@inproceedings{lockard-etal-2019-openceres,
title = "{O}pen{C}eres: {W}hen Open Information Extraction Meets the Semi-Structured Web",
author = "Lockard, Colin and
Shiralkar, Prashant and
Dong, Xin Luna",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/N19-1309/",
doi = "10.18653/v1/N19-1309",
pages = "3047--3056",
abstract = "Open Information Extraction (OpenIE), the problem of harvesting triples from natural language text whose predicate relations are not aligned to any pre-defined ontology, has been a popular subject of research for the last decade. However, this research has largely ignored the vast quantity of facts available in semi-structured webpages. In this paper, we define the problem of OpenIE from semi-structured websites to extract such facts, and present an approach for solving it. We also introduce a labeled evaluation dataset to motivate research in this area. Given a semi-structured website and a set of seed facts for some relations existing on its pages, we employ a semi-supervised label propagation technique to automatically create training data for the relations present on the site. We then use this training data to learn a classifier for relation extraction. Experimental results of this method on our new benchmark dataset obtained a precision of over 70{\%}. A larger scale extraction experiment on 31 websites in the movie vertical resulted in the extraction of over 2 million triples."
}
Markdown (Informal)
[OpenCeres: When Open Information Extraction Meets the Semi-Structured Web](https://preview.aclanthology.org/jlcl-multiple-ingestion/N19-1309/) (Lockard et al., NAACL 2019)
ACL
- Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. 2019. OpenCeres: When Open Information Extraction Meets the Semi-Structured Web. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3047–3056, Minneapolis, Minnesota. Association for Computational Linguistics.