is a non-trivial problem that has drawn a large body of research in the 
Chinese language processing community [Fan and Tsai, 1988; Gan, 1995; Gan, Palmer, and 
Lua, 1996; Guo, 1997; Jin and Chen, 1998; Sproat and Shih, 1990; Sproat et al., 1996; Wu 
and Jiang, 1998; Wu, 2003].  

It is easy to demonstrate that the lack of natural delimiters itself is not the heart of the 
problem. In a hypothetical language where all words are represented with a finite set of 
symbols, if one subset of the symbols always start a word and another subset, mutually 
exclusive from the previous subset, always end a word, identifying words would be a trivial 
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exercise. Nor can the problem be attributed to the lack of inflectional morphology. Although it 
is true in Indo-European languages inflectional affixes can generally be used to signal word 
boundaries, it is conceivable that a hypothetical language can use symbols other than 
inflectional morphemes to serve the same purpose. Therefore the issue is neither the lack of 
natural word delimiters nor the lack of inflectional morphemes in a language, rather it is 
whether the language has a way of unambiguously signaling the boundaries of a word.  

The real difficulty in automatic Chinese word segmentation is the lack of such 
unambiguous word boundary indicators. In fact, most hanzi can occur in different positions 
within different words. The examples in Table 1 show how the Chinese character   
(“produce”) can occur in four different positions. This state of affairs makes it impossible to 
simply list mutually exclusive subsets of hanzi that have distinct distributions, even though 
the number of hanzi in the Chinese writing system is in fact finite. As long as a hanzi can 
occur in different word-internal positions, it cannot be relied upon to determine word 
boundaries as they could be if their positions were more or less fixed.  

Table 1. A hanzi can occur in multiple word-internal positions 
Position  Example   

Left   ! ’to come up with’   
Word by itself   "# ’to grow wheat’   
Middle  ! $ ’assembly line’   
Right  !   ’to produce’   

The fact that a hanzi can occur in multiple word-internal positions leads to ambiguities of 
various kinds, which are described in detail in [Gan, 1995]. For example,   can occur in 
both word-initial and word-final positions. It occurs in the word-final position in !  
(“Japanese”) but in the word-initial position in  "(“article”). In a sentence that has a string 
“! "”, as in (1)1, an automatic segmenter would face the dilemma whether to insert a word 
boundary marker between ! and  , thus grouping  " as a word, or to mark !  as a 
word, to the exclusion of ". The same scenario also applies to ", since like  , it can also 
occur in both word-initial and word-final positions.  

1. (a) Segmentation I   

   !     "#   $%  &? 

   Japanese octopus  how  say 

   “How to say octopus in Japanese?” 

(b) Segmentation II 

                                                
1Adapted from [Sproat et al.,1996] 
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   !    "    #  $%  &? 

   Japan  article  fish  how  say 

Ambiguity also arises because some hanzi should be considered to be just word 
components in certain contexts and words by themselves in others. For example, # can be 
considered to be just a word component in "#. It can also be a word by itself in other 
contexts. Presented with the string "#  in a Chinese sentence, a human or automatic 
segmenter would have to decide whether # should be a word by itself or form another word 
with the previous hanzi. Given that !,  ", "#, # are all possible words in Chinese, 
how does one decide that !  "# is the right segmentation for the sentence in (1) while 
!  " # is not? Obviously it is not enough to know just what words are in the lexicon. In 
this specific case, a human segmenter can resort to world knowledge to resolve this ambiguity, 
knowing that!  " # would not make any kind of real-world sense.  

In other cases a human segmenter can also rely on syntactic knowledge to properly 
segment a sentence. For instance, ' should be considered a word in (2a) and two words in 
(2b):  

2. a ()  '-*   +   ,   -  ./ 

  police gun-kill  LE  that  CL  escapee 

  “Police killed the escapee with a gun.” 

b ()    0   '  *   +   ,   -  ./ 

  Police  with  gun  kill  LE  that  CL  escapee 

  “Police killed the escapee with a gun” 

In (2b), % is a word by itself and forms a phrasal constituent with the preceding 0. In 
order to get the segmentation right for the example in (2) one needs to know, for example, that 
0 has to take a complement and in the case of (2b) the complement is %. Therefore it is 
impossible for% to be part of the word %&. The human segmenter has little difficulty 
resolving these ambiguities and coming up with the correct segmentation since they have 
linguistic and world knowledge at their disposal. However, the means available to the human 
segmenter cannot be made available to computers just as easily. As a result, an automatic 
word segmenter would have to bypass such limitations to resolve these ambiguities.  

In addition to the ambiguity problem, another problem that is often cited in the literature 
is the problem of so-called out-of-vocabulary or “unknown” words [Wu and Jiang, 1998]. The 
unknown word problem arises because machine-readable dictionaries cannot possibly list all 
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the words encountered in NLP tasks exhaustively2. For one thing, although the number of 
hanzi generally remains constant, Chinese has several productive new word creation 
mechanisms. First of all, new words can be created through compounding, in which new 
words are formed through the combination of existing words, or through suoxie, in which 
components of existing words are extracted and combined to form new words. Second, new 
names are created by combining existing characters in a very unpredictable manner. Third, 
there are also transliterations of foreign names. These are just a few of the many ways new 
words can be introduced in Chinese.  

The key to accurate automatic word identification in Chinese lies in the successful 
resolution of these ambiguities and a proper way to handle out-of-vocabulary words. We have 
demonstrated that the ambiguities in Chinese word segmentation is due to the fact that a hanzi 
can occur in different word-internal positions. Given the proper context, generally provided by 
the sentence in which it occurs, the position of a hanzi can be determined. If the positions of 
all the hanzi in a sentence can be determined with the help of the context, the word 
segmentation problem would be solved. This is the line of thinking we are going to pursue in 
the present work. There are several reasons why we may expect this approach to work. First, 
Chinese words generally have fewer than four characters. As a result, the number of positions 
is small. Second, although each hanzi can in principle occur in all possible positions, not all 
hanzi behave this way. A substantial number of hanzi are distributed in a constrained manner. 
For example, ', the plural marker, almost always occurs in the word-final position. Finally, 
although Chinese words cannot be exhaustively listed and new words are bound to occur in 
naturally occurring text, the same is not true for hanzi. The number of hanzi stays fairly 
constant and we do not generally expect to see new hanzi. In this paper, we model the Chinese 
word segmentation problem as a hanzi tagging problem and use a machine-learning algorithm 
to determine the word-internal positions of hanzi with the help of contextual information.  

The remainder of this paper is organized as follows. In Section 2, we briefly review the 
representative approaches in the previous studies on Chinese word segmentation. In Section 3, 
we describe how the word segmentation problem can be modeled as a tagging problem and 
how the maximum entropy model is used to solve this problem. We describe our experiments 
in Section 4. In Section 5, we report our experimental results, using the maximum matching 
algorithm as a baseline. We also evaluate these results against previous approaches and 
discuss the contributions of different feature sets and the effectiveness of different tag sets. 
We conclude this paper and discuss future work in Section 6.  

                                                
2See [Guo, 1997] for a different point of view 
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2. Previous Work 

Various methods have been proposed to address the word segmentation problem in previous 
studies. Noting that linguistic information, syntactic information in particular, can help 
identify words, [Gan, 1995] and [Wu and Jiang, 1998] treated word segmentation as 
inseparable from Chinese sentence understanding as a whole. As a result, the success of the 
word segmentation task is tied to the success of the sentence understanding task, which is just 
as difficult as the word segmentation problem, if not more difficult. Most of the word 
segmentation systems reported in previous studies are stand-alone systems and they fall into 
three main categories, depending on whether they use statistical information and electronic 
dictionaries. These are purely statistical approaches [Sproat and Shih, 1990; Sun, Shen, and 
Tsou, 1998; Ge, Pratt, and Smyth, 1999; Peng and Schuurmans, 2001], non-statistical 
dictionary-based approaches [Liang, 1993; Gu and Mao, 1994] and statistical and 
dictionary-based approaches [Sproat et al., 1996]. More recently work on Chinese word 
segmentation also includes supervised machine-learning approaches [Palmer, 1997; 
Hockenmaier and Brew, 1998; Xue, 2001].  

Purely dictionary-based approaches generally addresses the ambiguity problem with 
some heuristics, and the most successful heuristics are variations of the maximum matching 
algorithm. A maximum matching algorithm is a greedy search routine that walks through a 
sentence trying to find the longest string of hanzi starting from a given point in the sentence 
that matches a word entry in a pre-compiled dictionary. For instance, assuming ( (“close”), 
1 (“heart”) and () (“care about”) are all listed in the dictionary, given a string of hanzi
(-), the maximum matching algorithm always favors () as a word, over(-) as a string 
of two words. This is because () is a longer string than ( and both of them are in the 
dictionary. When the segmenter finds(, it will continue to search and see if there is a 
possible extension. When it finds another word () in the dictionary it will decide against 
inserting a word boundary between( and1. When the algorithm can no longer extend the 
string of hanzi it stops searching and inserts a word boundary marker. The process is repeated 
from the next hanzi till it reaches the end of the sentence. The algorithm is successful because 
in a lot of cases, the longest string also happens to be correct segmentation. For example, for 
the example in (1), the algorithm will rightly decide that (1a) rather than (1b) is the correct 
segmentation for the sentence, assuming *, *+, +,, ,- and - are all listed in the 
dictionary. However, this algorithm will output the wrong segmentation for (2b), in which it 
will incorrectly group %& as a word. In addition, the maximum matching algorithm does 
not have a built-in mechanism to deal with out-of-vocabulary words. In general, the 
completeness of the dictionary to a large extent determines the degree of success for 
segmenters using this approach.  
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As a representative of purely statistical approaches, [Sproat and Shih, 1990] relies on the 
mutual information of two adjacent characters to decide whether they form a two-character 
word. Given a string of characters 1 nc c... , the pair of adjacent characters with the largest 
mutual information greater than a pre-determined threshold is grouped as a word. This process 
is repeated until there are no more pairs of adjacent characters with a mutual information 
value greater than the threshold. This algorithm is extended by [Sun, Shen, and Tsou, 1998] so 
that association measures other than mutual information are also taken into consideration. 
More recently, [Ge, Pratt, and Smyth, 1999; Peng and Schuurmans, 2001] applied expectation 
maximization methods to Chinese word segmentation. For example, [Peng and Schuurmans, 
2001] used an EM-based algorithm to estimate probabilities for words in a dictionary and use 
mutual information to weed out proposed words whose components are not strongly 
associated. Purely statistical approaches have the advantage of not needing a dictionary or 
training data, and since unsegmented data are easy to obtain, they can be easily trained on any 
data source. The drawback is that statistical approaches generally do not perform well in terms 
of the accuracy of the segmentation.  

Statistical dictionary-based approaches attempt to get the best of both worlds by 
combining the use of a dictionary and statistical information such as word frequency. [Sproat 
et al., 1996] represents a dictionary as a weighted finite-state transducer. Each dictionary 
entry is represented as a sequence of arcs labeled with a hanzi and its phonemic transcription, 
starting from an initial state 0  and terminated by a weighted arch labeled with an empty 
string $  and a part-of-speech tag. The weight represents the estimated cost of the word, 
which is its negative log probability. The probabilities of the dictionary words as well as 
morphologically derived words not in the dictionary are estimated from a large unlabeled 
corpus. Given a string of acceptable symbols (all the hanzi plus the empty string), there exists 
a function that takes this string of symbols as input and produces as output a transducer that 
maps all the symbols to themselves. The path that has the cheapest cost is selected as the best 
segmentation for this string of characters. Compared with purely statistical approaches, 
statistical dictionary-based approaches have the guidance of a dictionary and as a result they 
generally outperform purely statistical approaches in terms of segmentation accuracy.  

Recent work on Chinese word segmentation has also used the transformation-based 
error-driven algorithm [Brill, 1993] and achieved various degrees of success [Palmer, 1997; 
Hockenmaier and Brew, 1998; Xue, 2001]. The transformation-based error-driven algorithm 
is a supervised machine-learning routine first proposed by [Brill, 1993] and initially used in 
POS tagging as well as parsing. It has been applied to Chinese word segmentation by [Palmer, 
1997; Hockenmaier and Brew, 1998; Xue, 2001]. Although the actual implementation of this 
algorithm may differ slightly, in general the transformation-based error-driven approaches try 
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to learn a set of n -gram rules from a training corpus and apply them to segment new text. 
The input to the learning routine is a (manually or automatically) segmented corpus and its 
unsegmenteded (or undersegmented) counterpart. The learning algorithm compares the 
segmented corpus and the undersegmented dummy corpus at each iteration and finds the rule 
that achieves the maximum gain if applied. The rule with the maximum gain is the one that 
makes the dummy corpus most like the reference corpus. The maximum gain is calculated 
with an evaluation function which quantifies the gain and takes the largest value. The rules are 
instantiations of a set of pre-defined templates. After the rule with the maximum gain is found, 
it is applied to the dummy corpus, which will better resemble the reference corpus as a result. 
This process is repeated until the maximum gain drops below a pre-defined threshold, which 
indicates improvement achieved through further training will no longer be significant. The 
output of the training process would be a ranked set of rules instantiating the predefined set of 
templates. The rules will then be used to segment new text. Like statistical approaches, this 
approach provides a trainable method to learn the rules from a corpus and it is not 
labor-intensive. The drawback is that compared with statistical approaches, this algorithm is 
not very efficient.  

The present work represents another supervised machine-learning approach. Specifically, 
we applied the maximum entropy model, a statistical machine-learning algorithm to Chinese 
word segmentation.  

3. A supervised machine-learning algorithm to Chinese word segmentation  

In this section, we first formalize the idea of tagging hanzi based on their word-internal 
positions and describe the tag set we used. We then briefly describe the maximum entropy 
model, which has been successfully applied to POS tagging as well as parsing [Ratnaparkhi, 
1996; Ratnaparkhi, 1998].  

3.1 Reformulating word segmentation as a tagging problem 

Before we apply the machine-learning algorithm first we convert the manually segmented 
words in the corpus into a tagged sequence of Chinese characters. To do this, we tag each 
character with one of the four tags, LL, RR, MM and LR depending on its position within a 
word. It is tagged LL if it occurs on the left boundary of a word, and forms a word with the 
character(s) on its right. It is tagged RR if it occurs on the right boundary of a word, and 
forms a word with the character(s) on its left. It is tagged MM if it occurs in the middle of a 
word. It is tagged LR if it forms a word by itself. We call such tags position-of-character 
(POC) tags to differentiate them from the more familiar part-of-speech (POS) tags. For 
example, the manually segmented string in (3a) will be tagged as (3b):  
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3. (a)  23 45 6 7 89 : ;< => ?@ AB CD EF GH 

(b)  2/LL 3/RR 4/LL 5/RR 6/LR 7/LR 8/LL 9/RR :/LR ;/LL </RR 
=/LL >/RR ?/LL @/RR A/LL B/RR C/LL D/RR E/LL F/RR G/LL 
H/RR 

(c)  Shanghai plans to reach the goal of 5,000 dollars in per capita GDP by the end of 
the century. 

Given a manually segmented corpus, a POC-tagged corpus can be derived trivially with 
perfect accuracy. The reason why we use such POC-tagged sequences of characters instead of 
applying n -gram rules to segmented corpus directly [Palmer, 1997; Hockenmaier and Brew, 
1998; Xue, 2001] is that they are much easier to manipulate in the training process. In 
addition, the POC tags reflect our observation that the ambiguity problem is due to the fact 
that a hanzi can occur in different word-internal positions and it can be resolved in context. 
Naturally, while some characters have only one POC tag, most characters will receive 
multiple POC tags, in the same way that words can have multiple POS tags. Table 2 shows 
how all four of the POC tags can be assigned to the character   (“produce”):  

Table2. A character can receive as many as four tags 
Position  Tag Example   

Left  LL  ! ’to come up with’   
Word by itself  LR   "# ’to grow wheat’   
Middle  MM ! $ ’assembly line’   
Right  RR !  ’to produce’   

If there is ambiguity in segmenting a sentence or any string of hanzi, then there must be 
some hanzi in the sentence that can receive multiple tags. For example, each of the first four 
characters of the sentence in (1) would have two tags. The task of the word segmentation is to 
choose the correct tag for each of the hanzi in the sentence. The eight possible tag sequences 
for (1) are shown in (4a), and the correct tag sequence is (4b).   

4. (a) */LL |LR +/RR |LL ,/LL |RR -/RR |LR ./LL //RR 0/LR ? 

(b) */LL +/RR ,/LL -/RR ./LL //RR 0/LR ? 

Also like POS tags, how a character is POC-tagged in naturally occurring text is affected by 
the context in which it occurs. For example, if the preceding character is tagged LR or RR, 
then the next character can only be tagged LL or LR. How a character is tagged is also 
affected by the surrounding characters. For example, ( (``close'') should be tagged RR if the 
previous character is 1 (``open'') and neither of them forms a word with other characters, 
while it should be tagged LL if the next character is 1 (``heart'') and neither of them forms a 
word with other characters. This state of affairs closely mimics the familiar POS tagging 
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problem and lends itself naturally to a solution similar to that of POS tagging. The task is one 
of ambiguity resolution in which the correct POC tag is determined among several possible 
POC tags in a specific context. Our next step is to train a maximum entropy model on the 
perfectly POC-tagged data derived from a manually segmented corpus to automatically 
POC-tag unseen text. 

3.2 The maximum entropy tagger 

The maximum entropy model used in POS-tagging is described in detail in [Ratnaparkhi, 
1996] and the POC tagger here uses the same probability model. The probability model is 
defined over %H T , where H  is the set of possible contexts or "histories" and T  is the 
set of possible tags. The model’s joint probability of a history h  and a tag t  is defined as  
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The success of the model in tagging depends to a large extent on the selection of suitable 
features. Given ( )h t, , a feature must encode information that helps to predict t . The 
features we used in this experiment are instantiations of the feature templates in (5). Feature 
templates (b) to (e) represent character features while (f) represents tag features. The character 
and tag features are also represented graphically in Figure 1, where 3 3C C− ...  are characters 
and 3 3T T− ...  are POC tags. Each arrow or arc represents one feature template. Feature 
template (a) represents the default feature.   

5 Feature templates   

(a) Default feature 

(b) The current character ( 0C ) 

(c) The previous (next) two characters ( 2 1 1 2, , ,C C C C− − ) 

(d) The previous (next) character and the current character (C-1 C0, C0 C1), 
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   the previous two characters (C-2 C-1), and 

   the next two characters (C1 C2) 

(e) The previous and the next character (C-1 C1) 

(f) The tag of the previous character (T-1), and  
         the tag of the character two before the current character (T-2) 

I C-3 C-2      C-1      C0    C1     C2    C3I

I T-3 T-2      T-1      T0    T1     T2    T3I

 
Figure 1 Features used in the maximum entropy segmenter  

In general, given ( )h t, , these features are in the form of co-occurrence relations between t  
and some type of context h , or between t  and some properties of the current character. For 
example,  

11        
0  ( ) { i iif t LL & t RR

i i i otherwisef h t − = =, =  

This feature will map to 1 and contribute towards ( )i ip h t,  if ( 1)ic −  is tagged LL and ic  
is tagged RR.  

The feature templates in (5) encode three types of contexts. First, features based on the 
current and surrounding characters (5b, 5c, 5d, 5e) are extracted. Given a character in a 
sentence, this model will look at the current character, the previous two and next two 
characters. For example, if the current character is ' (plural marker), it is very likely that it 
will occur as a suffix in a word, thus receiving the tag RR. On the other hand, for other 
characters, they might be equally likely to appear on the left, on the right or in the middle. In 
those cases where it occurs within a word depends on its surrounding characters. For example, 
if the current character is 2 (“love”), it should perhaps be tagged LL if the next character is 
3 (“protect”). However, if the previous character is 4 (“warm”), then it should perhaps be 
tagged RR. Second, features based on the previous tags (5f) are extracted. Information like 
this is useful in predicting the POC tag for the current character just as the POS tags are useful 
in predicting the POS tag of the current word in a similar context. For example, if the previous 
character is tagged LR or RR, this means that the current character must start a word, and 
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should be tagged either LL or LR. Finally, a default feature (5a) is used to capture cases where 
no other features are available. When the training is complete, the features and their 
corresponding parameters will be used to calculate the probability of the tag sequence of a 
sentence when the tagger tags unseen data. Given a sequence of characters 1{ }nc c, ..., , the 
tagger searches for the tag sequence 1{ }nt t, ...,  with the highest probability  

1 1
1

( ) ( )
n

n n i i
i

P t t C C P t h
=

,... | ,... = |∏                          (3) 

and the conditional probability of for each POC tag t  given its history h  is calculated as  

( )
( )( ) P h t

t T

p h tP t h ʹ′,

ʹ′∈

,
| =

∑
                                    (4) 

4. Experiments 

We conducted two experiments. In the first experiment, we used the maximum matching 
algorithm to establish a baseline, as comparing results across different data sources can be 
difficult. This experiment is also designed to test the performance of the maximum matching 
algorithm with or without unknown words. In the second experiment, we applied the 
maximum entropy model to the problem of Chinese word segmentation. The data we used is 
from the Penn Chinese Treebank [Xia et al., 2000; Xue, Chiou, and Palmer, 2002] and it 
consists of Xinhua newswire articles. We took 250,389-word (426,292 characters or hanzi) 
worth of manually segmented data and divided them into two chunks. The first chunk has 
237,791 words (404,680 Chinese characters) and is used as training data. The second chunk 
has 12,598 words (21,612 characters) and is held out as testing data. This data is used in both 
of our experiments.  

4.1 Experiment One 

In this experiment, we conducted two sub-experiments. In the first sub-experiment, we used a 
forward maximum matching algorithm to segment the testing data with a dictionary compiled 
from the training data. There are 497 (or 3.95%) new words (words that are not found in the 
training data) in the testing data. In the second sub-experiment, the same algorithm was used 
to segment the same testing data with a dictionary compiled from BOTH the training data and 
the testing data. In other words, there is no new word in the testing data.  

4.2 Experiment Two 

In the second experiment, a maximum entropy model was trained on a POC-tagged corpus 
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derived from the training data described above. In the testing phase, the sentences in the 
testing data were first split into sequences of hanzi and then tagged with this maximum 
entropy tagger. The tagged testing data is then converted back into word segments for 
evaluation. Note that converting a POC-tagged corpus into a segmented corpus is not entirely 
straightforward when inconsistent tagging occurs. For example, it is possible that the tagger 
assigns a LL-LR sequence to two adjacent characters. We made no effort to ensure the best 
possible conversion. The character that is POC-tagged LL is invariably combined with the 
following character, no matter how the latter is tagged. The example in (6) illustrates this 
process.   

6. (a) Tagged output  

         J/LR K/LL K/RR L/LL M/RR N/LR O/LL P/MM P/MM Q/MM R
/RR S/LR T/LL ?/RR U/LL V/MM W/RR X/LL Y/RR T/LR S/LR ?
/LL Z/RR [/LL \/RR ]/LR ^/LL _/RR `/LL a/RR [/LL \/RR 
b/LL c/RR d/LL U/RR S/LR ?/LL Z/RR [/LL \/RR e/LL f/RR 
g/LL h/RR i/LL 5/RR j/LL k./RR S/LR ^/LL _/RR `/LL a/RR 
[ /LL \ /RR l /LL m /RR n /LL o /RR p /LL q /RR N /LR r /LL 0
/RR s/LR 

(b) Segmented output 
    678879:7;7<==>?7@7AB7CDE7FG7A7@7B

H7IJ7K7LM7NO7IJ7PQ7RC7@7BH7IJ7ST7U

V7W57XY7@7LM7NO7IJ7Z[7\]7^_7;7`a7b 

(c) Gold Standard 

JtKKtLMtNtOPPQRtStT?tUVWtXYtTtSt?

Zt[\t]t^_t`at[\tbcdUtSt?Zt[\teftg

htiutjktSt^_t`at[\tlmtnotpqtNtr0ts 

5. Results 

In evaluating our model, we calculated both the tagging accuracy and segmentation accuracy. 
The calculation of the tagging accuracy is straightforward. It is simply the total number of 
correctly POC-tagged characters divided by the total number of characters. In evaluating 
segmentation accuracy, we used three measures: precision, recall and balanced F-score. 
Precision p  is defined as the number of correctly segmented words divided by the total 
number of words in the automatically segmented corpus. Recall r  is defined as the number 
of correctly segmented words divided by the total number of words in the gold standard, 
which is the manually annotated corpus. F-score f  is defined as follows:  
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2p rf
p r
× ×

=
+

                     (5) 

The results of the three experiments are tabulated in Table 3:   

Table 3. Experimental results 
 Tagging accuracy  Segmentation accuracy  

Testing   Experiments  Training  Testing  
p(%)  r(%)  f(%)  r(% new words)  

1a  n/a  n/a  87.34  92.34  89.77  1.37  
1b  n/a  n/a  94.51  95.80  95.15  n/a  
2  97.90  96.05  95.01  94.94  94.98  70.20  

 
The results from Experiment One show that the accuracy of the maximum matching 

algorithm degrades sharply when there are new words in the testing data, even when there is 
only a small proportion of them. Assuming an ideal scenario where there is no new word in 
the testing data, the maximum matching algorithm achieves an F-score of 95.15%. However, 
when there are new words (words not found the training data), the accuracy drops to only 
89.77% in F-score. In contrast, the maximum entropy tagger achieves an accuracy of 94.98% 
by the balanced F-score even when there are new words in testing data. This result is only 
slightly lower than the 95.15% that the maximum matching algorithm achieves when there is 
no new word. An analysis of the new words (words not in the training data) is more revealing. 
Of the 510 words that are found in the testing data but not in the training data, 7 or 1.37% of 
them are correctly segmented by the maximum matching algorithm (Experiment 1a), while the 
maximum entropy model correctly segmented 70.20%, or 358 of them. The 7 words the 
maximum matching algorithm segmented correctly happen to be single-character words. This 
is expected because the maximum matching algorithm stops when it can no longer extend a 
string of hanzi based on a dictionary. In contrast, for the maximum entropy model, unknown 
words are predicted based on the distribution of their components. Even though the new words 
are not found in the training data, their components can still be found and words can be 
proposed based on the distribution of their components, a property that is typical of back-off 
statistical models. The fact the recall of the unknown words is well below the overall recall 
suggests that statistics of the unknown words are harder to collect than the known words.  

The results of this segmenter against previous studies are harder to assess. One reason 
why this is difficult is that the accuracy representing segmenter performance can only be 
meaningfully interpreted if there is a widely accepted definition of wordhood in Chinese. It 
has been well-documented in the linguistics literature [Dai, 1992; Packard, 2000; Xue, 2001] 
that phonological, syntactic and semantic criteria do not converge to allow a single notion of 
“word” in Chinese. In practice, noting the difficulty in defining wordhood, researchers in 
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automatic word segmentation of Chinese text generally adopt their own working definitions of 
what a word is, or simply rely on native speakers’ subjective judgments. The problem with 
native speakers’ subjective judgements is that native speakers generally show great 
inconsistency in their judgments of wordhood, as should perhaps be expected given the 
difficulty of defining what a word is in Chinese. For example, Wu and Fung [1994] introduced 
an evaluation method which they call nk -blind. To deal with the inconsistency they 
proposed a scheme in which n  human judges are asked to segment a text independently. 
They then compare the segmentation of an automatic segmenter with those of the human 
judges. For a given "word" produced by the automatic segmenter, there may be k  human 
judges agreeing that this is a word, where k  is between zero  and n . For eight human 
judges, the precision of the segmentation with which all the human judges agree is only 30%, 
while the precision of the segmentation that at least one human judge agrees with is 90%. 
[Sproat et al., 1996] adopted a different evaluation method since their work on Chinese word 
segmentation is tailored for use in a text-to-speech system. Their subjects, who have no 
training in linguistics, are instructed to segment sentences by marking all the places they 
might be plausibly pause if they were reading the text aloud. They tested inter-subject 
consistency on six native speakers of Mandarin Chinese and the average inter-subject 
consistency is 76%. These experiments attest the difficulty of evaluating the performance of 
different segmenters.  

The situation is improving with the emergence of published segmentation standards and 
corpora manually segmented in keeping with these standards [Xia, 2000; Yu et al.,1998; 
CKIP, 1995]. Still, the corpora can vary by size, the complexity of the sentences in the 
corpora, so on and so forth. Unless the segmenters are tested with a single standard corpus, the 
performance of different segmenters are still hard to gauge. Still some preliminary 
observations can be made in this regard. Our accuracy is much higher that those reported in 
[Hockenmaier and Brew, 1998] and [Xue, 2001], who used error-driven transformation-based 
learning to learn a set of n-gram rules to do a series of merge and split operations on data from 
Xinhua news, the same data source as that of ours. The results they reported are 87.9% 
(trained on 100,000 words) and 90.2% (trained on 80,000 words) respectively, measured by 
the balanced F-score. Using a statistical model called prediction by partial matching (PPM), 
Teahan et al. [2000] reported a significantly better result. The model was trained on a million 
words from Guo Jin’s Mandarin Chinese PH corpus and tested on five 500-segment files. The 
reported F-scores are in a range between 89.4% and 98.6%, averaging 94.4%. Since the data is 
also from Xinhua newswire, some comparison can be made between our results and this 
model. With less training data, our results using the maximum entropy model are slightly 
higher (by 0.48%). Tested on the same test data as ours, the Microsoft system [Wu, 2003] 
achieved a higher accuracy, achieving precision and recall rates of 95.98% and 96.36% 
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respectively, using a dictionary of around 89K words, compared with around 19K unique 
words in our training data. We believe our approach can achieve higher accuracy with more 
training data.  

5.1 Personal names 

It has long been noted that personal names often pose a serious problem for automatic word 
segmentation, presumably because new names are constantly made up and it is impossible to 
list them exhaustively in pre-compiled dictionaries that dictionary-based approaches heavily 
rely on. It is expected that these names should not generally be a problem for the present 
character-based approach in the same way because new words are not distinct problems for 
this approach. Among the 137 personal names (122 unique names, both Chinese names and 
foreign name transliterations) found in the testing data, 119 of them are segmented correctly, 
with a recall of 86.86%. The 18 wrongly segmented names are given in Table 4. In general, 
longer names, especially foreign names, are more likely to cause problems for this model.  

Table 4. Incorrectly segmented personal names 
Correct Segmentation  Segmenter Output  
cdefghijgcklm cd7efghijgcklm 
nopq notptq 
rst rstt 
uv(w:xnyz) utvt(tw:txnyz) 
{|l} {|l}~� 
 !"  !t"vw 
#$% #$t%x 
&% &%y 
y'( y't( 
m)}*+g},- m)}*+g},-s 
.7W/ .W/ 
,012 ,t012 
A345 A3t45 
)678g9: v)678g9: 
;<=g>?@@z ;<=g>?t@@z 
ABC ABC0 
)DEF )DtEF 23! 
GHIJ GtHIJ 
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5.2 Contribution of Features 

In an effort to assess the effectiveness of the different types of features, we retrained our 
system by taking out each group of features in (5). The most effective features are the ones 
which, when not used, result in the most loss in accuracy. Table 5 shows that there is loss of 
accuracy when any of the six groups of features are not used. This means that all of the 
features in (5) made a positive contribution to the overall model. It is also clear that the 
features in (5d), which are pairs of Chinese characters, are the most effective. A substantial 
number of the features in (5d) encode two-character words and are thus good indicators of 
how the current character should be tagged. For example, if 0C = { and 1C = |, this is 
good indication that { will start a word {|, thus receive a tag LL. The previous (next) two 
characters individually (5c), the previous tags (5f) and the current character (5b) also made a 
substantial contribution to the overall model. The least useful features are the previous and the 
next character together (5e) and the default feature. The default feature is useful when no 
other features are invoked, e.g. when the current character is unknown and the previous two 
and next two characters are also unknown. It is not as effective as other features presumably 
because the likelihood of this scenario happening is small, given the characters in Chinese are 
limited in number.  

Table 5. The effectiveness of different features 
Segmentation accuracy  Features  Tagging accuracy  

p(%)  r(%)  f(%)   
all  96.05  95.01  94.94  94.98  

w/o (a)  96.03  94.97  94.94  94.96  
w/o (e)  95.92  94.85  94.86  94.85  
w/o (b)  95.16  93.99  93.95  93.97  
w/o (f)  95.41  93.88  93.95  93.91  
w/o (c)  95.11  93.40  93.95  93.67  
w/o (d)  92.62  91.04  91.06  91.05  

5.3 Effects of Tag Sets 

The choice of our POC tag set is based on linguistic intuitions. The use of four tags is 
linguistically intuitive in that LL tags morphemes that are prefixes or stems in the absence of 
prefixes, RR tags morphemes that are suffixes or stems in the absence of suffixes, MM tags 
stems with affixes and LR tags stems without affixes. The results in Table 6 show that our 
linguistically intuitive tag set is also the most effective. The use of three tags (LL for 
beginning of a word, RR for continuation of a word and LR for word by itself) that has been 
proven to be the most useful for baseNP chunking [Ramshaw and Marcus, 1995] results in 
comparable performance in segmentation accuracy. The use of two tags (LL for beginning of 
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a word and RR otherwise) results in substantial loss in segmentation accuracy while gaining in 
tagging accuracy. This is a somewhat surprising result since there is no inconsistent tagging 
with this tag set and thus no loss in accuracy in the post-tagging conversion process.  

Table 6. The effectiveness of different tagsets 
Segmentation accuracy  Tagset  Tagging accuracy  
p(%)  r(%)  f(%)   

Two  97.51  94.37  94.40  94.38  
Three  96.51  95.09  94.83  94.96  
Four  96.05  95.01  94.94  94.98  

6. Conclusions and Future Work 

The preliminary results show that the maximum entropy model can be effectively applied to 
Chinese word segmentation. It is more robust than the maximum matching algorithm in the 
sense that it can handle unknown words much more effectively. The results also show that our 
approach is competitive against other machine-learning models.  

Much work needs to be done to evaluate this approach more thoroughly. For example, 
more experiments need to be performed on data sources other than the newswire type and on 
standards other than the Penn Chinese Treebank. In addition, we plan to explore ways to 
further improve this segmenter. For instance, we expect that the segmenter accuracy can still 
be improved as more training data become available. Refined pre-processing or 
post-processing steps could also help improve segmentation accuracy. For example, instead of 
tagging hanzi directly it might be possible to tag morphemes, which may or may not be 
composed of just one hanzi. There might also be better ways to convert a tagged sequence into 
a word sequence than the simple approach we adopted.  
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Abstract 

The present study attempts to measure and compare the morphological productivity 
of five Mandarin Chinese suffixes: the verbal suffix  -hua, the plural suffix -men, and 
the nominal suffixes -r, -zi, and -tou. These suffixes are predicted to differ in their 
degree of productivity: -hua and -men appear to be productive, being able to 
systematically form a word with a variety of base words, whereas -zi and -tou (and 
perhaps also -r) may be limited in productivity. Baayen [1989, 1992] proposes the 
use of corpus data in measuring productivity in word formation. Based on word-token 
frequencies in a large corpus of texts, his token-based measure of productivity 
expresses productivity as the probability that a new word form of an affix will be 
encountered in a corpus. We first use the token-based measure to examine the 
productivity of the Mandarin suffixes. The present study, then, proposes a type-based 
measure of productivity that employs the deleted estimation method [Jelinek & 
Mercer, 1985] in defining unseen words of a corpus and expresses productivity by the 
ratio of unseen word types to all word types. The proposed type-based measure yields 
the productivity ranking “-men, -hua, -r, -zi, -tou,” where -men is the most productive 
and -tou is the least productive. The effects of corpus-data variability on a 
productivity measure are also examined. The proposed measure is found to obtain a 
consistent productivity ranking despite variability in corpus data. 

Keywords: Mandarin Chinese word formation, Mandarin Chinese suffixes, 
morphological productivity, corpus-based productivity measure. 

1. Introduction 

1.1 Morphological Productivity 
The focus of a study of morphological productivity is on derivational affixation that involves a 
base word and an affix [Aronoff, 1976], as seen in sharp + -ness # sharpness, electric + -ity 
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# electricity, child + -ish # childish.1 Native speakers of a language have intuitions about 
what are and are not acceptable words of their language, and if presented with non-existent, 
potential words [Aronoff, 1983], they accept certain word formations more readily than others 
[Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980]. Most intriguing in 
the issue of productivity is that the degree of productivity varies among affixes, and many 
studies in the literature have been devoted to accounting for this particular aspect of 
productivity [see Bauer, 2001, and Plag, 1999, for an overview]. 

How the degree of productivity varies among affixes is best illustrated by the English 
nominal suffixes -ness and -ity, which are often considered “rivals” as they sometimes share a 
base word (e.g., clear   clearness or clarity). In general, -ness is felt to be more productive 
than -ity.2 The word formation of -ity is limited, for example, by the Latinate Restriction 
[Aronoff, 1976: 51] that requires the base word to be of Latinate origin; hence, purity is 
acceptable but *cleanity is not. In contrast, -ness freely attaches to a variety of base words of 
both Latinate and Germanic (native) origin; thus, both pureness and cleanness are acceptable. 
There are also some affixes that could be regarded as unproductive; for example, Aronoff and 
Anshen [1998: 243] note that the English nominal suffix -th (as in long # length) has long 
been unsuccessful in forming a new word that survives, despite attempts at terms like coolth. 
Varying degrees of productivity are also observed in Mandarin Chinese word formation. As 
will be discussed shortly, some Mandarin suffixes appear to be more productive than others. 

1.2 Measuring the Degree of Productivity 
Early studies on productivity mainly focused on restrictions on word formation and viewed the 
degree of productivity to be determined by such restrictions [Booij, 1977; Schultink, 1961; 
van Marle, 1985]. Booij [1977: 120], for example, considers the degree of productivity of a 
word formation rule to be inversely proportional to the amount of restrictions that the word 
formation rule is subject to. Although the view that productivity is affected by restrictions on 
word formation is certainly to the point, from a quantitative point of view, measuring 
productivity by the amount of restrictions on word formation is limited in that the restrictive 
weight of such restrictions is unknown [Baayen & Renouf, 1996: 87]. 

Baayen [1989, 1992] proposes a corpus-based approach to the quantitative study of 
productivity. His productivity measure uses word frequencies in a large corpus of texts to 

                                                
1 Excluded from the study of productivity are seemingly irregular word formations, or “oddities” 

[Aronoff, 1976: 20], such as blendings (e.g., smoke + fog → smog) and acronyms (e.g., NATO). 
2 -ity can be more productive than -ness depending on the type of base word; for instance, -ity is more 

productive than -ness when the base word ends with -ile as in servile [Aronoff, 1976: 36] or with -ible 
as in reversible [Anshen & Aronoff, 1981]. Still, overall, -ness is intuitively felt to be more productive 
than -ity. 
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express productivity as the probability that a new word form of an affix will be encountered in 
a corpus (see Section 3). Although Bauer [2001: 204] observes that a generally agreed 
measure of productivity is yet to be achieved in the literature, Baayen’s corpus-based 
approach seems to be appealing and promising. Most importantly, since corpus data include 
productively formed words that are typically not found in a dictionary [Baayen & Renouf, 
1996], corpus-based descriptions of productivity reflect how words are actually used.3 The 
corpus-based approach is also timely, as linguists have growing interests in corpus data. The 
present study pursues the corpus-based approach to measuring productivity using a corpus of 
Chinese texts. 

The outline of this paper is as follows. In Section 2, five Mandarin suffixes are 
introduced and are analyzed qualitatively based on observations in the literature. In Section 3, 
Baayen’s token-based productivity measure is discussed, and the measure is applied to a 
corpus of Chinese texts to quantitatively analyze the productivity of the Mandarin suffixes. In 
Section 4, a type-based productivity measure is proposed, and its performance is evaluated. 
Also, some experiments are conducted to examine the effects of corpus-data variability on a 
productivity measure. Section 5 summarizes the findings. 

2. Mandarin Chinese Suffixes 

2.1 A Qualitative Analysis of Five Mandarin Suffixes 
The present study examines the productivity of five Mandarin suffixes: the verbal suffix -hua, 
the plural suffix -men, and the nominal suffixes -r, -zi, and -tou. 

The verbal suffix -hua   functions similarly to English - ize (and -ify): 

(1) xiàndài !" ‘modern’ # xiàndàihuà !"  ‘modernize’ 

Verbs formed with -hua can be used as nouns [Baxter & Sagart, 1998: 40], so xiàndàihuà !
"  in (1) can also be interpreted as ‘modernization’. Analogous to English -ize 
(and -ify), -hua systematically attaches to a variety of base words to form verbs, such as 
g$ngyèhuà #$  ‘industrialize’, guójìhuà %&  ‘internationalize’, and jìsuànj-huà '
()  ‘computerize’. 

 The suffix -men * pluralizes a noun, as in the following example: 

(2) xuésheng +, ‘student’ # xuéshengmen +,* ‘students’ 

According to Packard’s [2000] classification, -men is a grammatical affix, whereas the other 
four suffixes that we examine are word-forming affixes. If we use the standard terminology of 

                                                
3 But see also Plag [1999] for a discussion of how dictionary data can be useful in a study of 

productivity. 
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the field, -men could be viewed as an inflectional affix, and the other four suffixes could be 
considered derivational affixes. There are three major characteristics of -men that 
differentiate -men from the English plural suffix -s [Lin, 2001: 59; Norman, 1988: 159; 
Ramsey, 1987: 64]. First, -men attaches only to human nouns4; hence, *zhu$zimen -.* 
‘desks’ and *diànn/omen /0* ‘computers’ are not acceptable, unless they are considered 
animate as in a cartoon. Second, -men is obligatory with pronouns (e.g., w1 1 ‘I’ # w1men 
1* ‘we’) but not with nouns; for example, háizi 2. without -men can be interpreted as 
‘child’ or ‘children’ depending on the context. Third, -men is not compatible with numeral 
classifiers; hence, *s3ngè xuéshengmen 34+,* ‘three students’ is ungrammatical. Due 
to these characteristics, -men may not be as frequently used or “productive” [Lin, 2001: 58] as 
the English plural suffix -s. However, -men has many base words to which it can attach, for 
there are a variety of nouns in Mandarin (as in any language) designating human beings (e.g., 
jìzh4men 56* ‘reporters’, kèrénmen 78* ‘guests’, shìzh/ngmen 9:* ‘mayors’). 

The suffix -r ; forms a noun from a verb or an adjective, or -r can create a diminutive 
form [Ramsey, 1987: 63; Lin, 2001: 57–58]: 

(3) huà < ‘to paint’ # huàr <; ‘painting’ 

(4) ni/o = ‘bird’      # ni/or =; ‘small bird’ 

The use of -r is abundant in the colloquial speech of local Beijing residents, and three distinct 
usages of -r by local Beijing residents are identified [Chen, 1999: 39]. First, -r can create a 
semantic difference: 

(5) xìn > ‘letter’ # xìnr >; ‘message’ 

Second, a form with -r may be habitually preferred to a form without it: 

(6) hu3 ? ‘flower’ # hu3r ?; ‘flower’ 

Third, -r may be attached to a word solely for a stylistic reason. The use of -r in the last 
category is the most frequent among local Beijing residents [Chen, 1999: 39]. In both 
Mainland China and Taiwan, the use of -r is not favored especially in broadcasting, and -r 
words are rarely incorporated into the standard [Chen, 1999: 39; Ramsey, 1987: 64]. 

The suffixes -zi . and -tou @ typically appear in the following constructions: 

(7) *mào A # màozi A. ‘hat’ 

(8) *mù B # mùtou B@ ‘wood’ 

In these examples, -zi and -tou combine with a bound morpheme that does not constitute a 

                                                
4 In colloquial speech, -men can occasionally attach to some animal nouns (e.g., g1urmen C;* 
‘doggies’). 
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word by itself (i.e., neither *mào A nor *mù B is a word). 

Historically, the word formation of -zi and -tou appeared in the course of two changes in 
Chinese: a shift from monosyllabic to disyllabic words and a simplification of the 
phonological system [Packard, 2000: 265–266]. According to Packard [2000: 265], the shift 
toward disyllabic words occurred as early as in the Zhou dynasty (1000–700 BC) and 
underwent a large scale development during and after the Han dynasty (206 BC–AD 220). The 
phonological simplification, which occurred around the same time [Packard, 2000: 266], 
caused syllable-final consonants to be lost, and many single-syllable words that were once 
distinct became homophones [Li & Thompson, 1981: 44]. One possible account of how the 
two changes occurred is that the phonological simplification preceded as a natural linguistic 
process of phonetic attrition, and the shift toward disyllabic words occurred as a solution to 
the increase of homophonous syllables [Li & Thompson, 1981: 44; Packard, 2000: 266]. The 
increase of homophonous syllables was particularly significant in Mandarin [Li & Thompson, 
1981: 44], and -zi and -tou played a role in the disyllabification of Mandarin words. 

The word formation of -zi and -tou is not limited to bound morphemes [Lin, 2001: 58–59; 
Packard, 2000: 84]: 

(9) sh7 D ‘to comb’ # sh7zi D. ‘comb’ 

(10) xi/ng E ‘to think’ # xi/ngtou E@ ‘thought’ 

In these examples, -zi and -tou form a noun by attaching to a free morpheme (i.e., both sh7 D 
and xi/ng E are independent words). 

The term “productive” is sometimes used in the literature to describe the above-discussed 
suffixes. Ramsey [1987: 63] describes -tou to be much less productive than -zi, while Li and 
Thompson [1981: 42–43] observe that -zi and -tou are both no longer productive. Lin [2001: 
57] views -r to be the most productive Mandarin suffix. Unfortunately, the basis for these 
observations is left unclear. Some observations may be based on the number of word forms of 
a suffix found in a dictionary; for example, present-day Mandarin has by far more -zi word 
forms than -tou word forms, and this may lead to the view that -zi is more productive than -tou. 
However, as Aronoff [1980] argues, of interest to linguists is the synchronic aspect of 
productivity (i.e., how words of an affix can be formed at a given point in time), rather than 
the diachronic aspect of productivity (i.e., how many words of an affix have been formed 
between two points in time). Concentrating on the synchronic aspect, if we associate 
productivity with regularity in word formation [Spencer, 1991: 49] or availability of base 
words with which a new word can be readily formed, we may predict -hua and -men to be 
productive, and -zi and -tou to be limited in productivity. The productivity of -r would likely 
depend on the context—if we focus on broadcasting, the productivity of -r may also be limited. 
Admittedly, these predictions are speculative, and the difficulty in describing the productivity 
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of an affix is where a quantitative productivity measure becomes important. In the following 
sections, the productivity of the Mandarin suffixes will be examined quantitatively. 

3. Quantitative Productivity Measurement 

3.1 Baayen’s Corpus-Based Approach 
Baayen [1989, 1992] proposes a corpus-based measure of productivity, formulated as: 

(11) 
N
np 1

=  

where given all word forms of an affix found in a large corpus of texts, n1 is the number of 
word types of the affix that occur only once in the corpus, the so-called hapax legomena 
(henceforth, hapaxes), N is the sum of word tokens of the affix, and p is the productivity index 
of the affix in question.5 The measure (11) employs Good’s [1953] probability estimation 
method (commonly known as the Good-Turing estimation method) that provides a 
mathematically proven estimate [Church & Gale, 1991] of the probability of seeing a new 
word in a corpus, based on the probability of seeing hapaxes in that corpus. The productivity 
index p expresses the probability that a new word type of an affix will appear in a corpus after 
N tokens of the affix have been sampled. One important characteristic of the measure (11) is 
that it is token-based; that is, the measure relies on word-token frequencies in a corpus. The 
sum of word types of an affix in a corpus, represented by V, is not directly tied to the degree of 
productivity (see Section 4.1). In the remaining sections, the measure (11) will be referred to 
as the hapax-based productivity measure.6 

While the hapax-based measure has been primarily used in the studies of Western 
languages, such as Dutch [e.g., Baayen, 1989, 1992] and English [e.g., Baayen & Lieber, 1991; 
                                                
5 A clear distinction has to be made between word tokens and word types in the context of a corpus 

study. To give the simplest example, if we have three occurrences of the in a small corpus, the token 
frequency of the is three, and the type frequency of the is one. In the case of affixation, we ignore the 
differences between singular and plural forms; for example, if we have a corpus that has {activity, 
activity, activities, possibility, possibilities}, the token frequency of -ity is five (the sum of all these 
occurrences of -ity) while the type frequency of -ity is two (after normalizing the plural forms, we 
have two distinct -ity words, activity and possibility). An exception to ignoring the plural suffix is 
when we are interested in the productivity of the plural suffix itself. In that case, if we have a corpus 
consisting of {book, books, books, student, students}, the token frequency of -s is three (i.e., books, 
books, and students), and the type frequency of -s is two (we have two distinct -s forms, books and 
students). 

6 For the purposes of this paper, the term hapax-based measure is used to express, in a shorthand 
manner, the fact that the measure defines new words based on hapaxes and that the measure is 
token-frequency-based. It should not be confused with the hapax-conditioned measure, p*, discussed 
in Baayen [1993]. 
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Baayen & Renouf, 1996], the measure was also used by Sproat and Shih [1996] in a study of 
Mandarin word formation. The focus of Sproat and Shih’s study was on productivity in 
Mandarin root compounding, as seen in the nominal root y8 F of m/y8 GF ‘ant’ that 
forms many words of ‘ant-kind’, such as y8wáng FH ‘queen ant’ and g$ngy8 #F ‘worker 
ant’. By analyzing the degree of productivity of a number of Mandarin nominal roots, Sproat 
and Shih showed that, contrary to a claim in the literature, root compounding is a productive 
word-formation process in Mandarin. For example, while shí I ‘rock-kind’ and y8 F 
‘ant-kind’ had the productivity indices of 0.129 and 0.065, respectively, apparently 
unproductive b-n J and láng K of b-nláng JK ‘betel nut’ were found to have zero 
productivity. Sproat and Shih’s study shows that a corpus-based study of productivity in 
Chinese is fruitful. 

3.2 A Corpus of Segmented Chinese Texts 
A major difficulty in conducting a corpus-based study of productivity in Chinese is that 
Chinese texts lack word delimiters. Segmentation of Chinese text is, by itself, a contested 
subject [see Sproat, Shih, Gale, & Chang, 1996], and consequently, a large-size corpus of 
segmented Chinese texts is not as readily available as a large-size corpus of English texts. 
Sproat and Shih [1996] used a large-size Chinese corpus (40-million Chinese characters) in 
their study by running an automatic segmenter to segment strings that contained the Chinese 
characters of interest and manually processing some problematic cases where the 
segmentation was not complete. 

The corpus of choice in the present study is a “cleaned-up” version of the Mandarin 
Chinese PH Corpus [Guo, 1993; hereafter, the PH Corpus] of segmented Chinese texts, made 
available in a study by Hockenmaier and Brew [1998].7 The corpus contains about 2.4-million 
(2,447,719) words—or 3.7-million (3,753,291) Chinese characters—from XinHua newspaper 
articles between January 1990 and March 1991. The texts of the PH Corpus are originally 
encoded in GB (simplified Chinese characters), and to facilitate the processing of the texts in 
computer programs, we convert the texts into UTF8 (Unicode) using an encoding conversion 
program developed by Basis Technology [Uniconv, 1999]. The size of the PH Corpus is 
relatively small by today’s standards (cf. a corpus of 80-million English words used in Baayen 
& Renouf, 1996), but the PH Corpus is one of few widely available corpora of segmented 
Chinese texts. Another widely available corpus of segmented Chinese texts is the Academia 
Sinica Balanced Corpus [1998; hereafter, the Sinica Corpus] that contains 5-million words 
from a variety of text sources. The sentences of the Sinica Corpus are syntactically parsed, so 
the part-of-speech of each segmented word is identified. Although the Sinica Corpus is not 

                                                
7 The PH Corpus can be downloaded from the ftp server of the Centre for Cognitive Science at 

University of Edinburgh. 
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used in the present study, the use of the Sinica Corpus is certainly of interest. 8 

Certain words were filtered out as potentially relevant words of the Mandarin suffixes in 
question were collected from the PH Corpus. With -r and -zi, a criterion for distinguishing a 
suffix from a non-suffix is that -r and -zi as a suffix lose their tone [Liu, 2001, 57–58; Norman, 
1988, 113–114]. This criterion helps identify and block many non-suffixal cases where -r 
and -zi denote ‘son’ or ‘child’, such as y-ng’ér L; ‘baby’, fùz8 M. ‘father and son’, and 
xiàoz8 N. ‘filial son’.9 We exclude wénhuà O  ‘culture’ because it is never a verb, and 
according to Norman [1988: 21], the specific use of wénhuà O  to mean ‘culture’ was 
adopted from Japanese. Also excluded are some -tou words, such as máotóu P@ 
‘spearhead’, in which -tou is a bound morpheme denoting ‘head’. In addition, all pronouns 
in -men are excluded, as suggested in Sproat [2002]. As discussed earlier, -men behaves 
differently between pronouns and nouns (i.e., it is obligatory only with pronouns), and it 
is -men attaching to open-class nouns, rather than closed-class pronouns, that we are currently 
interested in. 

3.3 A Quantitative Analysis of the Mandarin Suffixes  
The result of the hapax-based measure applied to the PH Corpus is shown in Table 1. Figure 1 
presents a bar graph illustrating the productivity ranking of the suffixes based on the p values. 

Table 1. The result of the hapax-based productivity measure applied to the PH 
Corpus 

suffix V N n1 p 
-r 35 184 14 0.076 

-men 219 2324 101 0.043 
-zi 177 2130 62 0.029 

-hua 209 3366 93 0.028 
-tou 36 600 6 0.010 

Note. With all the occurrences of a suffix found in the corpus, V is the sum of types, N is the sum of 
tokens, n1 is the number of hapaxes, and p is the productivity index of the suffix. The suffixes are 
sorted in descending order by p. 

 
                                                
8 The use of the PH Corpus in the present study is solely due to the fact that the computer programs 

currently used were written for the PH Corpus. It must be noted, however, that findings from a larger, 
more balanced corpus do not necessarily minimize findings from a smaller, less balanced corpus. 
Findings from both the PH Corpus (a small corpus of newspaper texts) and the Sinica Corpus (a large 
corpus of a variety of texts) are of interest because corpora of different types enable a comparison of 
findings by the corpus type. 

9 Note in these examples that the tone of -r and -zi is retained (i.e., -ér and -z8, respectively). -r is 
originally -ér, and it becomes -r as a suffix, as a result of losing its syllabicity [Norman, 1988: 114]. 
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Among the five suffixes, -r is found to be the most productive. The high productivity 
of -r is somewhat unexpected given the fact that the PH Corpus consists of newspaper texts. If 
the use of -r is not favored in broadcasting, we may also expect a limited use of -r in a 
newspaper context. In addition, the use of -r is often a mere phonological phenomenon as seen 
in the speech of local Beijing residents, and it is unlikely for such a phonological phenomenon 
to be represented in newspaper texts. In Table 1, the number of types (V) of -r does not reach 
the number of types of the least productive suffix -tou. However, the token frequency (N) of -r 
is lower than that of -tou, and -r has a larger number of hapaxes than -tou. Under the 
hapax-based measure, a high token frequency is associated with a high degree of lexicalization 
of words (i.e., the extent to which words are stored in the lexicon in their full form), and a high 
degree of lexicalization of words, in turn, is associated with a low degree of productivity 
[Baayen, 1989, 1992]. The rationale behind this mechanism is that if many words of an affix 
are lexicalized, the word formation rule of the affix needs to be invoked less often to form a 
word. What the present data of -r indicate, then, is that -r words are characterized by a low 
degree of lexicalization. The low degree of lexicalization of -r words and the relatively large 
number of hapaxes (as compared with -tou) suggest that the word formation rule of -r is 
active. 
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Figure 1 The productivity ranking of the Mandarin suffixes by the p values (the 

vertical axis lists the suffixes, and the horizontal axis shows the p values of 
the suffixes). 
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The productivity of -hua seems somewhat lower than what we may expect from the 
regularity in -hua word formation. Comparing -men and -hua in Table 1, we see that -men 
and -hua are similar with respect to both V and n1, but the p value of -hua is lowered by the 
high token frequency (N) of -hua. The high token frequency of -hua could be attributed to the 
fact that the present analysis includes -hua words used as nouns. According to Baxter and 
Sagart [1998: 40], -hua words are formed as verbs first, and these verbs can be used as nouns. 
If this is the case, the word formation of -hua is also relevant in -hua nouns. However, the 
uniform treatment of -hua verbs and -hua nouns may not be appropriate for the hapax-based 
measure. It could be the case, for example, that some -hua words are typically used as nouns 
with high token frequencies while other -hua words are typically used as verbs with low token 
frequencies. It is, therefore, necessary to make a more detailed analysis of the word frequency 
distribution of -hua by separating -hua nouns from -hua verbs. Distinguishing nouns from 
verbs is unfortunately not available in the PH Corpus due to lack of syntactic information. A 
clearer description of the productivity of -hua could be achieved with a syntactically parsed 
corpus such as the Sinica Corpus. 

4. Type-Based Deleted Estimation 

4.1 Type-Based Measures 
The present study explores a type-based measure of productivity. It has been argued that the 
sum of types of an affix in a corpus, V, alone often leads to some unintuitive results in 
measuring productivity [Baayen, 1989, 1992; Baayen & Lieber, 1991]. 10  For example, 
Baayen and Lieber [1991: 804] point out that the type frequencies of -ness and -ity in their 
corpus (497 and 405, respectively) do not adequately represent the fact that -ness is intuitively 
felt to be much more productive than -ity. If the number of types in a corpus can be misleading 
with respect the degree of productivity, how can we make use of type frequencies in a 
productivity measure? 

An early attempt at a type-based measure of productivity was made by Aronoff [1976: 
36], in which he proposed that the degree of productivity of an affix could be measured by the 
ratio of the number of actual words of the affix to the number of possible words of the affix. 
The measure is described by Baayen [1989: 28] as: 

(12)  
S
VI =  

where V is the number of actual words with the relevant affix, S is the number of possible 
words with the affix, and I is the productivity index of the affix. Baayen [1989: 28] argues that 

                                                
10 See Baayen [1992] and Baayen and Lieber [1991] for a discussion of the global productivity of an 

affix (expressed as P*) based on a two-dimensional analysis of p and V. 
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the measure lacks specification on how to obtain V and S. Moreover, he argues that the 
measure can be interpreted to express, ironically, the degree of “unproductivity” of an affix 
because the number of possible words (S) would be, in theory, increasingly large (hence, the 
productivity index I would be increasingly small) for a very productive affix [Baayen, 1989: 
30]. 

Baayen [1989, 1992] defines V and S based on corpus data. V is (as before) the sum of 
types of the relevant affix found in a corpus, and S (expressed as ;) is statistically estimated 
for an infinitely large corpus; that is, ; is the number of possible word types of the relevant 
affix to be expected when the corpus size is increased infinitely. 11 The measure that Baayen 
[1989: 60] proposes: 

(13)  
V
SI
ˆ

=  

is the inverse of (12) and expresses the potentiality of word formation rules, the extent to 
which the number of actual word types of an affix exhaust the number of possible word types 
of the affix [Baayen, 1992: 122]. The measure (13), however, is not considered an alternative 
measure of the degree of productivity [Baayen, 1992: 122]. 

What does not appear to have been explored so far is the question of what new words 
would mean under a type-based measure. One major appeal of the hapax-based measure is that 
it centers on the formation of new words, and we may wish to try focusing on the formation of 
new words under a type-based measure. However, a problem with taking a type-based 
approach is that we can no longer rely on the Good-Turing estimation method. In the next 
section, we will discuss another method of defining new words of a corpus. 

4.2 The Deleted Estimation Method 
To define new words of a corpus in a type-based manner, we can employ the deleted 
estimation method [Jelinek & Mercer, 1985] used in language engineering. In a probabilistic 
language model, given a training corpus and a test corpus, we process words in the test corpus 
based on the probabilities of word occurrence in the training corpus. Since not all words of the 
test corpus appear in the training corpus, we need a method of assigning an appropriate 
probability mass to the unseen words in the test corpus. The main task involved here is to 
adjust the probabilities of word occurrence in the training corpus so that non-zero probability 
can be assigned to unseen words of the test corpus. A method used in this probability 
adjustment, if incorporated into a productivity measure, can tell us the probability of 
encountering unseen words in a corpus. The Good-Turing estimation method underlying the 
                                                
11 The statistical techniques for obtaining ;, which involve an extended version of Zipf’s law, are 

beyond the scope of this paper. For more details, the reader is referred to Baayen [1989, 1992]. 
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hapax-based measure is widely used in probabilistic language modeling, and its successful 
performances are reported in the literature [Chen & Goodman, 1998; Church & Gale, 1991]. 
While the Good-Turing estimation method is a mathematical solution to the task of probability 
adjustment, where the needed probability adjustment is mathematically determined, the 
deleted estimation method is an empirical solution, where the needed adjustment is 
determined by comparing discrepancies in word frequency between corpora [Church & Gale, 
1991; Manning & Schütze, 1999]. 

 The deleted estimation method, when incorporated into a type-based productivity 
measure, proceeds as follows. We begin by preparing two corpora of the same size and text 
type. The easiest way to have two such corpora is to split a large corpus in the middle into two 
sub-corpora, which we will call Corpus A and Corpus B.12 Comparing word types that appear 
in Corpus A against word types in Corpus B, unseen word types (or unseen types) in Corpus A 
are defined as those word types that do not appear in Corpus B. Likewise, unseen types in 
Corpus B are those that are absent in Corpus A. We obtain the average number of unseen 
types between Corpus A and Corpus B. Defining all word types (or all types) in a corpus as all 
the word types found in that corpus, 13 we also obtain the average number of all types between 
the two sub-corpora. The ratio of the average number of unseen types to the average number 
of all types expresses the extent to which word types of an affix are of an unseen type. With an 
assumption that unseen types are good candidates for new word types, the degree of 
productivity expressed in this manner comes close to Anshen and Aronoff’s [1988: 643] 
definition of productivity as “the likelihood that new forms will enter the language.” 

The type-based deleted estimation productivity measure is formulated as follows: 

Given Corpus A and Corpus B of the same size and text type, and all word types of an 
affix found in these corpora, 

(14) 
B" in types all"  A" in types all"

A" given B in types unseen"  B" given A in types unseen"BAPtde
+

+
=),(  

where all types of a corpus are all the word types found in that corpus, unseen types in one 
corpus are those that are absent in the other corpus, and Ptde is the degree of productivity of the 
affix in question (tde = type-based deleted estimation). In calculating Ptde by the measure (14), 
we can first average the unseen types in the nominator and the all types in the denominator. 
This will conveniently give us the average number of unseen types and the average number of 
all types, which are both of interest by themselves, before examining the ratio of the two (as 
                                                
12 These sub-corpora would be labeled retained and deleted (hence the term deleted estimation) under 

the original deleted estimation method. However, in the present context, we can simplify the 
argument by using the labels Corpus A and Corpus B. 

13 The number of all types is essentially the same as V. 
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will be seen later in Table 2). In the remaining sections, the measure (14) will be referred to as 
the Ptde measure. Using a Venn Diagram, Figure 2 illustrates elements involved in the  Ptde 
measure. 

 

Figure 2 An illustration of elements involved in the Ptde measure (all types in a 
corpus are all the word types found in that corpus, unseen types in one 
corpus are those that are absent in the other corpus, and common types are 
the word types shared by the two corpora). 

 

As a byproduct, the Ptde measure also identifies common types, word types that are shared 
by two sub-corpora, as shown in Figure 2. One possible interpretation of these common types 
is that they represent attested words, where attested words are defined as those words that are 
familiar to the majority of speakers. Although an approximation,14 common types may be 
good candidates for attested words because unseen types, which are less likely to be familiar 
to the majority of speakers, are maximally excluded. As the corpus size increases, the number 
of common types may begin to provide a good estimate of the range of word types that are 

                                                
14 Strictly speaking, any word type with the token frequency of two or more in the original whole corpus 

has a chance to be shared by the two sub-corpora after the corpus is split. Thus, a word that appears 
only twice in a large corpus could be identified as a common type. 

common types in Corpus A and Corpus B 
A ∩ B 

 

unseen types in Corpus A 
A − B 

 

all types in Corpus A 
A 

 

unseen types in Corpus B 
B − A 

 

all types in Corpus B 
B 

Given A = {a1, ..., am} from Corpus A, and B = {b1, ..., bn} from Corpus B, where ai and bi are word 
types of an affix found in the two corpora, 
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shared by the majority of speakers. Such a range of word types differs from the range of word 
types in a dictionary. Common types will not be pursued in the present study, but they may be 
worth further investigation in future research. 

4.3 Performance of the Ptde Measure 
The result of the Ptde measure applied to the PH Corpus is shown in Table 2. Figure 3 presents 
a bar graph that illustrates the productivity ranking of the suffixes based on the Ptde values. 

 

Table 2. The result of the Ptde measure applied to the PH Corpus 
 

suffix 
(average) 
all types 

(average) 
unseen types 

 
Ptde 

-men 149 70 0.470 
-hua 144 65 0.451 

-r 24.5 10.5 0.429 
-zi 130.5 46.5 0.356 

-tou 29.5 6.5 0.220 
Note. The PH Corpus is split in the middle into two sub-corpora. All types in a sub-corpus are all the 

word types that appear in that sub-corpus. The second column shows the average number of all 
types between the two sub-corpora. Unseen types are those that appear in one sub-corpus but are 
absent in the other sub-corpus. The third column shows the average number of unseen types 
between the two sub-corpora. The tenths place in the second and third columns is due to the 
averaging. Ptde is the ratio of (average) unseen types to (average) all types. The suffixes are sorted 
in descending order by Ptde. 

 

In Table 2, we find that -r is not as highly productive as under the hapax-based measure, 
though it still appears to be grouped with the more productive suffixes. Here, we may wonder 
why we examine the ratio of unseen types to all types, instead of examining the number of 
unseen types only. If productivity is determined by the number of unseen types only, -r would 
be among the less productive suffixes. However, comparing the number of unseen types alone 
is not satisfactory because an affix with a low frequency of use would generally be found to be 
less productive. The Ptde measure must be able to capture the possibility that an affix with a 
low frequency of use can nevertheless be productive when it is used to form a word. With 
respect to the present data, the ratio of unseen types to all types is relatively high for  -r, 
indicating that a large proportion of -r word types are of an unseen type, or a potentially new 
type. 
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Figure 3 The productivity ranking of the Mandarin suffixes by the Ptde values (the 

vertical axis lists the suffixes, and the horizontal axis shows the P tde values 
of the suffixes). 

As was the case under the hapax-based measure, -men is found to be highly productive 
and -tou is found to be the least productive. The uniform treatment of -hua verbs and -hua 
nouns does not seem to pose a problem, though it is also of interest to investigate the effect of 
separating -hua nouns from -hua verbs under the Ptde measure. 

The Ptde measure defines unseen types irrespective of word-token frequencies; that is, an 
unseen type in a corpus is “unseen” as long as it is absent in the other corpus, regardless of 
how many times the word is repeated in the same corpus. Figure 4 shows the word-token 
frequency distribution of unseen types in Corpus A and Corpus B. The labels used for the 
word-token frequency categories are: n1 = words occurring once, n2 = words occurring 
twice, ..., n5+ = words occurring five times or more. 
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Figure 4 The word-token frequency distribution of unseen types in the two 

sub-corpora of the PH Corpus, Corpus A and Corpus B (the horizontal 
axis shows the word-token frequency category, and the vertical axis 
shows the number of word types in each frequency category; the letter 
following each suffix in the legend indicates from which sub-corpus the 
data are drawn; the order of the suffixes in the legend (from top down) 
corresponds to the order of bars in each frequency category (from left to 
right)). 

We find in Figure 4 that the majority of unseen types are hapaxes. There are, nonetheless, 
unseen types that appear more than once in a corpus—some unseen types appear even five 
times or more (n5+). We also notice gaps between the two sub-corpora in the word frequency 
of the unseen types (e.g., compare the number of -men hapaxes). Variability between two 
corpora will be the topic of discussion in the next section. 

4.4 Variability in Corpus Data 
Under the Ptde measure, a corpus is split in the middle to create two sub-corpora. So far, we 
have made the assumption that splitting a corpus in the middle would create two sub-corpora 
that are similar with respect to the text type. However, we must be cautious about this 
assumption. Baayen [2001] discusses how the texts and word frequency distribution of a 
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corpus can be non-uniform.15 One way to reduce variability between split halves of a corpus 
is to randomize words of the corpus before splitting the corpus into two. Randomization of 
words can be accomplished by shuffling words; that is, given a corpus of n words, we 
exchange each i-th word (i = 1, 2, ..., n) with a randomly chosen j-th word (1 , j , n). If we 
repeat the “random split” of a corpus (i.e., randomizing words of a corpus and splitting the 
corpus in the middle) for a large number of times, say 1,000 times, and compute the mean of 
the relevant data, we should be able to obtain a stable, representative result of a productivity 
measure. 16  Table 3 shows the result of the hapax-based measure applied to the two 
sub-corpora of the PH Corpus, with and without randomization of words. 

 

Table 3. The result of the hapax-based productivity measure applied to the two 
sub-corpora of the PH Corpus, Corpus A and Corpus B, with and without 
randomization of words 

(a) Without randomization, a single split 
Corpus A     Corpus B     

suffix V N n1 p suffix V N n1 p 
-r 29 113 13 0.115 -r 20 71 6 0.085 

-men 165 1183 84 0.071 -zi 119 841 53 0.063 
-hua 148 1599 72 0.045 -men 133 1141 60 0.053 
-zi 142 1289 57 0.044 -tou 29 256 8 0.031 

-tou 30 344 5 0.015 -hua 140 1767 55 0.031 
(b) With randomization, the mean of 1000 splits 

Corpus A     Corpus B     
suffix V N n1 p suffix V N n1 p 

-r 26 93 12 0.133 -r 26 91 12 0.130 
-men 158 1164 77 0.067 -men 157 1160 77 0.066 
-zi 138 1075 54 0.050 -zi 137 1055 54 0.051 

-hua 154 1680 71 0.042 -hua 152 1686 69 0.041 
-tou 31 303 8 0.025 -tou 31 297 8 0.027 

Note. Each value in Part (b) is the mean of 1,000 random splits. The suffixes in each section are sorted in 
descending order by p. In Corpus B of Part (a), the p values of -tou and -hua expressed to the 
fourth decimal place are 0.0313 and 0.0311, respectively. 

 
 
 
 

                                                
15 See Baayen [2001] for an in-depth discussion of techniques for measuring variances among segments 

of a corpus. 
16 The procedure described here is thanks to suggestions by Baayen [personal communication]. 
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In Part (a) of Table 3, the difference in V between Corpus A and Corpus B is almost 
significant,17 which suggests variability in texts between the two sub-corpora, and a different 
productivity ranking is obtained in each sub-corpus. However, if we turn to Part (b) of Table 3, 
the productivity ranking becomes consistent between the two sub-corpora.18 Interestingly, the 
productivity ranking in Part (b) of Table 3 is the same as one obtained earlier in Table 1 in 
Section 3.3. The p values in Part (b) of Table 3 are overall higher than those in Table 1, but 
this is an expected outcome, for p is dependent on the size of a corpus [Baayen, 1989, 1992; 
Baayen & Lieber, 1991]. We find that the hapax-based measure can achieve stability by means 
of a large number of random splits of a corpus. 

What will be the effects of corpus-data variability on the Ptde measure? To examine this, 
we need to temporarily simplify the Ptde measure so that the value of Ptde will be obtained for 
each individual sub-corpus (without averaging unseen types and all types between two 
sub-corpora). That is, under the simplified measure, Ptde for Corpus A, Ptde(A), will be the 
ratio of “unseen types in A given B” to “all types in A”; and similarly, Ptde(B) will be the ratio 
of “unseen types in B given A” to “all types in B.” Table 4 shows the result of the simplified 
Ptde measure applied to the two sub-corpora of the PH Corpus, with and without randomization 
of words. 

The simplified Ptde measure is found to be quite vulnerable to corpus-data variability. In 
Part (a) of Table 4, the difference between Corpus A and Corpus B is almost significant in all 
types and unseen types, and the Ptde values differ significantly between the two sub-corpora.19 
However, if we turn to Part (b) of Table 4, the productivity ranking becomes consistent 
between the two sub-corpora.20 Similarly to the hapax-based measure, the Ptde measure can 
achieve stability through a large number of random splits of a corpus. 

 

 

 

                                                
17 A paired t-test reveals that the difference in V approaches significance [t(4) = 2.595, p = .06], though 

the difference is not significant in other elements: N[t(4) = .905, p > .10], n1[t(4) = 2.046, p > .10], 
and p [t(4) = .555, p > .10]. 

18 The correlation coefficient between Corpus A and Corpus B improves in p after the random splits: p 
[r(5) = (.850 #) 1.0, p < .01]. 

19 A paired t-test shows that the difference approaches significance in all types [t(4) = 2.595, p = .06] 
and in unseen types [t(4) = 2.595, p = .06] and the difference is significant in Ptde [t(4) = 2.869, p 
< .05]. 

20 The correlation coefficient between Corpus A and Corpus B improves in Ptde after the random splits: 
Ptde [r(5) = (.753 #) 9.99, p < .01]. 
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Table 4. The result of the simplified P tde measure applied to the two sub-corpora of 
the PH Corpus, Corpus A and Corpus B, with and without randomization 
of words 

(a) Without randomization, a single split 
Corpus A    Corpus B    

suffix all unseen Ptde suffix all unseen Ptde 
-men 165 86 0.521 -hua 140 61 0.436 

-r 29 15 0.517 -men 133 54 0.406 
-hua 148 69 0.466 -r 20 6 0.300 
-zi 142 58 0.408 -zi 119 35 0.294 

-tou 30 7 0.233 -tou 29 6 0.207 
(b) With randomization, the mean of 1000 splits 

Corpus A    Corpus B    
suffix all unseen Ptde suffix all unseen Ptde 
-men 158 62 0.394 -men 157 61 0.389 
-hua 154 57 0.372 -hua 152 55 0.364 

-r 26 9 0.356 -r 26 9 0.342 
-zi 138 40 0.291 -zi 137 39 0.287 

-tou 31 5 0.160 -tou 31 5 0.163 
Note. Each value in Part (b) is the mean of 1,000 random splits. The suffixes in each section are sorted in 

descending order by Ptde. 

 

Figure 5 shows the word-token frequency distribution of unseen types averaged over the 
1,000 random splits. We see in Figure 5 that unseen types with higher token frequencies (e.g., 
n4 and n5+) are almost absent. What this indicates is that as a result of randomizing words of a 
corpus, it became unlikely for unseen types to include word types that are repeated many 
times in a corpus. As compared with what we saw earlier in Figure 4, the greater majority of 
unseen types are now hapaxes, and variances between Corpus A and Corpus B are also 
reduced. 

We now consider the Ptde measure in its original state (as in Section 4.2, with the 
averaging of unseen types and all types between two sub-corpora). Comparing Table 2 and 
Part (b) of Table 4, we find that the original Ptde measure achieves a result that is highly 
correlated with the result obtained with the 1 ,000 random splits.21 Note in particular that the 

                                                
21 Comparing the elements of Table 2 and the elements of Corpus A in Part (b) of Table 4, the 

correlation coefficient is significant in all elements: all types [r(5) = 1.0, p < .01], unseen types [r(5) 
= 1.0, p < .01], and Ptde [r(5) = 1.0, p < .01]. Likewise, the correlation coefficient is significant in all 
elements when we compare the elements of Table 2 and the elements of Corpus B in Part (b) of Table 
4: all types [r(5) = 1.0, p < .01], unseen types [r(5) = 1.0, p < .01], and Ptde [r(5) = .999, p < .01]. 



 

 

68                                                           Eiji Nishimoto 

productivity ranking is consistent between Table 2 and Part (b) of Table 4. The Ptde measure 
seems to reduce the effects of corpus-data variability by averaging unseen types and all types 
between two sub-corpora. This is an advantage and makes the  Ptde measure handy, for a large 
number of random splits of a corpus can be computationally expensive, especially when the 
corpus size is large. 
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Figure 5. The word-token frequency distribution of unseen types in the two 

sub-corpora of the PH Corpus, Corpus A and Corpus B, averaged over 
1000 random splits (the horizontal axis shows the word-token frequency 
category, and the vertical axis shows the number of word types in each 
frequency category; the letter following each suffix in the legend 
indicates from which sub-corpus the data are drawn; the order of the 
suffixes in the legend (from top down) corresponds to the order of bars 
in each frequency category (from left to right)). 

5. Conclusion 

The present study has proposed a type-based measure of productivity, the Ptde measure, that 
uses the deleted estimation method [Jelinek & Mercer, 1985] in defining unseen word types of 
a corpus. The measure expresses the degree of productivity of an affix by the ratio of unseen 
word types of the affix to all word types of the affix. If the ratio is high for an affix, a large 
proportion of the word types of the affix are of an unseen type, indicating that the affix has a 
great potential to form a new word. 
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We have tested the performance of the Ptde measure as well as the hapax-based measure 
of Baayen [1989, 1992] in a quantitative analysis of the productivity of five Mandarin 
suffixes: -hua, -men, -r, -zi, and -tou. The Ptde measure describes -hua, -men, and -r to be 
highly productive, -zi to be less productive than these three suffixes, and -tou to be the least 
productive, yielding the productivity ranking “-men, -hua, -r, -zi, -tou.” The Ptde measure and 
the hapax-based measure rank the suffixes differently with respect to -hua and -r. The 
relatively low productivity of -hua under the hapax-based measure could be attributed to the 
inclusion of -hua nouns in the present analysis. -r is assigned a larger productivity score under 
the hapax-based measure. The two measures agree on the high productivity of -men and the 
low productivity of -tou. The different results of the two measures are likely due to the 
type-based/token-based difference of the measures. The result of each measure requires an 
individual evaluation, for the knowledge that we can obtain from the result of each measure is 
different; for example, while the hapax-based measure takes into consideration the degree of 
lexicalization of words of an affix, the Ptde measure does not consider such an issue. 

We have also examined how corpus-data variability affects the results of a productivity 
measure. It was found that a large number of random splits of a corpus adds stability to both 
the Ptde measure and the hapax-based measure. Moreover, it was found that even without 
randomization of words, the averaging of unseen types and all types under the Ptde measure 
reduces the effects of corpus-data variability. This is an advantage of the Ptde measure, 
considering the computational cost involved in randomizing words repeatedly, especially 
when the corpus is large. 

With an assumption that unseen words of a corpus are good candidates for new words, a 
corpus-based productivity measurement can be regarded as a search for unseen words in a 
corpus. The apparent paradox is that the words that we seek are “unseen.” Baayen’s 
hapax-based measure achieves a mathematical estimate of the probability of seeing unseen 
words in a corpus by the Good-Turing estimation method. The deleted estimation method 
provides another way of defining unseen words of a corpus by comparing discrepancies in 
word frequency between two corpora, and the method also enables defining unseen words in a 
type-based context. It is hoped that words identified as unseen by the Ptde measure are also 
good candidates for new words, and this requires further investigation in future research. The 
implication of the successful result of the Ptde measure presented in this paper is that, in 
addition to what has been proposed by Baayen [1989, 1992, and subsequent works], there 
appear to be possibilities for capturing and exploiting elements in corpus data that are relevant 
to the quantitative description of productivity. The study of morphological productivity will be 
enriched by exploring such possibilities in the corpus-based approach to measuring 
productivity. 



 

 

70                                                           Eiji Nishimoto 

Acknowledgments 
The author wishes to thank Harald Baayen, Richard Sproat, Martin Chodorow, and the 
anonymous reviewers for their insightful comments on the first draft of this paper. Any errors 
are the responsibility of the author. 

References 

Academia Sinica Balanced Corpus (Version 3.0) [CD-ROM]. Taipei, Taiwan: Academia 
Sinica, 1998. 

Anshen, F., & Aronoff, M. “Morphological Productivity and Phonological Transparency.” 
Canadian Journal of Linguistics, 26, 1981, 63–72. 

Anshen, F., & Aronoff, M. “Producing Morphologically Complex Words.” Linguistics, 26, 
1988, 641–655. 

Aronoff, M. Word Formation in Generative Grammar. Cambridge, MA: MIT Press, 1976. 
Aronoff, M. “The Relevance of Productivity in a Synchronic Description of Word Formation.” 

In J. Fisiak (Ed.), Historical Morphology. The Hague: Mouton, 1980, 71–82. 
Aronoff, M. “Potential Words, Actual Words, Productivity and Frequency.” Proceedings of 

the International Congress of Linguists, 13,  1983, 163–171. 
Aronoff, M., & Anshen, F. “Morphology and the Lexicon: Lexicalization and Productivity.” 

In A. Spencer & A. M. Zwicky (Eds.), The Handbook of Morphology. Oxford, UK: 
Blackwell Publishers, 1998, 237–247. 

Aronoff, M., & Schvaneveldt, R. “Testing Morphological Productivity.” Annals of the New 
York Academy of Sciences, 318, 1978, 106–114. 

Baayen, R. H. A Corpus-Based Study of Morphological Productivity: Statistical Analysis and 
Psychological Interpretation. Doctoral dissertation, Free University, Amsterdam, 1989. 

Baayen, R. H. “Quantitative Aspects of Morphological Productivity.” In G. Booij & J. van 
Marle (Eds.), Yearbook of Morphology 1991. Dordrecht: Kluwer, 1992, 109–149. 

Baayen, R. H. “On Frequency, Transparency and Productivity.” In G. Booij & J. van Marle 
(Eds.), Yearbook of Morphology 1992. Dordrecht: Kluwer, 1993, 181–208. 

Baayen, R. H. Word Frequency Distributions. Dordrecht: Kluwer, 2001. 
Baayen, R. H., & Lieber, R. “Productivity and English Word-Formation: A Corpus-Based 

Study.” Linguistics, 29, 1991, 801–843. 
Baayen, R. H., & Renouf, A. “Chronicling the Times: Productive Lexical Innovations in an 

English Newspaper.” Language, 72, 1996, 69–96. 
Bauer, L. Morphological Productivity. Cambridge, UK: Cambridge University Press, 2001. 
Baxter, W. H., & Sagart, L. “Word Formation in Old Chinese.” In J. L. Packard (Ed.), New 

Approaches to Chinese Word Formation: Morphology, Phonology and Lexicon in 
Modern and Ancient Chinese. Berlin: Mouton de Gruyter, 1998, 35–76. 

Booij, G. E. Dutch Morphology: A Study of Word Formation in Generative Grammar. 
Dordrecht: Foris, 1977. 



 

 

      Measuring and Comparing the Productivity of Mandarin Chinese Suffixes      71 

Chen, P. Modern Chinese: History and Sociolinguistics.  Cambridge University Press, 1999. 
Chen, S. F., & Goodman, J. An Empirical Study of Smoothing Techniques for Language 

Modeling (Tech. Rep. No. 10-98). Cambridge, MA: Harvard University, Center for 
Research in Computing Technology, 1998. 

Church, K. W., & Gale, W. A. “A Comparison of the Enhanced Good-Turing and Deleted 
Estimation Methods for Estimating Probabilities of English Bigrams.” Computer Speech 
and Language, 5, 1991, 19–54. 

Cutler, A. “Productivity in Word Formation.” Papers from the Sixteenth Regional Meeting of 
the Chicago Linguistic Society. Chicago, IL: Chicago Linguistic Society, 1980, 45–51. 

Good, I. J. “The Population Frequencies of Species and the Estimation of Population 
Parameters.” Biometrika, 40, 1953, 237–264. 

Guo, J. “PH: A Chinese Corpus.” Communications of COLIPS, 3 (1), 1993, 45–48. 
Hockenmaier, J., & Brew, C. “Error-Driven Learning of Chinese Word Segmentation.” In J. 

Guo, K. T. Lua, & J. Xu (Eds.), 12th Pacific Conference on Language and Information. 
Singapore: Chinese and Oriental Languages Processing Society, 1998, 218–229. 

Jelinek, F., & Mercer, R. “Probability Distribution Estimation for Sparse Data.” IBM 
Technical Disclosure Bulletin, 28, 1985, 2591–2594. 

Li, C., & Thompson, S. A. Mandarin Chinese: A Functional Reference Grammar.  Berkeley, 
CA: University of California Press, 1981. 

Lin, H. A Grammar of Modern Chinese.  LINCOM EUROPA, 2001. 
Manning, C. D., & Schütze, H. Foundations of Statistical Natural Language Processing.  

Cambridge, MA: MIT Press, 1999. 
Norman, J. Chinese. Cambridge University Press, 1988. 
Packard, J. L. The Morphology of Chinese: A Linguistic and Cognitive Approach. Cambridge, 

UK: Cambridge University Press, 2000. 
Plag, I. Morphological Productivity: Structural Constraints in English Derivation.  Berlin: 

Mouton de Gruyter, 1999. 
Ramsey, R. S. The Languages of China. Princeton, NJ: Princeton University Press, 1987. 
Schultink, H. “Produktiviteit als Morfologisch Fenomeen.” Forum der Letteren, 2, 1961, 

110–125. 
Spencer, A. Morphological Theory: An Introduction to Word Structure in Generative 

Grammar. Cambridge, UK: Cambridge University Press, 1991. 
Sproat, R. “Corpus-Based Methods in Chinese Morphology.” Tutorial given at COLING, 

Taipei, Taiwan, 2002. 
Sproat, R., & Shih, C. “A Corpus-Based Analysis of Mandarin Nominal Root Compound.” 

Journal of East Asian Linguistics, 5, 1996, 49–71. 
Sproat, R., Shih, C., Gale, W., & Chang, N. “A Stochastic Finite-State Word-Segmentation 

Algorithm for Chinese.” Computational Linguistics, 22 (3), 1996, 66–73. 
Uniconv [Computer Software]. Cambridge, MA: Basis Technology, 1999. 



 

 

72                                                           Eiji Nishimoto 

Van Marle, J. On the Paradigmatic Dimension of Morphological Productivity. Dordrecht: 
Foris, 1985. 

Appendix: Words of the Mandarin Suffixes in the PH Corpus  
Below are the words of the Mandarin suffixes and their token frequencies in the PH Corpus.  
-hua 
Q  biànhuà 495 – !"  xiàndàihuà 473 – R  sh>nhuà 323 – ST  zìyóuhuà 
167 – UV  y-t8huà 138 – W  qiánghuà 131 – X  èhuà 122 – Y  y$uhuà 99 – Z
  xi3ohuà 71 – I  shíhuà 68 – %[  guóch/nhuà 59 – \  zhu/nhuà 54 – ]^  
shèhuìhuà 53 – _`  zhèngchánghuà 52 – a  m4ihuà 51 – b  jìnghuà 50 – Sc  
zìdònghuà 50 – /d  dàinqìhuà 45 – )e  j-xièhuà 42 – fg  zhìdùhuà 41 – hi
  bi3ozh@nhuà 33 – #$  g$ngyèhuà 29 – j  y/nghuà 25 – /  dàinhuà 25 – k
l  xìlièhuà 22 – mn  mínzh@huà 22 – o+  k>xuéhuà 21 – p  yèhuà 21 – qr
  sh3ngp8nhuà 19 – s  hu1huà 18 – t  y/nhuà 18 – uv  gémìnghuà 17 – ,w
  sh>ngwùhuà 15 – x  ji/nhuà 14 – y  rónghuà 14 – %&  guójìhuà 14 – z  
l/ohuà 13 – {)  nóngj-huà 13 – |  j-huà 13 – }$  zhu3nyèhuà 12 – [$  
ch/nyèhuà 11 – ~�  sh3mòhuà 11 –  !  du$yuánhuà 10 – "  lièhuà 10 – #$
  j7nshìhuà 10 – %d  méiqìhuà 9 – &'  liángzh1nghuà 8 – (  yìnghuà 8 – ,
  sh>nghuà 8 – )f  f/zhìhuà 8 – *  f>nhuà 8 – +,  línw/nghuà 7 – #-  
g$ngch/nghuà 7 – k.  xìt1nghuà 6 – /0  móshìhuà 6 – 12  jítuánhuà 6 – 3
4  dàzhònghuà 6 – 56  k1nglónghuà 6 – 7$  q8yèhuà 6 – 8m  zhímínhuà 5 – 
9/  gu-móhuà 5 – :;  quánqiúhuà 5 – <=  huóxuèhuà 5 – >  liúhuà 4 – ?
V  lìt8huà 4 – @A  ji3tínghuà 4 – BC  xíngxiànghuà 4 – DE  zh$nghuáhuà 
4 – FG  zhìnénghuà 4 – H  ru/nhuà 4 – IJ  bi/omiànhuà 4 – w  wùhuà 4 – 
KL  báirèhuà 3 – MN  chéngxùhuà 3 – O  ji3ohuà 3 – PQ  yách8huà 3 – R
  chúnhuà 3 – d  qìhuà 3 – S+  yuánlínhuà 3 – TU  hézuòhuà 3 – V  yìhuà 
3 – W  f>nghuà 3 – X  fénhuà 3 – YZ  z-yuánhuà 3 – [  ji3nghuà 3 – Uw  
zuòwùhuà 3 – \  gùhuà 3 – ]^  shùzìhuà 3 – _  qíhuà 2 – `a  yíyuànhuà 
2 – b  x-huà 2 – 1c  jíyu>huà 2 – d  b/nhuà 2 –  +  huàxuéhuà 2 – q$  
sh3ngyèhuà 2 – e  ch1uhuà 2 – fST  f/nzìyóuhuà 2 – gh  q7yùhuà 2 – i4
  qúnzhònghuà 2 – )j  f/lBhuà 2 – %k  guóy1uhuà 2 – l  r@huà 2 – mn  
shu8lìhuà 2 – [r  ch/np8nhuà 2 – )9  f/gu-huà 2 – op  j-dìhuà 2 – q  
xúnhuà 2 – >r  xìnx-huà 2 – m  shu8huà 2 – %  méihuà 2 – s  f7huà 2 – t  
jíhuà 2 – uw  zhíwùhuà 2 – DO  zh$ngwénhuà 2 – Yvnw  z-b4nzh@yìhuà 2 – 
'()  jìsuànj-huà 2 – /0  diànn/ohuà 1 – xy  du/nq-huà 1 – z{|  
péichángyíhuà 1 – }~  z@zh-huà 1 – �   lèixínghuà 1 – !V  shít8huà 1 – 1V
  jít8huà 1 – +"  líndàihuà 1 – E#  huád$nghuà 1 – $  sh-huà 1 – %&  
yúf4nhuà 1 – 'T  liánhéhuà 1 – ()  p-liànghuà 1 – *+  gàiniànhuà 1 – 1,
  jíchénghuà 1 – -  ji/nhuà 1 – m.  mínzúhuà 1 – /0  gu/ndàohuà 1 – ,1
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  w/ngluòhuà 1 – 2  3nhuà 1 – 3V  zh4ngt8huà 1 – 4,  qúw/nghuà 1 – 56
  jiànk3nghuà 1 – 7  shénhuà 1 – vp  b4ndìhuà 1 – 89  $uzh$uhuà 1 – T:
  hél8huà 1 – ;  gu/nhuà 1 – 9<  gu-géhuà 1 – =.  guìzúhuà 1 – />  
mókuàihuà 1 – 4?  gèxìnghuà 1 – @,cw  yuánsh>ngdòngwùhuà 1 – AB  
p@jíhuà 1 – ,8  chéngrénhuà 1 – (C  yìnglanghuà 1 – 8DV  $ugòngt8huà 1 – 
E  qínghuà 1 – F)  dìngliànghuà 1 – GH  lBb4nhuà 1 – /I  diànqìhuà 1 – 
J  línghuà 1 – G  lBhuà 1 – KL  gu3nliáohuà 1 – GM  lBhuánghuà 1 – NO
  zhèngzhìhuà 1 – PQ  gu3nhuáihuà 1 – RS  dàngànhuà 1 – T  línhuà 1 – U
\  nínggùhuà 1 – V  zhìhuà 1 – W  rónghuà 1 – X  zàohuà 1 – Y  chénhuà 
1 – Z�  z/olèihuà 1 – ![  yuánsh1uhuà 1 – S\  yuántiánhuà 1 – ]  f@huà 
1 – Pk  gu3nxìhuà 1 – ^  sùhuà 1 – _`  yìshùhuà 1 – %@  guóji3huà 1 – 
ab  zújìhuà 1 – c  liànhuà 1 – d?  miánhuahuà 1 – ef  t$ngyònghuà 1 – 
g  zìhuà 1 – hN  xíngzhènghuà 1 – ij  yuènánhuà 1 – kl  rúchónghuà 1 – 
/>  móliúhuà 1 – )  liànghuà 1 – mn  shízhu3nghuà 1 – op  bùménhuà 1 – 
:E  l8xi/nghuà 1 – qr  sh4ngchénghuà 1 – s  d/nghuà 1 – tu  zhànlüèhuà 
1 – :G  quánnénghuà 1 – v  cu-huà 1 – ])  shùliànghuà 1 – wx  
kòngx-nhuà 1 – y  xi3nhuà 1 – z  y@huà 1 – {|  tàolùhuà 1 – }J  
píngmiànhuà 1 – ~  xu4huà 1 – ,<  sh>nghuóhuà 1 – cw  dòngwùhuà 1 – M�
  chéngkònghuà 1 –    dànhuà 1 – !  p@huà 1 – "#  y$ngsúhuà 1 
-men 

8*  rénmen 734 – "I*  dàibi/omen 175 – }@*  zhu3nji3men 117 – $%* 
w4iyuánmen 109 – #8* g$ngrénmen 75 – &'* tóngzhìmen 72 – 2.* háizimen 
64 – t(* zhànshìmen 59 – )#* zhíg$ngmen 39 – &+* tóngxuémen 32 – *%* 
duìyuánmen 31 – +,* g7niangmen 26 – 78* kèrenmen 24 – 56* jìzh4men 23 – 
o+@* k>xuéji3men 23 – z8* l/orénmen 23 – {m* nóngmínmen 22 – +,* 
xuéshengmen 21 – *-@*  f>nx-ji3men 21 – ./*  ji4mèimen 19 – 01* 
péngyoumen 18 – _`@* yìshùji3men 16 – 2o* gànbùmen 16 – 9m* shìmínmen 
15 – 9:* shìzh/ngmen 14 – 3m* j7mínmen 14 – [0* sh1un/omen 14 – 4m* 
c7nmínmen 13 – t%* y/nyuánmen 13 – 57* lEkèmen 12 – &$* tóngshìmen 12 – 
67.* xi/ohu1zimen 11 – 8,* y-sh>ngmen 10 – h@* xíngji3men 10 – 9%* 
yìyuánmen 10 – 3+,*  dàxuésh>ngmen 10 – K:*  gu3nb-ngmen 9 – ;c%* 
yùndòngyuánmen 9 – <=@*  gu3ncháji3men 9 – &h*  tóngxíngmen 8 – >:* 
j-ngl8men 8 – ?,* sh-sh>ngmen 7 – `$* chángw4imen 7 – 7$@* q8yèji3men 7 – 
@:* wàizh/ngmen 7 – At%* zh8zhànyuánmen 7 – B%* chuányuánmen 6 – lC
%*  lièch>yuánmen 6 – o:*  bùzh/ngmen 6 – U@*  zuòji3men 6 – DE6* 
jiànshèzh4men 6 – #1*  g$ngy1umen 6 – FG*  q-ngniánmen 6 – s%* 
d/ngyuánmen 5 – H7* gùkèmen 5 – 2I* gànj8ngmen 5 – +6* xuézh4men 5 – ,
* niángmen 5 – J/* láomómen 5 – K?* jiàosh-men 5 – L$%* yíngyèyuánmen 
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4 – 2%* tuányuánmen 4 – ,%* chéngyuánmen 4 – .M* z8nEmen 4 – *1* 
duìy1umen 4 – NM* fùnEmen 4 – O7* chéngkèmen 4 – PQ* qiáob3omen 4 – 7
R* hu1bànmen 4 – ST* láib-nmen 4 – ;M* érnEmen 3 – #8* j7nrénmen 3 – 
U#* ji3ngj7nmen 3 – MVK* fùm@gu3nmen 3 – OW%* chéngwùyuánmen 3 – X
(* hùshimen 3 – 3?* dàsh-men 3 – ;Y* érs7nmen 3 – Z[* xìmímen 3 – 6+
,* xi/oxuésh>ngmen 3 – O_@* wényìji3men 3 – <4* gu3nzhòngmen 3 – ;[* 
qiúmímen 3 – \:* s-chángmen 3 – ]^* l8ngd/omen 3 – K_%* jiàoliànyuánmen 
2 – `*  yémen 2 – 8%*  rényuánmen 2 – M#*  nEg$ngmen 2 – ab@* 
shèy8ngji3men 2 – dc%*  b/nbàoyuánmen 2 – zd*  l/ob/nmen 2 – zd* 
l/ohànmen 2 – e!*  zhuàngyuanmen 2 – ^%*  huìyuánmen 2 – f:* 
zh$uzh/ngmen 2 – M(* nEshìmen 2 – 18* y1urénmen 2 – 3@* dàji3men 2 – ?
g* sh-fumen 2 – hU6* chuàngzu$zh4men 2 – ij* l/mamen 2 – >k+@* 
j-ngjìxuéji3men 2 – lm6* zh-chízh4men 2 – z?* l/osh-men 2 – ;.* érzimen 2 – 
no*  z@bèimen 2 – pM*  shàonEmen 2 – +%*  xuéyuánmen 2 – q<@* 
sh7huàji3men 2 – rs* xu/nsh1umen 2 – tt* m3mamen 2 – &Q* tóngb3omen 
2 – %#* yuáng$ngmen 2 – uv* q-nqimen 2 – rm* xu/nmínmen 2 – wO+@* 
ti3nwénxuéji3men 2 – ;x* értóngmen 2 – )K* f/gu3nmen 1 – h8* xíngrénmen 
1 – yz*  d/itúmen 1 – {z*  g3otúmen 1 – |}.*  y8nj7nz8men 1 – =T* 
guìb-nmen 1 – ~?* chúsh-men 1 – �Q* táib3omen 1 – z7R* l/ohu1bànmen 1 – 
 (* y1ngshìmen 1 – C[* ch>mímen 1 – l$* zh-w4imen 1 – Y.* s7nzimen 
1 – !N* f7fùmen 1 – "m%* pèishu8yuánmen 1 – #%* sh3ngyuánmen 1 – $%* 
qiúfànmen 1 – 7&* kèhùmen 1 – #K* j7ngu3nmen 1 – (:* shìb-ngmen 1 – '(
*  j-nguómen 1 – )s*  zhùsh1umen 1 – *+,*  liúxuésh>ngmen 1 – E'?* 
shèjìsh-men 1 – +:* júzh/ngmen 1 – z#8* l/og$ngrénmen 1 – ,#* yúg$ngmen 
1 – -9:*  fùshìzh/ngmen 1 – .=%*  zh>ncháyuánmen 1 – <=%* 
gu3ncháyuánmen 1 – E'6*  shèjìzh4men 1 – @/*  ji3sh@men 1 – 0=K* 
ji/nchágu3nmen 1 – V1[*  t8yùmímen 1 – M,*  nEsh>ngmen 1 – uv23* 
gémìngxi3nlièmen 1 – 4h%* f>ixíngyuánmen 1 – z@.* l/otóuzimen 1 – 5@PQ
* h/iwàiqiáob3omen 1 – 6f6* pàozhìzh4men 1 – 7W%* fúwùyuánmen 1 – 89
%* tu-xi3oyuánmen 1 – ::* tàitaimen 1 – ;B6* fámùzh4men 1 – Jc/<* 
láodòngmófànmen 1 – m:*  shu8b-ngmen 1 – =>*  sh8jiémen 1 – ?@@* 
g>chàngji3men 1 – nA*  zh@rènmen 1 – 4V&*  gèt8hùmen 1 – tB@* 
y/nshu$ji3men 1 – CD@*  y-nyuèji3men 1 – u1*  q-ny1umen 1 – EF* 
g$ngchénmen 1 – )%* zhíyuánmen 1 – ..* ji4jiemen 1 – \)* s-j-men 1 – fG
q*  zhìzàosh3ngmen 1 – HI*  y-ngxióngmen 1 – <@*  huàji3men 1 – @q* 
wàish3ngmen 1 – J6* huànzh4men 1 – 4K* c7nlínmen 1 – L(* wèishìmen 1 – 
3F*  dàchénmen 1 – M`%*  jìshùyuánmen 1 – N6*  túzh4men 1 – K%* 
jiàoyuánmen 1 – z3,*  l/odàniángmen 1 – )+@*  f/xuéji3men 1 – OP6* 
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yánji7zh4men 1 – Q8* yóurénmen 1 – ![* yuánsh1umen 1 – RR* wáwamen 1 – 
FpG* q-ngshàoniánmen 1 – S(* lìshìmen 1 – TU%* shòuhuòyuánmen 1 – K_
* jiàoliànmen 1 – VW%* c/igòuyuánmen 1 – M* nEmen 1 – Q7* yóukèmen 1 – 
3(* lièshìmen 1 – bXY+@* x-zàngsh8xuéji3men 1 – zZZ* l/on/inaimen 1 – 
3!* dàif7men 1 – dC+@* qìxiàngxuéji3men 1 – #U6* g$ngzuòzh4men 1 – [
:`* xiàntàiyémen 1 – q\* sh3ngfànmen 1 – ]* s$ngmen 1 – u8* q-nrénmen 
1 – z01* l/opéngyoumen 1 – @:* ji3zh/ngmen 1 – !^* f7q-men 1 – +.* 
xuéz8men 1 – #0n*  d$ngdàozh@men 1 – q:*  sh4ngzh/ngmen 1 – &_* 
tóngrénmen 1 – `m<@* sh3nshu8huàji3men 1 – tu@* zhànlüèji3men 1 – a$:
* d1ngshìzh/ngmen 1 

-r 
b; zhèr 32 – ^; huìr 30 – c; n/r 18 – d; jìnr 13 – $; shìr 12 – e; di/nr 
9 – f; nàr 8 – 7; hu1r 7 – 4; gèr 7 – <; huór 5 – =; ni/or 5 – >; kuàir 
4 – ?; hu3r 3 – ); f/r 3 – W; f>ngr 2 – ^; zìr 2 – g; tiáor 2 – h; wèir 
2 – i; piànr 2 – j; wánr 2 – k; w3nr 2 – l; yàngr 1 – m7; yàhu1r 1 – n
; li/nr 1 – 2d; g3njìnr 1 – @; tóur 1 – o; wànr 1 – p; huàr 1 – q; k$ur 
1 – rd; jiàngjìnr 1 – >; xìnr 1 – s; sèr 1 – n; zh@r 1 – t; x-nr 1 – u; 
d3ngr 1 

-tou 
v@ shìtou 133 – w@ m/tou 99 – x@ ji>tóu 96 – I@ shítou 33 – y@ guàntou 30 – 
z@ jìngtóu 26 – G@ niántóu 20 – {@ quántou 18 – |@ mántou 16 – }@ kàngtóu 
14 – z@ l/otóu 12 – x@ x-ntóu 11 – B@ mùtou 9 – ~@ g@tou 9 – Z@ yuántóu 
8 – �@ k1utóu 8 –  @ miáotou 7 – p@ dìtóu 7 – A@ zh8tou 7 – !@ chútou 5 – 
"@ qiáotóu 5 – o@ bùtóu 4 – #@ zh4ntou 3 – $@ f@tou 2 – 2@ xi3ntóu 2 – %
&@ ji/ozh8tou 2 – '@ l8tou 2 – W@ f>ngtou 2 – sA@ sh1uzh8tóu 2 – (@ lítóu 
2 – )@ t3ntóu 1 – *@ y3tou 1 – ++@ w$w$tóu 1 – P@ gu3ntóu 1 – ,@ méitóu 
1 – -@ li/ngtóu 1 

-zi 
2. háizi 457 – '. zh1ngzi 146 – ;. érzi 131 – .. rìzi 129 – ^. q-zi 112 – /
. b3nzi 105 – |. lùzi 63 – 0. lánzi 58 – 7. hu1zi 53 – 1. fángzi 50 – A. 
màozi 37 – U2. yíxiàzi 29 – l. yàngzi 27 – o. bèizi 25 – 3. ji/ozi 23 – \. 
fànzi 22 – 4. dànzi 21 – Y. s7nzi 20 – 5. páizi 20 – 6. dùzi 19 – 7. bùzi 
18 – 4. c7nzi 18 – U8. y-l/nz8 16 – 9. júzi 16 – :. bózi 15 – ;. sh>nz8 
14 – <. zhúzi 12 – d. hànzi 11 – =. zhízi 10 – C. ch>zi 10 – >. d-ngzi 10 – 
?. w7zi 10 – -. ch/ngzi 10 – @. cèzi 9 – A. bízi 9 – B. qiézi 9 – C. lìzi 
8 –  . miáozi 8 – D. qúnzi 8 – 0. n/ozi 8 – +. línzi 8 – E. y8zi 8 – F. 
g>zi 8 – G. bèizi 8 – H. xiézi 7 – ~. sh3zi 7 – bp. x-ménzi 7 – I. hu/ngzi 
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6 – J. shéngzi 6 – K. dàizi 6 – L. j-nzi 6 – b. y8ngzi 6 – M. lìzi 6 – NO. 
qi3ngg3nzi 6 – $. f@zi 6 – �. k1uzi 6 – P. b3ngzi 5 – Q. d8zi 5 – R. wàzi 
5 – S. b/ngzi 5 – T. s/ngzi 5 – -. zhu$zi 5 – U. piàozi 5 – V. húzi 5 – p
W. huàxiázi 5 – X. qu3nzi 4 – Y. t3nzi 4 – Z. gùnzi 4 – O. g3nzi 4 – S. 
yuánzi 4 – [. yuànzi 4 – \. lúzi 4 – ]. gu-zi 4 – ^. kuàizi 4 – _. bàozi 4 – 
i. piànzi 4 – `. d3ozi 4 – a. xi3ngzi 3 – W. xiázi 3 – b. kùzi 3 – c. rùzi 
3 – d. píngzi 3 – e. d/nzi 3 – f. dòuzi 3 – 4. gèzi 3 – e. di0nzi 3 – g. 
sh2zi 3 – h. zhènzi 3 – 6. xi0ozi 3 – z@. l/otóuzi 3 – �. táizi 3 – i. yèzi 
3 – j. b>izi 3 – k. liánzi 2 – l. t-zi 2 – mY. lànt3nzi 2 – n. t/nzi 2 – o. 
xi3zi 2 – p. jiànzi 2 – q. yànzi 2 – r. tùzi 2 – s. xiùzi 2 – t. y>zi 2 – u. 
liúzi 2 – v. hóuzi 2 – w. hézi 2 – l. chóngzi 2 – x. xi>zi 2 – S. ànzi 2 – y
. jùzi 2 – /. mózi 2 – w. kòngzi 2 – z. bi3nzi 2 – v{. mìngg>nzi 2 – |. 
q@zi 2 – ). f/zi 1 – }. chu3ngzi 1 – ~. g@zi 1 – �. shàozi 1 –  . b/zi 1 – 
!. j8zi 1 – ". d$uzi 1 – #. ji3nzi 1 – $. chàzi 1 – Q. yóuzi 1 – zl. 
l/oyàngzi 1 – %. guàzi 1 – &. luànzi 1 – '. w4izi 1 – (. bàzi 1 – w). 
k$ngjiàzi 1 – *. yínzi 1 – +. fázi 1 – ,. wánzi 1 – -. dízi 1 – .. péngzi 1 – 
/. biànzi 1 – 0. lìzi 1 – 1. shìzi 1 – 2. liànzi 1 – @. tóuzi 1 – 3. tízi 1 – 
4. su$zi 1 – 5. luózi 1 – 6. piànzi 1 – 7. yòuzi 1 – 8. chuízi 1 – I9. 
shíg@nzi 1 – :. j-zi 1 – ;. cáozi 1 – <. dìngzi 1 – -�. li/ngk1uzi 1 – =. 
chuánzi 1 – >. d3nzi 1 – ?. ji/nzi 1 – R. dàngzi 1 – ~@. sh3yuànz8 1 – J. 
miànzi 1 – A. y-ngzi 1 – B. hàozi 1 – CD. píji3zi 1 – E. zhuózi 1 – F. zúzi 
1 – G. chéngzi 1 – 1. jízi 1 – H. g@zi 1 – I. sh3nzi 1 – J. t1ngzi 1 – K. 
táozi 1 – %:. ji/obózi 1 – L. sh7zi 1 – M. zhu3ngzi 1 – N. pàngzi 1 – O. 
xìngzi 1 – P. páozi 1 – �Q. táizhùzi 1 – R. fènzi 1 
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Extension of Zipf's Law to Word and Character 

N-grams for English and Chinese 

Le Quan Ha*, E. I. Sicilia-Garcia*, Ji Ming* and F. J. Smith* 

Abstract 

It is shown that for a large corpus, Zipf 's law for both words in English and 
characters in Chinese does not hold for all ranks. The frequency falls below the 
frequency predicted by Zipf's law for English words for rank greater than about 
5,000 and for Chinese characters for rank greater than about 1,000. However,  
when single words or characters are combined together with n-gram words or 
characters in one list and put in order of frequency, the frequency of tokens in the 
combined list follows Zipf’s law approximately with the slope close to -1 on a log-
log plot for all n-grams, down to the lowest frequencies in both languages. This 
behaviour is also found for English 2-byte and 3-byte word fragments. It only 
happens when all n-grams are used, including semantically incomplete n-grams. 
Previous theories do not predict this behaviour, possibly because conditional 
probabilities of tokens have not been properly represented. 

Keywords: Zipf 's law, Chinese character, Chinese compound word, n-grams, 
phrases. 

1. Introduction 

1.1 Zipf's law 

The law discovered empirically by [Zipf 1949] for word tokens in a corpus states that if f is 
the frequency of a word in the corpus and r is the rank, then: 

r
kf =

 
(1) 

where k is a constant for the corpus. When log(f) is drawn against log(r) in a graph (which is 
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called a Zipf curve), a straight line is obtained with a slope of  –1. An example with a small 
corpus of 250,000 tokens made up of paragraphs chosen at random from the Brown corpus of 
American English [Francis and Kucera 1964] is given in Figure 1; in this the tokens do not 
include punctuation marks and numbers. Typographical errors, if any, will appear in the hapax 
legomenon. 
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Figure 1 Zipf curve for the unigrams extracted from a 250,000-word tokens corpus.  

 Zipf’s discovery was followed by a large body of literature, reviewed in a series of 
papers edited by [Guiter and Arapov 1982]. Notable among these are papers by [Mandelbrot 
1953, 1954, 1959, 1961], [Miller 1954, 1957, 1958], [Simon 1955, 1960, 1961], [Sichel 1975, 
1986], [Carroll 1967, 1969], [Baayen 1991], [Chitashvili 1983, 1989] and [Orlov 1983]. It 
continues to stimulate interest today [Samuelson 1996]; [Baayen 2001]; [Hatzigeorgiu, Mikros 
and Carayannis 2001]; [Montermurro 2001]; [Ferrer and Solé 2002] and, for example, it has 
been recently applied to citations [Silagadze 1997], to biological species-abundance [Sichel 
1997] and to DNA sequences [Yonezawa and Motohasi 1999]; [Li 2001]. 

Zipf discovered the law by analysing manually the frequencies of words in the novel 
“Ulysses” by James Joyce. It contains a vocabulary of 29,899 different word types associated 
with 260,430 word tokens. 

1.2 Theoretical developments: 

Following its discovery in 1949, several experiments aided by the appearance of the computer 
in the 1960’s, confirmed that the law was correct for the small corpora that could be processed 
at that time. The slope of the curve was found to vary slightly  from  –1 for some corpora; also 
the frequencies for the highest ranked words sometimes deviated from the straight line, which 
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suggested several modifications of the law, and in particular one derived theoretically by 
[Mandelbrot 1953] with the form: 

βα )( +
=

r
kf

 
(2) 

where α and β are constants for the corpus being analysed. However, generally the constants 
α and β were found to be only small varying deviations from the original law by Zipf. 
Exceptions include legal texts which have smaller slopes (≈0.9) showing that lawyers use 
more word types than other people! [Smith and Devine 1985]. 

A number of theoretical explanations for Zipf’s law had been derived, many reviewed by 
[Fedorowicz 1982]; notably are those due to [Mandelbrot 1954, 1957], [Miller 1954, 1958], 
[Simon 1955], [Booth 1967], and [Sichel 1975, 1986]. Simon’s derivation was controversial 
and a correspondence in the scientific press developed between Mandelbrot and Simon on the 
validity of this derivation (1959-1961); the dispute was not resolved by the time Zipf curves 
for larger corpora were beginning to be computed. 
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Figure 2 Zipf curve for the unigrams extracted from the 1 million words of the 

Brown corpus showing that the Zipf curve falls below the line with  
slope -1 for rank > 5,000. 

The processing of larger corpora with 1 million words or more was facilitated by the 
development of PC’s in the 1980’s. When Zipf curves for these corpora were drawn, they 
were found to drop below the Zipf straight line with slope of –1 at the bottom of the curve, for 
rank greater than about 5,000. This is illustrated in Figure 2, which shows the Zipf curve for 
the whole of the Brown corpus (1 million words), again excluding punctuations and numbers. 
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This deviation from Zipf 's law was interpreted for single-author texts to represent the 
limited numbers of words in each author's diction. But we see in Figure 2 that a deviation also 
occurs for a multi-author corpus covering a wide range of domains such as the Brown corpus; 
so the drop in the curve is not likely to be only due to the limited number of words.  

2. Zipf curves for large English corpora 

We are going to explore the above deviation from Zipf’s law for large corpora in two  
languages: Chinese and English. We begin with English. 

2.1 Single words 

The English corpora used in our experiments are the full text of articles appearing in the Wall 
Street Journal [Paul and Baker 1992] for 1987, 1988, 1989, with sizes approximately 19 
million, 16 million and 6 million tokens respectively. The Zipf curves for the 3 corpora are 
shown in Figure 3.  

For   pre-execution   of  this  corpus,   numbers  were  written   as    words,   e.g.  23 
became "twenty three" and punctuation marks were excluded. The characters  "=", "#", "~", 
"<", ">", "|", "+", "-", "^", "*", "@", "/" and "\", etc. were also ignored. 
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Figure 3 Zipf curves for the unigrams extracted from the 3 training corpora of WSJ 

The Zipf curves for the three corpora are parallel, showing similar structures with all 3 
curves deviating from Zipf’s law for larger r in exactly the same way as the curve for the 
Brown corpus. Their separation is due to their different sizes. 
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2.2 n-Grams 

Language is not made of individual words, each with its own separate piece of information, 
but consists of sequences of words, made up of individual words and of phrases of 2, 3 or 
more words together called n-grams. So it is interesting to measure the frequencies of n-grams 
and draw the corresponding Zipf curves. 

To do this we allowed n-grams to overlap. For example, for the sentence: "The cat sat  
on the mat", there are four trigrams: (1) "the cat sat", (2) "cat sat on", (3) "sat on the" and (4) 
"on the mat". So semantically incomplete n-grams such as "cat sat on" are included in our 
study. No n-gram crossed over a punctuation mark. So a fullstop, comma, colon, etc. always 
ends an n-gram and a new n-gram starts after the punctuation. Thus the sentence "Three blind 
mice, see how they run" has only three trigrams "three blind mice", "see how they" and "how 
they run". 

For each value of n between 2 and 5, we thus computed the frequencies of all n-grams in 
each corpus and put them in rank order as we had done for the words. This enabled us to draw 
the Zipf curves for 2-, 3-, 4- and 5-grams which are shown along with the single word curves 
in Figure 4, Figure 5 and Figure 6 for the three corpora. These curves are similar to the first 
Zipf curves drawn for n-grams by [Smith and Devine 1985]; but these earlier curves were for 
a much smaller corpus. 
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Figure 4 Zipf curves for the WSJ87 corpus 

The n-gram Zipf curves do not follow straight lines but curve gently downwards. The 
average slope decreases from about 0.66 for the bigrams to about 0.59 for the 5-grams. 
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Figure 5 Zipf curves for the WSJ88 corpus 
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Figure 6 Zipf curves for the WSJ89 corpus 

First for WSJ87, the crossing point between the unigram and bigram curves is at rank 
2,943 and for the unigram and trigram curves, it is at rank 8,497. For WSJ88, these crossing 
points are similar, at rank 2,913 and at rank 8,404, and for WSJ89, they are at rank 2,908 and 
7,960. So the unigram curves cross the bigram curves when the rank ≅ 3,000 in all 3 cases, 
and for the unigram and trigram curves, they cross at rank ≅ 8,000.  

The ten most common words, bigrams and trigrams in the combined WSJ corpus of 40 
million words are listed in Table 1. 
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Table 1. The most common unigrams, bigrams and trigrams in the combined WSJ 

Unigrams Bigrams Trigrams 

Frequency Token Frequency Token Frequency Token 

2,057,968 the 217,427 of the 42,030 the U. S. 

973,650 of 173,797 in the 27,260 in nineteen eighty 

940,525 to 110,291 million dollars 24,165 cents a share 

853,342 a 89,184 U. S. 18,233 nineteen eighty six 

825,489 and 83,799 nineteen eighty 16,786 nineteen eighty seven 

711,462 in 76,187 for the 15,316 five million dollars 

368,012 that 72,312 to the 14,943 million dollars or 

362,771 for 65,565 on the 14,517 million dollars in 

298,646 one 63,838 one hundred 12,327 in New York 

281,190 is 55,014 that the 11,981 a year earlier 
 

2.3 Hapax legomena and dis legomena 

The size of the hapax legomena (tokens with frequency 1) for the n-grams rises rapidly with n 
as shown in Table 2a, but it can not rise above the number of tokens; so the rate of increase 
has slowed when n = 5 since almost all tokens are in the hapax legomena. The hapax dis 
legomena (tokens with frequency 2) is much smaller and reaches a maximum for trigrams 
from all 3 corpora (see Table 2b) because almost all of the tokens have frequency 1, leaving a 
smaller number with frequency 2 when n = 4 and 5. 

Table 2a) Number of hapax legomena for the English corpora. 

Corpus WSJ87 WSJ88 WSJ89 

No of Tokens 18,790,794 15,757,051 5,946,585 

No of Types 114,581 108,522 71,837 

Unigram 38,853 36,945 25,162 

Bigram 1,786,290 1,620,385 851,542 

Trigram 6,601,243 5,799,257 2,598,509 

4-gram 10,635,310 9,137,402 3,736,880 

Hapax 
legomena 

5-gram 12,493,656 10,612,036 4,376,741 
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Table 2b) Number of hapax dis legomena for the English corpora. 

Corpus WSJ87 WSJ88 WSJ89 

No of Tokens 18,790,794 15,757,051 5,946,585 

No of Types 114,581 108,522 71,837 

Unigram 14,855 14,431 9,861 

Bigram 349,205 314,496 155,068 

Trigram 742,771 632,372 251,435 

4-gram 670,106 546,951 190,947 

Hapax 

dis- 

-legomena 

5-gram 485,487 389,113 130,544 

2.4 The nature of n-grams 

It can be  argued that most of the n-grams in the hapax legomena or hapax dis legomena are 
not meaningful, since they are semantically incomplete. Certainly that meaning may be 
incomplete and they need the words on either side of them to realise their full meaning. But 
then it can be argued that this is true of every n-gram (and indeed for every word). So we take 
the view that every n-gram taken from a natural language text produced by humans has 
meaning, though often incomplete. 

However, Miller's monkey typing on a word typewriter would produce mainly 
meaningless n-grams, e.g. "the the the", as well as those others which have meaning by 
accident. The number of possible n-grams which the monkey can type is huge. For example, 
for the WSJ87 corpus there are more than 1015 possible trigrams of which less than 7 million 
produced by humans appear in the Hapax legomenon for the corpus. 

Whatever one's views on the meaning of some of these incomplete n-grams, we report in 
this paper on the Zipf curves for all n-grams in a corpus. A later paper will include discussion 
on the equivalent curves for semantically complete phrases. 

One of our reasons for including all n-grams is that statistical language modellers have 
been using n-grams, similar to the ones we have defined, which include semantically 
incomplete n-grams, with great success in modelling language over the last 20 years [Jelinek 
and Mercer 1985]; [O'Boyle, Owens and Smith 1994]; [Ney 1999]. 

3. Zipf Curves for Chinese Corpora 

In Chinese, compound words can be created, made up of two or more characters. However, it 
is not always easy to automatically segment a written sentence in Chinese into compound 
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words as these are not separated by spaces as in English. Nevertheless, the extraction of a 
word sequence from a Chinese document has been the subject of study by many authors [Zhu 
1981]; [Chen and Shi 1992]; [Bates, Chen, Li, Opie and Tzeng 1993]; [Packard 2000]; [Sproat 
2002]; [Tsai and Hsu 2002]; who reference other papers. 

Unfortunately, there is still ambiguity in the process of compound word extraction. For 
example, the following string of characters can be broken into the words:  ! (Beijing)  " 
(city)  # (in)  $% (traffic)  &' (busy) (The traffic in Beijing is very busy) or into the words  
  (North)  !" (capital city)  # (in)  $% (traffic)  &' (busy)  (The traffic in the north of  
the capital city  is very busy). Only a human can distinguish which is correct, another example 
is: () (Shanghai) *  +, (build)  *  -.  (develop) (Shanghai is developing while it is 
building (up)) which can also be interpreted as ( (go to)  )* (seaside)  +,  *  -. (Go 
to seaside to develop and build). Once again a human is needed to decide the meaning. 

Therefore, it is difficult to write a computer program to extract the correct word sequence, 
and for a corpus of 250 million syllables, it is impossible to do by hand. So we proceeded as 
follows: first of all, we used a 50,000 word-syllable dictionary (which can be found at 
http://www.euroasiasoftware.com/), but the extraction of the words from the text is still partly 
ambiguous. When a sequence of syllables was found that matched a word in the dictionary, it 
was usually accepted as a word. When an ambiguity occurs, e.g. /012 which can be one 
word hurricane, or two bi-syllable words: /0  12 storm shower, then the longer word was 
accepted /012  hurricane. Similarly, 3456  millionaire is accepted as one word 
instead of the three words 34  5  6 million(s) rich elder. 

Although the whole corpus could not be checked manually, the higher frequency n-grams 
can be checked, for example the following 6-gram has been broken into the pattern: 78  9
:  ;  <  =  > rather than the pattern  78   9:   ;<=> Egyptian president Mubarak. 
This occurs 1,865 times and could be corrected for all 1,865 occurrences in one step all over 
the corpus. Another example is the 7-gram: ?  @  A  B  C  D  > occurring 7 times which 
should be the 2 names  ?@A  BCD>  Alanqiu  Wuzibieke to be correct. Because of the 
multiple occurrence of n-grams all of which can be corrected by one change, this speeded-up 
the manual process considerably. Checking all of the high frequency n-grams took more than 
2 months work; after this, a check on a test text of  3,117 tokens was found to have 82 errors 
(2.6%) by an independent native speaker (other than the authors), which we took  as 
acceptable. (The corpus can be made available on request to q.le@qub.ac.uk or 
fj.smith@qub.ac.uk). 

Two corpora were used in our experiments: the TREC corpus and the Mandarin Daily 
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News corpus. Both are from the Linguistic Data Consortium1. 

There is a small overlap between the Chinese TREC corpus and the Mandarin News 
corpus (less than 10% of the smaller TREC corpus). This overlap could have been removed, 
but it was not, to retain the full size of both corpora in the analysis. The effect of overlap will 
be small.  

3.1 TREC Corpus (compound words) 

The TREC Corpus was obtained from the full articles in the People’s Daily Newspaper from 
01/1991 to 12/1993 and from the Xinhua News Agency from 04/1994 to 09/1995. 

The  Zipf  curves for the TREC  compound words are shown in  Figure 7. Note that the 
unigram curve is different from the curve for English, first with a slope less than 1 then falling 
rapidly after a rank of about 1,000. 
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Figure 7 Zipf curves for Mandarin compound words from TREC 

The crossing-point between compound word unigrams and bigrams is at rank: 4,999, and 
between the unigram and trigram curves at rank: 8,589, similar to English. 

3.2 Mandarin News corpus (compound words) 

The second corpus is the Mandarin News corpus, obtained from the People’s Daily 
Newspaper from 1991 to 1996 (125 million syllables); from the Xinhua News Agency from 

                                                 
1 http://www.ldc.upenn.edu/ 
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1994 to 1996 (25 million syllables); and from transcripts from China Radio International 
broadcast from 1994 to 1996 (100 million syllables), altogether over 250 million syllables. 

The Zipf curves for the Mandarin News compound words are drawn in Figure 8 and look 
like those for the TREC corpus. The rapid fall in the curve after rank 10,000 is due to the 
restricted word dictionary of 50,000 word types used in the experiment. The ten highest 
frequency Mandarin unigrams, bigrams and trigrams from the Mandarin  News are in Table 3 
and Table 4. 
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Figure 8 Zipf curves for the Mandarin News corpus (compound words) 

The crossing-point between compound word unigrams and bigrams is at rank: 5,544 and 
between unigrams and trigrams at rank: 9,577 similar to previous values for TREC and 
English. So these appear to be invariants of language, not just of English. 

Table 3 The ten highest frequency unigrams and bigrams from Mandarin News  
(compound words). 

Unigrams Bigrams Rank 

Freq Token Meaning Freq Token Meaning 

1 7,356,017   of 114,910 ! " daily news 

2 1,825,758 # in / at 92,259 $ % this one 

3 1,515,473 & and 82,705 $ ' this is 

4 1,502,098 ( perfective 
marker 

81,930 )*   of China 

5 1,331,433 ' yes / right 79,390   +, of development 
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6 989,235 % one 75,929 - . he says 

7 979,211 )* China 71,922   % of one 

8 766,784 ) centre / middle 70,949 /   new of 

9 686,375 0 have 70,810 ! # daily at 

10 652,004 1 year 67,211 )* *2 China 
international 

Table 4 The ten highest frequency trigrams  from Mandarin News. 

Trigrams Rank 

Freq Token Meaning 

1 60,214 *2  34  "5 international broadcast station 

2 60,057 )*  *2  34 China international broadcast 

3 35,584 %  6  6 one nine nine2 

4 28,589 7  )*  *2 according to China international 

5 28,240 34  "5  89 broadcast station report 

6 26,240 :;  <=  >? degree listen (to) language 

7 26,232 1@  :;  <= age degree listen (to) 

8 26,203 <=  >?  AB listen (to) language remarks/notes 

9 26,154 CD  1@  :; profession age degree 

10 26,081 EF  GH  CD fax department profession 
 

4. Zipf Curves for syllables and character strings 

4.1 Chinese syllables 

Because of the difficulty in extracting the compound words in Chinese, we decided to draw 
Zipf curves for the syllables for both Chinese corpora. TREC has 19,546,872 syllable tokens 
but only 6,300 syllable types, so it is not surprising that the Zipf curve for syllable unigrams 

                                                 
2 This is how Chinese people read and write the year for example 1993 as "one nine nine three"; 

therefore we elminated numbers but kept the written form. 
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in Chinese in Figure 9 falls very rapidly after rank about 300. It is similar to previous curves, 
one for a smaller Chinese corpus of 2 million tokens by [Clark, Lua and McCallum 1986] and 
one for 10 million tokens by [Sproat 2002]. The Zipf curves for syllable n-grams for the 
TREC corpus are also shown in Figure 9. 
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Figure 9 Zipf curves for  syllables  from the TREC Mandarin corpus 

Except for the unigrams, the shapes of the other TREC syllable n-gram Zipf curves are 
similar to but not quite the same as those for compound words. In particular the syllable 
bigram curve for Chinese is more curved than the word curve because there are more high-
frequency syllable bigrams than word bigrams. The crossing points between the syllable 
unigram curve and the bigram and trigram curves are at rank: 1,224 and 1,920, respectively, 
very different from compound words. 

The number of syllable-types (i.e. unigrams) in the Mandarin News corpus is 6,800, 
similar to the TREC corpus. The Zipf curves and crossing points are also similar as shown in 
Figure 10. 
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Figure 10 Zipf curves for syllables from the Mandarin News corpus 

The hapax legomena and dis legomena for the Chinese corpora Zipf curves are shown in 
Table 5a and 5b. Their behaviour as n increases is similar to the English corpora. 

Table 5a) Number of hapax legomena for the Chinese corpora. 

Corpus TREC 
syllables 

TREC compound 
words 

Mandarin News 
syllables 

Mandarin News 
compound words 

No of Tokens 19,720,320 13,467,443 223,222,788 153,942,010 

No of Types 6,356 20,587 6,891 29,688 

Unigram 676 2,642 259 4,192 

Bigram 351,691 1,013,276 667,966 2,671,406 

Trigram 2,447,451 4,009,020 8,462,775 17,794,466 

4-gram 5,309,654 5,661,530 23,812,934 30,885,192 

Hapax 
legomena

5-gram 7,279,824 5,875,696 37,348,300 34,617,579 
 
Table 5b) Number of hapax dis legomena for the Chinese corpora. 

Corpus TREC 
syllables 

TREC compound 
words 

Mandarin News 
syllables 

Mandarin News 
compound words 

No of Tokens 19,720,320 13,467,443 223,222,788 153,942,010 

No of Types 6,356 20,587 6,891 29,688 

Hapax Unigram 347 1,260 155 1,701 
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Bigram 131,619 287,225 294,634 1,001,809 

Trigram 565,069 624,895 2,591,830 4,549,748 

4-gram 834,227 553,965 5,806,633 6,168,487 

dis-  

legomena 

5-gram 840,276 417,656 7,874,536 6,057,974 

4.2 English byte substring 

Following a suggestion by a reviewer of this paper, we built the Zipf curves on English 2-byte 
and 3-byte substrings to compare them with the Chinese syllable results. 

From the WSJ88 corpus, we built a corpus of the first 2 million tokens. Then we took  2-
byte and 3-byte moving windows on this corpus ignoring spaces and stopping the 2-bytes or 
3-bytes at punctuation marks. As predicted by the reviewer, the results in Figure 11 and 
Figure 12 show that the Zipf curve for 3-byte substrings looks particularly similar to the 
Chinese syllable curves. 
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Figure 11 Zipf curves for English 2-byte substrings 
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Figure 12 Zipf curves for English 3-byte substrings 

Note that the number of 2-byte and 3-byte types in these curves equal 673 and 10,548, 
compared with the maximum possible numbers 262 = 676 and 263 = 17,576. 

5. Comparison for all Zipf curves from Chinese and English 
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Figure 13 Comparison of Zipf curves for unigrams 

The Zipf curves for unigrams for the combined WSJ corpus, the Mandarin News word corpus, 
the Mandarin News syllable corpus and 3-byte English corpus are compared in Figure 13. 
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Similarly for 2-grams to 5-grams in Figures 14 to 17. 
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Figure 14 Comparison of Zipf curves for bigrams 
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Figure 15 Comparison of Zipf curves for trigrams 
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Figure 16 Comparison of Zipf curves for 4-grams 
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Figure 17 Comparison of Zipf curves for 5-grams 

These Figures show two things as n increases. First, the curves straighten out for high n. 
Secondly, the number of hapax legomena becomes very large, often larger than one would 
expect from the last 10 steps of the rank-frequency step function. This is exactly the pattern 
one gets when Markov models are used to generate data sets [Baayen 1991, 2001]. 
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6. Combined n-grams 

The theoretical justifications for Zipf’s law by Mandelbrot, Miller, Simon and others were 
based on single word tokens and they worked quite well for small corpora, but none of them 
could predict the drop in the Zipf curve below Zipf 's law for English and Chinese when the 
rank is greater than 5,000 word types. In the case of Chinese syllables, Zipf 's law could not 
hold for rank greater than about 100, but  when these syllables are combined into compound 
words then Zipf 's law is valid for a wider range, up to about rank 1,000. Therefore, by 
combining Chinese syllables into larger units, Zipf 's law was extended from rank 100 to rank 
1,000. This led us to combine all syllable n-grams, to see if the law could be extended to even 
higher rank and to combine word n-grams in Chinese and English for the same purpose. 

We therefore put all unigrams and n-grams together with their frequencies into one large 
file, sorted on frequency and put in rank order as previously. The resulting combined Zipf 
curve is shown with the unigram curve for English words for the combined WSJ corpus in 
Figure 18 and for the Chinese syllables for Mandarin News in Figure 19. 
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Figure 18 The unigram and combined curves for the combined WSJ corpus 
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Figure 19 The unigram and combined curves for the Mandarin News syllable corpus 

This shows the remarkable result that as the unigram curve drops away from Zipf 's slope 
of -1, the shortfall is made up almost exactly by the n-grams in both cases, even though those 
shortfalls are very different in the two cases. So when all n-grams are combined together, 
including unigrams, Zipf's law is found to be approximately correct with a slope close to -1 
for all ranks. If semantically incomplete n-grams had been excluded from this analysis, this 
result would not have been obtained. 

The resulting Zipf curves for the combined n-grams from all of the corpora are shown in 
Figure 20. 
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Figure 20 Combined Zipf curves for both of the languages 

This shows that  the 6 combined Zipf curves are all approximately straight lines with 
slopes close to –1 for all ranks > 1,000. For ranks < 1,000, the unigram curves dominate and 
are not so straight. As in Figure 18 and 19, the n-grams (n ≥ 2) almost  exactly make up for 
the  deviation of the unigram Zipf curve from Zipf 's law for the six very different unigram 
curves. So the results in Figure 20 are a new confirmation of Zipf ’s original law in an 
extended form. 

7. Summary and Conclusions 

This paper reports on the results of some experiments conducted on Zipf curves for English 
and Chinese corpora. It was confirmed that Zipf curves on a log-log graph for single word 
unigram distributions for both languages fall below the straight line with slope -1 as predicted 
by Zipf 's law. The deviation from Zipf 's law occurs at a rank close to rank = 5,000, for the 3 
corpora in English and 2 corpora in Chinese. This rank (5,000) is also the rank near which the 
unigram and bigram Zipf curves cross for all 5 corpora. 

The more significant result was the discovery that when the frequency distribution of  
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words is combined with the distributions of all 2-, 3-, 4- and 5-grams, the combined Zipf 
curve approximately obeys Zipf 's law for all ranks and frequencies for both languages. This 
effectively extends Zipf 's law, with the higher n-grams almost exactly making up for the fall-
off in the Zipf curve for words. Furthermore, this extended form of Zipf 's law also holds for 
the syllables of Chinese (as well as for 2-byte and 3-byte word fragments in English), even 
though the distribution of syllable unigrams is very different from the distribution for words. 

This paper does not explain why Zipf 's law in an extended form is valid for large 
corpora or what this result means. This must be left for further experiments and other 
researchers. However, preliminary results, not yet complete, for other languages suggest that 
these results are universal for all languages. We also know that they do not hold for all 
artificial distributions of words, because some experiments with computer generated  artificial 
distributions did not yield an extended Zipf curve, (with  a random distribution, and with Zipf 
distributions for words with slopes β = 2 and β = 0.5). 

The earlier derivations of Zipf's law due to Mandelbrot, Miller, Simon and others fail to 
predict the fall-off in the Zipf curve from about rank 5,000 and to predict the extended form of 
Zipf's law for the combined n-gram curves. We believe that this is because these derivations 
do not properly take account of the fact that each token is part of a sequence and its 
information is dependent on a conditional probability, conditional on the words or characters 
around it; this can be approximated in terms of the frequency of n-grams [O 'Boyle, Owens 
and Smith 1994]. 
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