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Abstract
Distant supervision has obtained great
progress on relation classification task.
However, it still suffers from noisy labeling
problem. Different from previous works
that underutilize noisy data which inherently
characterize the property of classification,
in this paper, we propose RCEND, a novel
framework to enhance Relation Classification
by Exploiting Noisy Data. First, an instance
discriminator with reinforcement learning is
designed to split the noisy data into correctly
labeled data and incorrectly labeled data.
Second, we learn a robust relation classifier
in semi-supervised learning way, whereby
the correctly and incorrectly labeled data are
treated as labeled and unlabeled data respec-
tively. The experimental results show that
our method outperforms the state-of-the-art
models.

1 Introduction

Relation classification plays a crucial role in natu-
ral language processing (NLP) tasks, such as ques-
tion answering and knowledge base completion
(Xu et al., 2016; Han et al., 2018a). The goal of
relation classification is to predict relations of the
target entity pair given a plain text. Traditional su-
pervised learning methods (Zelenko et al., 2002;
Bunescu and Mooney, 2005; Zhou et al., 2005)
heavily rely on large scale annotated data which is
time and labor consuming. Mintz et al. (2009) pro-
posed distant supervision (DS) to automatically
generate training data for relation classification
based on the assumption that if two target entities
have a relation in knowledge base (KB), sentences
containing this entity pair might express the re-
lation. For example, if a relational fact <Apple,
founder, Steve Jobs> exists in KB, distant super-
vision will assign founder as the label of all sen-
tences that contain “Apple” and “Steve Jobs” to-
gether.

Sentence DS Gold
S1:Al Gore was waiting to board
a commercial flight from Nashville
to Miami...

LivedIn NA

S2:There were also performers
who were born in Louisiana , in-
cluding Lucinda Williams...

LivedIn BornIn

S3:Boggs was married, had three
young children and lived in Brew-
ster

NA LivedIn

Table 1: Examples of noisy labeling problem in dis-
tant supervision relation classification. S1 and S2 are
heuristically labeled as LivedIn by DS, but neither
of them mention the relation while S2 mentions the
BornIn relation. S3 expresses the LivedIn relation but it
is mislabeled as NA since no relation of the entity pair
exist in KB.

However, it suffers from noisy labeling problem
due to the irrelevance of aligned text and incom-
pleteness of KB, which consists of false positives
and false negatives. The false positives means that
not all sentences containing two entities mention
the relation in KB, such as S1 and S2 in Table 1.
And the false negatives are sentences are misla-
beled as no relation (NA) due to the absence of
relational fact in KB even though they express the
target relation, such as S3 in Table 1.

In order to reduce the impact of noisy data, pre-
vious works (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012; Zeng et al., 2015;
Lin et al., 2016; Han et al., 2018b) adopt Multi-
Instance Learning (MIL) for relation classifica-
tion. Recent studies (Feng et al., 2018; Qin et al.,
2018b,a) introduce reinforcement learning (RL)
and adversarial learning to filter out incorrectly la-
beled sentences and achieve significant improve-
ments. However, there are two remaining chal-
lenges of noisy labeling problem.

• Most of these approaches focus on solving
the false positives but overlook false nega-
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DS false positive data

DS true negative data
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Figure 1: Illustration of false positive and false negative
cases

tives. As illustrated in Figure 1, they con-
centrate on discovering the false positive in-
stances1 which are suppressed or removed at
last and obtain a better decision boundary
(green dashed line) than without considera-
tion of false positive instances. Nevertheless,
there are still a lot of false negative instances
expressing similar semantic information with
positive data. These instances also provide
evidence for the target relation. The incor-
rect labels will weaken the discriminative ca-
pability of available features and confuse the
model if they stay the same. However, when
we remedy the label correctly, we indeed pos-
sess the optimal decision boundary (red solid
line).

• There lacks an effective method to fully uti-
lize noisy data of distant supervision. (Xu
et al., 2013; Liu et al., 2017) apply meth-
ods such as pseudo-labels to directly correct
the label of noisy data and Luo et al. (2017)
design a dynamic transition matrix to model
noise patterns. They still suffer from the
drawback of error propagation during train-
ing.

To tackle the above challenges, we propose
a novel framework exploiting noisy data to en-
hance distant supervision relation classification.
We design an instance discriminator with rein-
forcement learning to recognize both false positive
and false negative instances simultaneously, and
further split the noisy dataset into two sets, rep-
resenting correctly labeled and incorrectly labeled
data respectively. Additionally, we learn a ro-
bust relation classifier applying a semi-supervised
learning method, whereby the correctly and incor-
rectly labeled data are regarded as labeled and un-
labeled data. On the one hand, we mitigate the

1In this paper, instance is the same as sentence

side effect of incorrectly labeled data by recog-
nizing them and treating them as unlabeled data.
On the other hand, taking full advantage of the in-
correctly labeled data in semi-supervised learning
way facilitates robust property of model and im-
proves generalization performance. Our contribu-
tions in this work are three-fold:

• We propose a deep reinforcement learning
framework to discriminate both false-positive
and false-negative instances simultaneously.

• We introduce a semi-supervised learning
method to fully exploit the noisy data in dis-
tant supervision relation classification.

• We conduct experiments on a widely used
benchmark dataset and the results show that
our method achieves significant improve-
ments as compared with strong baselines.

2 Related work

Many efforts based on supervised learning (Ze-
lenko et al., 2002; Bunescu and Mooney, 2005;
Zhou et al., 2005) have been devoted to relation
classification. As is well-known, achieving a good
performance while applying supervised learning
paradigm requires a large amount of high-quality
annotated data. To address the issue of data spar-
sity, Mintz et al. (2009) propose distant supervi-
sion to automatically annotate large scale train-
ing data, which inevitably results in noisy labeling
problem.

To tolerate noisy instances in positive ex-
amples, most early approaches employ multi-
instance learning framework, including multi-
instance single-label learning (Riedel et al., 2010)
and multi-instance multi-label learning (Hoff-
mann et al., 2011; Surdeanu et al., 2012). Re-
cently, deep learning has also been introduced to
propose an end-to-end convolutional neural net-
work for relation classification (Zeng et al., 2014).
In the sentences bag of one entity pair, Zeng
et al. (2015) select the most reliable sentence,
and Lin et al. (2016) propose attention schemes
to de-emphasize unreliable sentences. Han et al.
(2018b) incorporate hierarchical information of
relations to enhance the attention scheme. But
they fail to handle the issue where all sentences
in one bag are mislabeled.

Feng et al. (2018); Qin et al. (2018b,a) fur-
ther achieve improvement by using reinforcement
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Instance Discriminator with Reinforcement Learning Relation Classifier with Semi-Supervised Learning
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Figure 2: The framework of train process. Instance discriminator, consisting of PosAgent and NegAgent, aims
to recognize false-positive (FP) and false-negative (FN) instances from positive dataset (DPOS) and NA dataset
(DNA) respectively. Afterward, true-positive (TP) and true-negative (TN) instances are split into labeled data (Dl)
while FP and FN instances are split into unlabeled data (Du). We adopt SemiVAE, which consists of an encoder, a
decoder and a classifier, to train a robust relation classifier with semi-supervised learning utilizing the above data
Dl,Du. More details are introduced in Section 3.2 and 3.3.

learning and adversarial learning to explicitly re-
move incorrectly labeled sentences. However,
they neglect the useful inherent information of
those sentences which should be replaced cor-
rectly. In other words, they remove the noise rather
than utilize it in the right way.

Furthermore, Xu et al. (2013) correct false neg-
ative instances by using pseudo-relevance feed-
back to expand the origin knowledge base. Liu
et al. (2017) apply a dynamic soft-label instead of
the immutable hard label produced by DS during
the training process. Luo et al. (2017) design a
transition matrix which characterizes the underly-
ing noise pattern to correct noisy labels. They uti-
lize the noisy data and address the false negative
problem to some extent, but they still suffer from
the drawback that errors may be propagated be-
cause the model is unable to correct its own mis-
takes.

In this work, we propose a unified framework
for learning a discriminator to recognize both
false-positive and false-negative instances with re-
inforcement learning, and utilizing the incorrectly
labeled data as unlabeled data in semi-supervised
learning way.

3 Methodology

In this section, we introduce our framework and
the details of instance discriminator and relation
classifier as follows.

3.1 Framework

In MIL paradigm, the entire instances are split
into multiple entity-pair bags {Bhi,ti}ki=1. The
sentences in Bh,t mention both head entity h and
tail entity t. Here we denote dataset as D =
{(xi, yi)}ni=1, where xi is a sentence associated
with the corresponding entity pair, yi is a noisy re-
lation label produced by distant supervision and n
is the total number of sentences contained in each
bag. As mentioned above, NA is a special relation
which indicates the sentence does not express any
relations in the KB. We define other relations in
the KB as positive relations. Accordingly, we split
the dataset into DPOS and DNA.

In the scenario of distant supervision, an ideal
model is not only capable of capturing valid su-
pervision information about correctly labeled data
with less noise, but also leveraging information
contained in incorrectly labeled data by correcting
the noisy label implicitly.

As a result, we solve the task of distant super-
vision relation classification in two steps. As de-
picted in Figure 2, we design an instance discrim-
inator to heuristically recognize false positive and
false negative instances from the noisy distantly-
supervised dataset with reinforcement learning.
The correctly labeled instances discovered by the
discriminator are split into labeled data while the
incorrectly labeled ones are split into unlabeled
data. The details of the instance discriminator
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will be introduced in Section 3.2. After scanning
the entire noisy dataset, we train a robust classi-
fier with semi-supervised learning utilizing above
labeled data and unlabeled data. The details of
the relation classifier will be introduced in Section
3.3. Meanwhile, the relation classifier provides re-
wards to the instance discriminator for updating
parameters of its policy function.

3.2 Instance discriminator

We regard recognizing incorrectly labeled in-
stances as a reinforcement learning problem. The
instance discriminator acts as an agent interacting
with the environment that consists of a noisy
dataset and a relation classifier. The agent is
parameterized with a policy network π(a|s; θ)
which gives the probability distribution of action
a at each state s and receives reward r from the
relation classifier to update parameters θ. Note
that NA indicates that there is no relation between
two entities or that the relation is of no interest.
The relation NA is very ambiguous since instances
have no unified pattern. Thus we cannot decide
whether a sentence belongs to NA only by the fact
that it does not express any other positive relation.
Under this consideration, we adopt two agents,
PosAgent and NegAgent, to recognize false
positive and false negative instances respectively.
The definitions of the components in RL are
introduced as follows.

State The state includes the semantic and
syntactic information of current sentence and the
relation label given by DS. We use a piecewise
convolutional neural network (PCNN) (Zeng
et al., 2015) to convert each sentence into real-
valued vector x and build a class representation
matrix M to represent each relation type. As we
decide whether the current sentence is correctly
labeled according to the similarity between the
semantic meanings of sentence and relation, we
only take the current sentence into consideration
without sentences in early states. For PosAgent,
state sp is the concatenation of the current
sentence vector x and corresponding relation
embedding. For NegAgent, we represent state sn
by the vector of relational scores based on the
representation of the current sentence x.

sp = [x;M [y]]

sn = Mx+ b
(1)

where y is relation label of the current sentence.
b ∈ Rnr is a bias vector and nr is the number of
class.

Action We desire the agent to distinguish
whether the current sentence is mislabeled or not.
Therefore, the action of our agent is defined as
ai ∈ {0, 1}, where 0 indicates the sentence is
incorrectly labeled and 1 indicates the sentence is
correctly labeled.

Reward The reward function can reflect the
advantage of redistributing the noisy data. As
previously mentioned, the actions of our agent
redistribute noisy data into labeled data and
unlabeled data, corresponding to correctly labeled
and incorrectly labeled instances. Therefore, the
average likelihood of labeled data will be larger
than unlabeled data when the agent makes correct
actions. We define the difference of likelihood
between them as the reward to evaluate the
performance of our policy. Consequently, the
reward is defined as follows:

r = λ(
1

|L|
∑
x∈L

pφ(y|x)−
1

|U |
∑
x∈U

pφ(y|x)) (2)

where L and U is the subset of labeled data and
unlabeled data respectively, and y is the relation
label given by DS. pφ(y|x) is calculated by the re-
lation classifier from the semi-supervised learning
framework. λ is used to scale the difference to a
rational numeric range.

Training the Policy-based Agent
The objective of the agent is to maximize the
expected reward of the actions sampled from
the probability distribution. Given a mini-batch
data B, following the policy, our agent pro-
duces a set of probability distributions of ac-
tions π(ai|si; θ). Based on the actions, the agent
achieves a performance-driven reward r. We use
a policy gradient strategy to compute the gradient
and update our agent referring to the policy gra-
dient theorem (Sutton et al., 1999) and the REIN-
FORCE algorithm (Williams, 1992). The param-
eters of the policy network are updated according
to the following gradient:

θ ← θ + α

|B|∑
i=1

5θr log π(ai|si; θ) (3)

As the goal of our agent is to determine whether
an annotated sentence expresses target relation
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with weak supervision, we need a relation clas-
sifier to compute the reward for updating the pol-
icy network. We first pre-train our classifier on
the entire dataset with supervised learning until
rough convergence. Then we pre-train the pol-
icy network by receiving rewards from the pre-
trained classifier with the parameters frozen. The
pre-training strategy is necessary as it saves time
that would otherwise be spent training the model
by trial and error. It is also widely used by other
related works (Silver et al., 2016; Bahdanau et al.,
2016). The training procedure for instance dis-
criminator is summarized in Algorithm 1.

3.3 Relation Classifier

In order to reach the maximum utilization of noisy
data, we train our relation classifier with semi-
supervised learning. Below, we introduce PCNN
and SemiVAE, the method we adopt for semi-
supervised learning.

PCNN

We take the widely used CNN architecture
(PCNN) (Zeng et al., 2015; Lin et al., 2016) to en-
code input sentences into low-dimensional vectors
and predict their corresponding relation labels.

Given a sentence containing an entity pair, we
represent the i-th word as vi by concatenating its
word embedding wi and position embedding pi
which encodes the relative distances from it to two
entities (vi ∈ Rd, wi ∈ Rdw , pi ∈ Rdp , d = dw +
dp).

Afterward, the convolution layer applies a ker-
nel of the window size l to slide over the in-
put sequence {v1,v2, ...,vm} and output the dh-
dimensional hidden embeddings h, where h ∈
Rm×dc and dc is the number of feature maps.

Then, piecewise max-pooling is used to di-
vide the hidden embeddings into three parts
{h1,h2,h3} by the position of head and tail enti-
ties. We perform max-pooling on each part respec-
tively and get final embedding x by concatenating
the pooling results, where x ∈ Rds(ds = dc× 3) .

x = [max(h1);max(h2);max(h3)] (4)

Finally, we formalize the probability of predict-
ing y given sentence x as follows:

o = Mx+ b,

pφ(y|x) =
exp (oy)∑nr
k=1 exp (ok)

(5)

where M ∈ Rnr×ds is the class embeddings of
each relation and b ∈ Rnr is a bias vector.

Semi-supervised VAE
SemiVAE, a semi-supervised learning method
based on variational inference, is introduced and
developed by (Kingma et al., 2014; Xu et al.,
2017). The inference model consists of three
components as follows. An encoder network
pϕ(z|x, y) encodes data x and label y into a la-
tent variable z. The decoder network pψ(x|z, y)
is used to estimate the probability of generating
x given z and categorical label y. Finally, classi-
fier pφ(y|x) predict the corresponding label y of
x. We model both encoder and decoder by mul-
tilayer perceptron (MLP) and employ the PCNN
model as the classifier in SemiVAE.

For the case of labeled data (xl, yl), the evi-
dence lower bound is:

log pψ(xl, yl)≥Epϕ(z|xl,yl)[log pψ(x
′
l|yl, z)]

+log pψ(yl)−DKL(pϕ(z|xl, yl)||p(z))
=−L(xl, yl)

(6)

where first term represent the expectation of the
conditional log-likelihood on latent variable z and
the last term is Kullabck-Leibler divergence be-
tween the prior distribution p(z) and the latent
posterior pφ(z|xl, yl).

For the case of unlabeled data xu, the unob-
served label yu is obtained from the classifier in
the inference model. The variational lower bound
is:

log pψ(xu)≥
∑
y

pφ(yu|xu)(−L(xu, yu))+H(pφ(yu|xu))

= −U(xu)
(7)

whereH denotes the entropy of pφ(yu|xu).
Since the classifier pφ(y|x) is unable to learn

directly from labeled data, a classification loss is
introduced as:

C = E(x,y)∈Dl
[− log pφ(y|x)] (8)

To maximize the evidence lower bound of both
labeled data and unlabeled data and minimize the
classification loss, the objective is defined as:

J =
∑

(x,y)∈Dl

L(x, y) +
∑
x∈Du

U(x) + βC (9)

where Dl and Du are labeled and unlabeled data
respectively, β is a factor used to scale the classi-
fication loss of labeled data.
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Algorithm 1 Reinforcement Learning Algorithm
for Instance Discriminator.
Input: Origin dataset DPOS = {(xi, yi)}ni=1.

( To be clear, we demonstrate the training pro-
cedure of PosAgent. NegAgent is trained in
the same way. )

Output: Labeled data Dl , unlabeled data Du.
1: Initialize parameters of policy network as θ.
2: for step t = 1→ T do
3: Partition DPOS into minibatches of size bs
4: for minibatch B ⊂ DPOS do
5: B = {(xj , yj)}bsj=1

6: Sample actions for each sentence in B:
aj ∼ π(aj |sj ; θ)

7: if aj == 0 then
8: Add xj to Du
9: else

10: Add (xj , yj) to Dl
11: end if
12: Calculate reward r by Eq.(2)
13: Update θ by Eq.(3)
14: end for
15: end for

Algorithm 2 Semi-supervised Learning Algo-
rithm for Relation Classifier.
Input: Labeled data Dl, unlabeled data Du.
1: Initialize parameters of relation classifier as φ.
2: for epoch i = 1→ N do
3: Sample m data pair (xl, yl) from Dl
4: Sample m data xu from Du and predict

their corresponding unobserved label yu via
pφ(y|x)

5: Update φ by Eq.(9)
6: end for

After our reinforcement learning process, we
obtain an instance discriminator which possesses
the capability of recognizing incorrectly labeled
instances from the noisy dataset. Additionally, the
entire DS dataset D is split into labeled data Dl
and unlabeled data Du. Therefore, we utilize the
above data to train SemiVAE model and obtain
a robust relation classifier which explicitly learns
from correctly labeled data and correct incorrectly
labeled data implicitly. The training procedure for
relation classifier is summarized in Algorithm 2.

4 Experiment

4.1 Datasets and Evaluation

We evaluate our model on a widely used dataset
that is generated by aligning entity pairs from

Batch size bs 160
Word Dimension dw 50
Position Dimension dp 5×2
Convolution Filter Dimension dc 230
Convolution Window Size l 3
Latent Variable Dimension dz 100
Dropout p 0.5
Regulator λ, β 100, 2

Table 2: Hyperparameter settings

Freebase with New York Times corpus(NYT)2 and
developed by (Riedel et al., 2010). Entity men-
tions are recognized by the Stanford named entity
recognizer (Finkel et al., 2005). The relation facts
in Freebase are divided into two parts for train-
ing and testing respectively. The sentences from
the corpus of the years 2005-2006 are used as the
training instances, and sentences from 2007 are
used as the testing instances. There are 52 posi-
tive relations and a special relation NA.

Following previous works, we evaluate our
model on the held-out evaluation, which compares
relation facts extracted from the test corpus with
those in Freebase. We adopt aggregated preci-
sion/recall curves and precision@N (P@N) to il-
lustrate the performance of our model.

4.2 Parameter Settings

We adopt the Adam (Kingma and Ba, 2014) opti-
mizer to optimize our instance discriminator and
relation classifier with learning rate 0.0001 and
0.001 respectively. We also apply dropout to pre-
vent overfitting. More detailed hyperparameter
settings are presented in Table 2.

4.3 Overall Evaluations Results

We adopt the following baselines with which we
compare our model:

• Mintz (Mintz et al., 2009) is the original dis-
tantly supervised model. MultiR (Hoffmann
et al., 2011) and MIML(Surdeanu et al.,
2012) handle overlapping relation problem
with graphical model in multi-instance and
multi-instance multi-label framework. All
above models are based on handcrafted fea-
ture.

• PCNN+ONE (Zeng et al., 2015) and
PCNN+ATT (Lin et al., 2016) are both ro-
bust models to solve noisy labeling problem

2http://iesl.cs.umass.edu/riedel/ecml/
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Figure 3: Precision-recall curves of our model and
baselines.

P@N 100 200 300 Mean
PCNN+ONE 72.3 69.7 64.1 68.7
PCNN+ATT 76.2 73.1 67.4 72.2
PCNN+ONE+SL 84.0 81.0 74.0 79.7
PCNN+ATT+SL 87.0 84.5 77.0 82.8
PCNN+HATT 88.0 79.5 75.3 80.9
RCEND 95.0 87.5 84.4 88.9

Table 3: Top-N precision (P@N) of our model and
baselines

based on the at-least-one assumption and se-
lective attention. PCNN+HATT (Han et al.,
2018b) is a attention-based method which
employs hierarchical attention to exploit cor-
relations among relations.

• PCNN+ONE+SL and PCNN+ATT+SL(Liu
et al., 2017) use a soft-label method to allevi-
ate the negative impact of the noisy labeling
problem.

We compare our model with aforementioned
baselines and the results are shown in Figure 3.
From the overall result we can see that: (1) All
feature-based models preform poorly as their fea-
tures are derived from NLP tools, which will gen-
erate errors that propagate through in model. (2)
PCNN+ONE and PCNN+ATT boost the perfor-
mance because they reduce noise in the bag of
entity pair by selecting the most confident sen-
tence or de-emphasize the incorrectly labeled sen-
tences with an attention mechanism. (3) When
PCNN+ONE and PCNN+ATT use soft labels,
they achieve an improvement. This indicates cor-
recting the noisy label is helpful to relation classi-
fication in MIL scheme. (4) PCNN+HATT further
enhances the performance as it incorporates hier-
archical information of relations to improve the
attention mechanism. (5) Our method RCEND
achieves the best precision over the entire recall
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Figure 4: Precision-recall curves of our model with dif-
ferent settings.

P@N 100 200 300 Mean
RCEND 95.0 87.5 84.4 88.9
RCEND w/o Semi 90.0 84.6 79.1 84.6
RCEND(P) 87.1 82.1 80.1 83.3
RCEND(N) 89.1 85.1 81.1 85.1

Table 4: Top-N precision (P@N) of our model with
different settings.

range compared with all baselines. The perfor-
mance achieves further improvement when we re-
gard the incorrectly labeled sentences as unlabeled
data and adopt a semi-supervised learning method
to train our model. It shows that exploiting noisy
data with our method is beneficial to promote dis-
tant supervision relation classification.

We also report the result of Precisions@N (100,
200, 300) in Table 3. We can see that our method
outperforms the baselines on the precision values
of top N triples extracted.

4.4 Impact of Unlabeled Data

To further verify the impact of the unlabeled data,
we conduct experiments with both utilization and
non-utilization of unlabeled data. The results are
presented in Figure 4. Note that, the method
RCEND w/o Semi is similar to the method pro-
posed by (Feng et al., 2018), which only removes
the incorrectly labeled sentences but does not fully
utilize them. We can see that it achieves higher
precision over the entire level of recall compared
to PCNN+HATT, the best noise-tolerate method
in MIL scheme, which shows that removing noise
is better than dealing with them with soft atten-
tion weights. However, it is still unable to sur-
pass our method. In Table 4, our method also
shows notable improvement over RCEND w/o
Semi. This demonstrates that fully utilizing noisy
data is more advantageous than reducing them.
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Type Sentence Predict DS
C1: [Oliver O’Grady] is now a silver-haired , twinkly-eyed resident of [Ireland] ,
where Ms. Berg often films him in parks ...

Nationality NA

FN C2: ... said [John Allison] , editor of [Opera] magazine , based in London. EmployedBy NA
C3: [Jean-Pierre Bacri] is a famous writer , who is too self-centered to care about
his lonely , overweight , 20-year-old daughter , [Lolita Marilou Berry]...

ChildrenOf NA

C4: they wanted to interview [Bill Cosby] after they met with a former Temple
University employee who has accused him of groping her in his home in suburban
[Philadelphia]

LivedIn BornIn

FP C5: “Without the fog , [London] wouldn’t be a beautiful city.”the French painter
Claude Monet wrote to his wife , Alice , during one of his long visits to [England]
from France.

NA Capital

C6: MTV Goes to Africa MTV opened its first local music channel in Africa this
week , a step touted by the singer [Lebo Mathosa] , above , at an MTV event in
[Johannesburg].

NA DieIn

Table 5: Examples for case study. The first three sentences are examples of false negative case and the final three
are examples of false positive case.

This can be partially explained due to the label
rectification of the incorrectly labeled data dur-
ing semi-supervised learning with correctly la-
beled data which improves the generalization per-
formance.

4.5 Impact of False Positives and False
Negatives

The goal of this experiment is to inspect whether
the relation classifier is enhanced more through the
utilization of false negatives or through the uti-
lization of false positives. As depicted in Figure
5, RCEND(P) only recognizes the false positive
sentences in DPOS by PosAgent and regards them
as unlabeled data. Likewise, RCEND(N) only
discovers and utilizes false negative sentences.
RCEND(P) and RCEND(N) behave similarly and
achieve further improvement when utilizing both
false-positive and false-negative sentences, which
implies that both of them are important and pro-
mote the ability of our relation classifier. And the
results in Table 4 also show utilizing false negative
data performs slightly better than false positives
since false negative data might be predicted as pos-
itive relation and increase samples of the target re-
lation to learn a more accurate decision boundary.

4.6 Case Study

We sample some examples of incorrectly labeled
data which are regarded as unlabeled data during
training. In Table 5, it can be seen that our dis-
criminator recognizes both false positive and false
negative instances. For example, though the fact
(John Allison, EmployedBy, Opera) is absent in
the KB due to the incompleteness of the KB, C2
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Figure 5: Precision-recall curves of our model with dif-
ferent settings.

expresses EmployedBy relation and provides evi-
dence of target relation. Additionally, C4 is mis-
labeled as BornIn due to the relational fact (Bill
Cosby, BornIn, Philadelphia), even though it men-
tions LivedIn relation. Further more, they are all
predicted correctly by our relation classifier in the
end which shows that our model indeed captures
the valid information of noisy data and exploits
them to enhance its ability.

5 Conclusion

In this paper, we proposed RCEND to fully exploit
valid information of the noisy data in distant su-
pervision relation classification. The instance dis-
criminator is trained with reinforcement learning,
which aims to recognize the instances mislabeled
by distant supervision. We treat the correctly la-
beled instances as labeled data and incorrectly la-
beled ones as unlabeled data. Afterward, we adopt
a semi-supervised learning method to learn a ro-
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bust relation classifier to utilize the data. In this
way, not only can our model reduce the side effect
of noisy labels, but also adequately take advantage
of valid information contained in noisy data. Ex-
periments demonstrate that our model outperforms
state-of-the-art baselines.
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