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Abstract

Visual Dialog is a multi-modal task that re-

quires a model to participate in a multi-turn

human dialog grounded on an image, and gen-

erate correct, human-like responses. In this

paper, we propose a novel Adversarial Multi-

modal Feature Encoding (AMFE) framework

for effective and robust auxiliary training of

visual dialog systems. AMFE can force the

language-encoding part of a model to generate

hidden states in a distribution closely related to

the distribution of real-world images, resulting

in language features containing general knowl-

edge from both modalities by nature, which

can help generate both more correct and more

general responses with reasonably low time

cost. Experimental results show that AMFE

can steadily bring performance gains to dif-

ferent models on different scales of data. Our

method outperforms both the supervised learn-

ing baselines and other fine-tuning methods,

achieving state-of-the-art results on most met-

rics of VisDial v0.5/v0.9 generative tasks.

1 Introduction

In recent years, there has been a rising atten-

tion in Artificial Intelligence on how to train a

model to understand visual inputs from the physi-

cal world, and communicate them with human lan-

guage. Typical problems include Visual Question

Answering (VQA) (Antol et al., 2015) and Image

Captioning (Xu et al., 2015). These tasks require

a model to read an image and generate a proper

response, such as answering a question grounded

on the image, or generating a sentence to describe

the image. As a more difficult extension, Visual

Dialog (De Vries et al., 2017; Das et al., 2017a;

Mostafazadeh et al., 2017) is a cluster of tasks fea-

turing two agents conducting a multi-turn dialog

grounded on an image. A model is usually trained
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to predict every single response of one agent in

the two, based on the image and dialog history.

There are also some different task settings such as

directly training two agents to complete a goal-

driven cooperative task such as Guessing Game

(Das et al., 2017b).

Tasks involving both the physical world (vi-

sual images) and abstract world (languages) share

a core issue: how to establish connections be-

tween these two worlds, and is there a frame-

work to leverage these connections for learning?

Temporarily, the majority of answers are learning

end-to-end models with multi-modal feature fu-

sion (Kim et al., 2016; Fukui et al., 2016; Yu et al.,

2018). These methods usually merge the visual

and language features into rich representations

containing information from both sides. Some

cross-modal attention methods (Lu et al., 2016;

Nam et al., 2017) formulate the visual-language

connections explicitly by parameterizing the atten-

tion weights to learn whether there is high corre-

lation within certain pairs of language and visual

feature vectors. However, in all these works, the

merged representations or attention weights are

only learned from pairwise (one image, one sen-

tence) co-occurrence, and serve for the optimiza-

tion of a loss function only related to the final

ground-truth response. In fact, the features from

both sides are not truly connected in an aspect of

general distributions, but only merged into a new

vector for each training/testing sample. We sup-

pose that this is not good enough for a model to

distill knowledge from both of the two worlds be-

cause the language/visual vectors do not contain

knowledge from the other modality in the bottom

level before they are merged.

In this paper, we discuss another possibility. We

want to establish an unsupervised framework of

multi-modal encoding, which directly generates

an “image feature distribution” from a language



2589

distribution, or vice versa. For example, when

a neural network based model receives a natural

language sentence x as input, it encodes x into a

sequence of high-dimensional continuous vectors.

All these language vectors can be projected into

another latent space to have a new distribution pl.
We train the language encoder to let the new distri-

bution pl be the same as, or very close to, the dis-

tribution pv of all image features observed and en-

coded in the task data. Since we can partly recover

a real-world image distribution from the language

vectors achieved in this way, these language vec-

tors intrinsically contain both language semantics

and real-world image properties. This is a higher-

level connection between the two worlds.

In order to train a model to generate samples

subject to a certain distribution pv from an orig-

inal distribution pl, Generative Adversarial Net-

works (GANs) have been proved very effective

(Goodfellow et al., 2014; Arjovsky et al., 2017;

Miyato et al., 2018). Lample et al. (2018) used

adversarial training on the vectors produced by

sentence encoders for different languages in unsu-

pervised machine translation. However, different

languages in their task are in single modality and

share encoder structures, making the same method

not directly usable and extendable for multi-modal

tasks with largely different prior distributions and

complex encoder structures with attention. In

our work, we propose Adversarial Multi-modal

Feature Encoding (AMFE), a novel GAN-based

training schedule with an attention-based sample-

selecting method, which can successfully force the

multi-modal vectors to have closely related dis-

tributions, benefitting the performances of various

visual dialog systems.

We test our method on the VisDial (Das et al.,

2017a) benchmark (one example is shown in Ta-

ble 1). A normal sample of VisDial contains

an image and 10 turns of question-answering di-

alog from two people grounded on the image.

A series of models have been proposed to solve

the task, including memory and attention based

models (Das et al., 2017a), reinforcement learn-

ing (Das et al., 2017b), knowledge transfer tech-

niques (Lu et al., 2017) and GAN (Wu et al.,

2017). Wu et al. (2017) designed a complex at-

tention model and applied GAN in a traditional

way to force the generated tokens to mimic real-

world language (language vs. language), mak-

ing their model only trainable through sequence

Caption: A dog with goggles is in a
motorcycle side car
A(1): can you tell what kind of dog this is
B(1): he looks like beautiful pit bull mix

A(2):
can you tell if motorcycle is moving
or still

B(2): it’s parked
A(3): is dog’s tongue lolling out
B(3): not really

Table 1: An example from VisDial dataset.

sampling and reinforcement learning. Our work,

on the other hand, applies a directly differentiable

GAN on continuous vectors as a multi-modal fea-

ture encoding method (language vs. image).

Our contributions include:

• We propose AMFE: a novel Adversarial

Multi-modal Feature Encoding framework to

benefit visual dialog models. The core idea is

to force features from different modalities to

have closely related distributions.

• We develop efficient AMFE implementa-

tions, including a novel attention-based sam-

ple selecting method, for various commonly-

used visual dialog models.

• Experimental results show that AMFE brings

robust performance gains to different visual

dialog models. We achieve state-of-the-arts

on most metrics of VisDial v0.5/v0.9 genera-

tive tasks.

2 Related Work

2.1 Visual Dialog

Visual Dialog is a cluster of tasks sharing two

properties: multi-turn and cross-modality. VisDial

(Das et al., 2017a) is a widely-used benchmark

with question-answering style dialogs grounded

on real-world images. As a special case of dia-

log generation tasks, VisDial share some of the

research concerns with single-modal natural lan-

guage dialog generation (Dhingra et al., 2016;

Serban et al., 2017; Sordoni et al., 2015; Serban

et al., 2016; Liu et al., 2016). Natural language

dialogs are usually discrete, state-dependent and

style-free, thus some reinforcement learning (RL)

methods have been proposed (Li et al., 2016). Das

et al. (2017b) built an cooperative image guess-

ing task on VisDial: they train both the questioner

and the answerer, making them complete a same

goal to help the questioner produce a guessing or

“imagination” of the unseen image described by
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the answerer. The distance between the guess-

ing and the target image is used as reward for re-

inforcement learning. In some extreme settings,

such a task definition can even lead to emergence

of a new language between robots (Kottur et al.,

2017). After per-training, using their reinforce-

ment learning method as an auxiliary loss can also

bring performance gain in standard VisDial met-

rics such as mean rank.

However, generating a reward based on just one

target image for a training sample may lead to a

kind of overfitting. Language is highly abstract:

one dialog can correctly describe a lot of different

scenes in real world, so why should we force a dia-

log to fit one single example among them? There-

fore, generating a reward from adversarial training

is a more efficient way because it goes beyond in-

dividual samples into distributions. There are two

previous works (Wu et al., 2017; Lu et al., 2017)

that use GAN-like methods to boost the perfor-

mances of pre-trained VisDial models. (Wu et al.,

2017) proposes to use adversarial reinforcement

learning. A discriminator is trained to distinguish

the tokens of real/generated answers, and the an-

swerer (generator) is trained via RL using a reward

related to the score given by discriminator. This

method is very effective, but using both RL Monte

Carlo and GAN brings high computational cost.

Also, a lot of tricks are involved for a good train-

ing. Our method, on the other hand, does not need

Monte-Carlo sampling to compute immediate re-

ward while generating each of the N words in a

sentence (O(N) time cost). (Lu et al., 2017) uses

a knowledge-transferring method between gener-

ative and discriminative task settings. However,

this requires the models on both settings to be pre-

trained well enough. Our work is also an adver-

sarial learning based method, but it is more robust,

time-efficient and effective.

2.2 GAN for Generative Tasks

GAN (Goodfellow et al., 2014; Arjovsky et al.,

2017; Miyato et al., 2018) has raised much atten-

tion because of its ability to directly generate sam-

ples subject to a target distribution. Many training

techniques have been proposed to solve the unsta-

ble training problems of GAN (Gulrajani et al.,

2017; Kurach et al., 2018). Wasserstein GAN

(WGAN) (Arjovsky et al., 2017) is a success-

ful method using critic learning loss and weight

clipping operations. We borrow some ideas from

WGAN in the adversarial training of our model.

GAN well suits the image generation tasks be-

cause image signals are continuous and thus dif-

ferentiable, enabling the gradient directly flowing

back from the discriminator to generator. In lan-

guage generation tasks, however, how to deal with

the discrete sequence of symbols generated by the

generator has long been a problem. A widely-used

solution is applying RL with rewards generated

by the discriminator (Wang et al., 2018; Li et al.,

2017). As mentioned above, this is time-costing

because RL needs to explore a large action space

by sampling multiple action sequence. Besides,

how the immediate reward is computed after gen-

erating each word is also a difficult problem.

Another solution is to avoid the discrete prob-

lem by applying adversarial training on the hidden

states of the generator. This requires that there is

a known distribution p for the hidden states we

want the model to generate. A successful case

is reported by (Lample et al., 2018): using ad-

versarial training to restrict the hidden states of

source language and target language (both from

vanilla LSTMs) into a same latent space can boost

the performance of unsupervised machine transla-

tion. Our AMFE framework is also an adversar-

ial training on the language hidden states, but we

are the first to use this kind of methods to estab-

lish connections between different modalities. Our

training procedure is also largely different from

(Lample et al., 2018) with our modified WGAN-

like algorithm and a novel attention-based sam-

ple selection method: they are critical for training

convergency on multi-modal tasks, with complex

attention-based model structures.

3 Model

We first define the task and our framework for-

mally, and then describe how it is implemented

and trained on different visual dialog models.

3.1 VisDial Task Definition

In the VisDial task, each sample contains an im-

age I , a caption sentence C and a dialog D with

T = 10 turns in total. In each turn t, there is a

question qt about the image, and a ground truth an-

swer at. The model needs to read the dialog his-

tory H = {C, (q1, a1), ..., (qt−1, at−1)} and im-

age I , to generate an answer as a response to qt.
We rewrite Ht = (qt, at) and H0 = C. Formally,

the dialog agent (named A-Bot) outputs an answer
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Figure 1: AMFE framework with a generative encoder-

decoder model and multi-modal adversarial training.

prediction ât:

ât = ABot(qt, I,H0∼t−1). (1)

3.2 AMFE Framework
The goal of our Adversarial Multi-modal Feature

Encoding (AMFE) is to restrict the distribution of

feature representations from one modality m1 to

be closely related to that from another modality

m2. We take m1 = l(anguange) and m2 =
v(isual). Specifically, A-Bot encodes language

inputs into vectors hl, and visual inputs into hv,

respectively. We want hl and hv to have indistin-

guishable distributions:

hl, hv ∼ p(h). (2)

To achieve this goal, we use a discriminative

model (named D-Bot) to classify whether a vec-

tor encoded by A-Bot comes from modality l or

v. D-Bot is trained with real hl and hv samples,

while A-Bot is trained to generate language vec-

tors hl that can confuse D-Bot to classify them as

label v. Figure 1 shows our framework.

3.3 A-Bot
We implement our AMFE method on two

commonly-used visual dialog models, using them

as A-Bot. The two A-Bot models are named Hi-

erarchical Recurrent Encoder (HRE) and History-

Conditioned Image Attentive Encoder (HCIAE),

respectively. A-Bot learns to predict the right an-

swer in each turn. In this process, it also encodes

language and visual inputs into hl and hv samples,

which we use for AMFE training.

3.3.1 Hierarchical Recurrent Encoder (HRE)
HRE is a hierarchical LSTM (Hochreiter and

Schmidhuber, 1997) model used in (Das et al.,

2017a,b). In HRE, a pre-trained Convolutional

Neural Network (CNN) encodes the image into

a single feature vector, which is further mapped

into a visual representation I by a trainable Multi-

Layer Perceptron (MLP). In each turn t, the ques-

tion is encoded by a word-level LSTM into a ques-

tion vector qt, and the dialog history in the previ-

ous step Ht−1 is encoded by another LSTM into

vector ft−1. There is a state-tracker LSTM st on

the top level: LSTM st is forwarded one step each

turn, integrating all the encoded vectors mentioned

above. It reads the encoded history ft−1, image

vector I , the question qt and the previous hidden

state st−1 from itself, and produces the new hid-

den state representation st:

st = LSTM st([qt, I, ft−1], st−1), (3)

where [·] stands for concatenation.

The answer decoder in HRE is an LSTM that

takes st as initial state, and predicts one word at

a time by a softmax probability over the vocabu-

lary, to generate the whole answer sentence. Fig-

ure 2(a) shows the encoder structure of HRE. We

use image vectors I as hv samples (dark green) in

AMFE, and both the q and f vectors as hl samples

(pink).

3.3.2 History-Conditioned Image Attentive
Encoder (HCIAE)

HCIAE model (Lu et al., 2017) contains an tex-

tual attention on all history vectors based on the

question, and a visual attention based on both the

history and the question. In detail, it uses a pre-

trained CNN to encode the image into a set of vi-

sual feature vectors V . Each vector in V is fur-

ther passed through a trainable MLP, resulting in

a visual feature set {i0, ...iK−1}. In each turn t,
the question is encoded by an LSTM into vector

qt; the dialog history {H0, H1, ..., Ht−1} is en-

coded by another word-level LSTM into vectors

{f0, ..., ft−1}. The attention weight between qt
and each history vector fj is computed as:

zjt = ωT
a tanh(Wffj +Wqqt),

αj
t = softmax(zjt ),

(4)

where ωT
a ∈ R

d×1, Wf ∈ R
d×d, Wq ∈ R

d×d

are trainable parameters; d is the length of both
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Figure 2: A-Bot models we use for AMFE training. The intermediate vectors used as hv and hl candidates in

AMFE are colored dark green and pink, respectively.

question and history features. A memory vector

m̂t is computed by:

m̂t =
t−1∑

j=0

αj
tfj . (5)

The memory vector is further used as a

key to compute a similar visual attention over

{i0, ...ik−1} to achieve a final image vector v̂t.
The final output of the encoder is computed by:

et = tanh(We[qt, m̂t, v̂t]), (6)

where We ∈ R
d×3d is trainable parameters; [·]

stands for concatenation.

The answer decoder is an LSTM like that of

HRE, taking et as input. Figure 2(b) shows the

structure of HCIAE encoder. HCIAE produces

more visual vectors for each image than HRE. We

take all the q and f vectors as hl candidates of

AMFE, and the spatial visual features {i0, ...ik−1}
as candidates for hv.

3.4 D-Bot
Despite the multiple choices of A-Bot, our D-Bot

is always an MLP with two hidden layers of size

512 and ReLU activation. It is used to compute a

loss function that forces all the hl samples to be

subject to the same distribution p(h) as the visual

vectors hv. D-Bot takes a vector h in size d as

its input, and predicts the probability of h com-

ing from real image distribution and the visual en-

coder:

p̂v(modality = v|h) = DBot(h). (7)

D-Bot is the discriminator from a GAN view-

point. A-Bot must learn to confuse D-Bot in or-

der to generate language features indistinguishable

from image features.

3.5 Training
3.5.1 Loss Functions
To train our model, we use standard supervised

training with cross-entropy loss function for pre-

training, and add in adversarial training to produce

an auxiliary loss to improve feature encoding.

The supervised learning loss is:

Lsu =
1

N

N∑

n=1

− log(p(wt
n|wt

<n)), (8)

where N is the full length of the decoded sentence.

For adversarial learning, A-Bot is trained to

minimize the probability that D-Bot predicts the

generated features to be fake samples. Following

WGAN (Arjovsky et al., 2017), we do not use log-

arithm but directly optimize the likelihood itself:

Ladv = −Ehl
[DBot(hl)]. (9)

We sum Ladv as an auxiliary loss with a tunable

weight λ, making A-Bot minimize:

LG = Lsu + λLadv. (10)

On the other hand, D-Bot maximizes the fol-

lowing objective to distinguish real-world image

vectors hv from the language vectors hl:

LD = Ehv [DBot(hv)]− Ehl
[DBot(hl)]. (11)

We switch between A-Bot and D-Bot updates

for each batch of dialog samples.
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3.5.2 Attention-based Sample Selection
We have specified where the hl and hv samples

come from while using different A-Bots in Sec-

tion 3.3. Typically, for each batch of samples with

batch-size M , in each turn t, there are M question

vectors and M×t history vectors as hl candidates.

For HRE encoder, there are M image vectors as

hv candidates, while the number is M ×K for the

HCIAE encoder; K is the number of “pixels” in

the final CNN feature-map. Thus, it is impossible

to use all the generated samples in AMFE. For a

successful training, the selected samples must be

efficient, informative and balanced.

While using HCIAE, in order to compute Ladv,

we use M question vectors and M ∗ w history

vectors as hl samples. The history vectors are se-

lected using textual attention weights αj
t produced

by the temporary model: for each dialog, we pick

the top w history vectors with the highest atten-

tion weights. We call this Attention-based Sample

Selection (AbS). While computing LD to train D-

Bot, we use the same technique on the image, us-

ing the top-attended M ∗w image vectors, together

with another M image vectors randomly sampled

from the dataset as positive samples hv. The M
question vectors and M ∗ w history vectors are

used as a pool of negative samples hl. In our ex-

periments, w = 1, 2 works well.

While using HRE, since the model always “at-

tends” on ft−1 by default (Eq. 3), we directly se-

lect qt and ft−1 as hl samples. We use the M
image vectors I in this batch, together with an-

other M image vectors randomly sampled from

the dataset as the pool of hv. The full training pro-

cedure is specified in Algorithm 1.

4 Experiments

4.1 The VisDial Dataset
VisDial is a visual dialog dataset based on MS

COCO (Lin et al., 2014) images. There are 10

turns of human-posed question-answering dialogs

on each image, with the questioner kept not seeing

the image during the data collection process. For

generative models, a model must give the proba-

bility of generating each candidate answer with-

out seeing other candidates, and the rank of the

ground-truth answer in the 100 candidates is used

to compute different evaluation metrics; for dis-

criminative models, the model can read and en-

code all the candidate answers and directly assign

scores on them. According to the nature of GANs

Algorithm 1 AMFE Training Procedure.

Require: α the learning rate; c the clipping parameter; M
the batch size; w0 the initial D-Bot parameters; θ0 the ini-
tial A-Bot parameters; dialog samples.
Pre-train A-Bot with Lsu (Eq. 8).
while θ has not converged do

Sample M turns of (q,H, I, a) dialog samples.
Forward A-Bot and select hl by attention weights.

Compute Ladv = −
M∑

k=1

DBot(hk
l )).

Compute Lsu with ground-truth answers using (Eq. 8).

Update θ to minimize LG = Lsu + λLadv .
Switch to D-Bot training.
Select image vectors hv by attention weights.
Re-generate hl samples using the updated A-Bot.

Compute LD =
M∑

k=1

DBot(hk
v)−

M∑

k=1

DBot(hk
l ).

Update w to maximize LD .
Clip D-Bot weight w into range (−c, c).

end while

and similarities to real-world application scenar-

ios, we use the generative setting for our model: it

is equipped with a sequential decoder instead of a

scoring module.

For fair and sufficient comparison, we evaluate

our model on both VisDial v0.5 and VisDial v0.9.

VisDial v0.5 has 68k COCO images, for a total

of 680k QA-pairs. Following (Das et al., 2017a)

and (Das et al., 2017b), we use 50,729 images for

training, 7,663 for validation and 9,628 for testing.

Visdial v0.9 has 123,287 images. There are dif-

ferent splitting of train/valid/test in previous work.

We follow (Lu et al., 2017) to use 82k for training,

1k for validation and 40k for testing. 1

We compare our results to several existing mod-

els on the VisDial dataset, including:

• Answer Prior (Das et al., 2017a): directly en-

coding answer candidates with an LSTM and

scoring by a linear model that captures the

frequency of answers in the training set.

• NN-QI (Das et al., 2017a): a k-Nearest

Neighborhood method considering only the

question and the image. Unlike generative

methods, both Answer Prior and NN-QI need

to know the answer candidates.

• LF-QIH-G (Das et al., 2017a): a Late Fusion

encoder that encodes the question, image and

history separately. The encoded features are

concatenated and linearly transformed to a

1VisDial has released v1.0 recently, and claims that mod-
els trained on v0.9 should also use the new v1.0 test set. Due
to lack of baselines in the generative task, we follow the orig-
inal widely-used settings of v0.5 and v0.9.
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joint representation. The answer is produced

by a generative decoder.

• HRE (Das et al., 2017b): the HRE model in-

troduced in Section 3.3.

• HREA-QIH-G (Das et al., 2017a): a modified

HRE A-Bot with attention to dialog history.

• MN-QIH-G (Das et al., 2017a): a Memory

Network encoder that stores each piece of di-

alog history embeddings in an explicit mem-

ory. These embeddings can be attended and

fused while generating the answer.

• HCIAE (Lu et al., 2017): the HCIAE model

introduced in Section 3.3.

• CoAtt (Wu et al., 2017): this is a previ-

ous state-of-the-art model with a more com-

plex co-attention encoder; the decoder is en-

hanced by adversarial reinforcement learning

for better answer generation.

4.2 AMFE for HRE

We first test the efficiency of AMFE on the simpler

A-Bot model: HRE. We use VisDial v0.5 as our

benchmark for fair comparison with other HRE-

based models and auxiliary training methods.

4.2.1 Implementation Details
For Visdial v0.5 dataset, we follow the preprocess-

ing procedure and hyper-parameters described in

(Das et al., 2017b). We pass each image through

a pre-trained VGG-16 (Simonyan and Zisserman,

2015) CNN, and pick the single f7 vector as in-

put image feature. We limit the maximum lengths

of captions, questions and answers to be 40, 20

and 20, respectively; we remove words appearing

less than 5 times in the training set, and replace

them by a UNK token. We use vector size 300 for

word embedding and 512 for all language and vi-

sual feature vectors. All LSTMs have two layers.

We pre-train A-Bot with Lsu for 20 epochs be-

fore Ladv is added in. The batch-size is set to be

32. After each update of A-Bot, we perform 5 D-

Bot updates. We use the 32 encoded image vectors

in the batch, together with 32 image vectors ran-

domly sampled from the dataset, to form 64 posi-

tive samples; for negative samples, we use the 32

question vectors and 32 history vectors (t−1) from

the updated A-Bot. We use Adam (Kingma and

Ba, 2014) for A-Bot and RMSprop (Tieleman and

Hinton, 2012) algorithm for D-Bot to perform gra-

dient descending. The learning rate is set to 1e-3

Model MRR R@1 R@5 R@10 Mean

Answer Prior 0.311 19.85 39.14 44.28 31.56
NN-QI 0.385 29.71 46.57 49.86 30.90
LF-QIH-G 0.430 33.27 51.96 58.09 23.04
HREA-QIH-G 0.442 34.47 53.43 59.73 21.83
MN-QIH-G 0.443 34.62 53.74 60.18 21.69
HRE-MLE 0.436 33.02 53.41 60.09 21.83

Frozen-Q-Multi 0.437 33.22 53.67 60.48 21.13
HRE-AMFE 0.445 34.62 53.95 60.76 20.98

Table 2: VisDial v0.5 evaluation results. The five met-

rics are mean reciprocal rank, recall of the ground-truth

answer in the top-1/5/10 ranked candidates (higher is

better), and the mean rank of the ground-truth answer

(lower is better).

for pre-training, further decayed to 5e-5; after ad-

versarial training starts, the learning rate is fixed

to 5e-5 for both A- and D-Bot. In the weight clip-

ping step of WGAN (Arjovsky et al., 2017), we

use a clipping parameter c = 0.01.

4.2.2 VisDial v0.5 Evaluation Results

On VisDial v0.5, two previous top models are a

Memory Network based model (MN-QIH-G) by

(Das et al., 2017a) and a multi-loss training on

HRE encoder (Frozen-Q-Multi) based on goal-

driven reinforcement learning (Das et al., 2017b).

We start from the same HRE hyper-parameters and

checkpoint as (Das et al., 2017b), but continue

with our AMFE instead of reinforcement learning.

Table 2 shows the results on all the five evalua-

tion metrics on VisDial v0.5. Results in the first 4

rows are copied from (Das et al., 2017a). AMFE

achieves better performances than the supervised

training of A-Bot model (HRE-MLE), especially

significant on R@5, R@10 and mean rank, in-

dicating that the adversarial feature encoding re-

sults in “generally better” dialogs. It also outper-

forms the another HRE-like model with history

attentions (HREA-QIH-G). While used for multi-

loss training, AMFE is significantly better than

Frozen-Q-Multi, setting a new state-of-the-art on

all metrics. We point out that in Frozen-Q-Multi

(Das et al., 2017b), the goal-driven reinforcement

leaning reward is computed pair-wise (consider-

ing how much can the questioner rebuild the im-

age from the answerer’s words), but the reward

computed with a single image is not good enough

to evaluate the dialog actions. This is because

language is much more abstract than image, and

failure to recover an image does not necessarily

mean that the dialog is actually bad. Our method

could avoid this issue because adversarial training

is based on general distributions.
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4.3 AMFE for HCIAE
In this section, we test the efficiency of AMFE for

the HCIAE model with attention. We use VisDial

v0.9 as our benchmark for fair comparison with

(Lu et al., 2017).

4.3.1 Implementation Details
For Visdial v0.9 dataset, we follow the preprocess-

ing procedure and HCIAE structure described in

(Lu et al., 2017). We pass each image through a

pre-trained VGG-19 CNN, resulting in a 512 ×
7 × 7 feature-map as visual input. To speed up

convergence, we add a Batch Normalization (Ioffe

and Szegedy, 2015) after the MLP that further en-

codes these visual vectors. We limit the maximum

lengths of captions, questions and answers to be

24, 16 and 8, respectively. All LSTMs have only

one layer.

HCIAE can be trained with either supervised

loss (HCIAE-G-MLE) or with multi-loss involv-

ing knowledge-transfer (HCIAE-G-DIS). We test

AMFE in both settings. For HCIAE-G-MLE,

we pre-train HCIAE model with supervised loss

for 20 epochs using learning rate 4e-4, and

switch to AMFE training with learning rate 5e-5.

For HCIAE-G-DIS, we start from the generative

model trained with AMFE, together with a pre-

trained HCIAE discriminative model. We follow

the original knowledge-transfer training schedule,

and add our Ladv to the original mixed loss func-

tion with weight 1. We use batch-size 32 for

AMFE training, although the original paper used

128. Other settings are kept the same. For more

details please see (Lu et al., 2017).

4.3.2 VisDial v0.9 Evaluation Results
Table 3 shows the results on v0.9. All the HCIAE

results are picked from (Lu et al., 2017), and all

CoAtt results are picked from (Wu et al., 2017);

CoAtt-GAN-TF stands for training a CoAtt model

with adversarial reinforcement learning and super-

vised teacher-forcing; HCIAE-AMFE stands for

using AMFE on an HCIAE-G-MLE pre-trained

model; HCIAE-GD-AMFE means using AMFE

as an additional loss to join the HCIAE-G-DIS

multi-loss training.

On VisDial v0.9, we observe that using AMFE

on HCIAE can also boost the performances. Com-

paring HCIAE-G-MLE and HCIAE-AMFE, we

can observe the same advantage over supervised

training as on HRE, indicating that our method

works for different dataset scales and A-Bot struc-

Model MRR R@1 R@5 R@10 Mean

Answer Prior 0.374 23.55 48.52 53.23 26.50
NN-QI 0.427 33.13 50.83 58.69 19.62
LF-QIH-G 0.520 41.83 61.78 67.59 17.07
HREA-QIH-G 0.524 42.28 62.33 68.17 16.79
MN-QIH-G 0.526 42.29 62.85 68.88 17.06
CoAtt-G-MLE 0.541 44.32 63.82 69.75 16.47
CoAtt-GAN-TF 0.558 46.10 65.69 71.74 14.43

HCIAE-G-MLE 0.539 44.06 63.55 69.24 16.01
HCIAE-G-DIS 0.546 44.35 65.28 71.55 14.23
HCIAE-AMFE 0.547 44.40 65.35 71.69 14.42
HCIAE-GD-AMFE 0.554 45.42 66.09 72.30 14.11

Table 3: VisDial v0.9 evaluation results. The five met-

rics are mean reciprocal rank, recall of the ground-truth

answer in the top-1/5/10 ranked candidates, (higher is

better) and the mean rank of the ground-truth answer

(lower is better).

tures; comparing HCIAE-AMFE and HCIAE-G-

DIS, AMFE is a competitive method for auxiliary

training. Combining AMFE and HCIAE-G-DIS

achieves better results than previous state-of-the-

art (Wu et al., 2017) on R@5, R@10 and mean

rank, and comparable on MRR and R@1. Besides,

AMFE trains reasonably faster because we avoid

the O(N) time cost for Monte-Carlo sampling

while computing temporary rewards (Wu et al.,

2017).

We explain the efficiency of AMFE in two as-

pects. Firstly, AMFE is an adversarial training

procedure forcing the language to be encoded into

a distribution closely connected to the images.

With attention-based sample selection, the most

informative samples from both modalities are able

to transfer knowledge. Secondly, like Batch Nor-

malization, AMFE contributes to bring better nu-

merical properties to the intermediate tensors in

a network, especially on their means and vari-

ances, which could potentially benefit model per-

formance.

4.4 Ablation Study

Both the weight of adversarial loss and the

attention-based sample selection are critical to

good performance. Table 4 shows ablation stud-

ies on these factors on HCIAE and VisDial v0.9.

Model MRR R@1 R@5 R@10 Mean

HCIAE-G-MLE 0.539 44.06 63.55 69.24 16.01
AMFE-standard 0.547 44.40 65.35 71.69 14.42

w/o AbS 0.537 44.03 63.52 69.33 15.45
λ = 0.1 0.538 44.10 63.59 69.18 16.07
λ = 10 0.534 44.01 62.83 68.64 16.56

Table 4: VisDial v0.9 ablation results training with

HCIAE-G-MLE and AMFE fine-tuning. AMFE-

standard uses λ = 1 with AbS selection.
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#1 Caption: There are several airplanes parked on the tarmac.
Question Ground Truth HRE-MLE HRE-AMFE
1. are these commercial airplanes yes they are yes yes
2. do they have company names on them 1 says UNK and other looks like it says UNK yes , but i ca n’t read them yes , but i ca n’t read them

3. are all of planes white
they are white 1 has blue and
yellow on it and other 2 have red and blue no they are white no they are all white

4. are there people visible yes there are 4 people visible yes yes
5. can you tell what sex they are looks like they are all men it is male i think they are both male

6. are any of them wearing sunglasses
i think maybe 1 is it ’s hard
to tell they are kind of far away i ca n’t tell i can only see their backs i ca n’t tell , they are far away

7. are they dressed for warm or cold weather
looks like warm weather
they are wearing their safety gear they are wearing jackets and shorts looks warm out

8. are there any trees visible in far background there are lot of trees no trees at all yes there are trees in background
9. can you see any planes taking off or landing no they all appear to be parked no i do n’t no i do n’t
10. are there any pilots visible inside no i do not see any no i do not see any no there are not

#2 Caption: Some trucks move down a city road , while children play nearby.
Question Ground Truth HRE-MLE HRE-AMFE
1. how many children are there i see 2 i can see 3 clearly 3 others are too far away i see 1
2. girls or boys bot boys girls i think they are boys
3. is there fire no emergency not that i can see not that i can see
4. is anyone on fire truck that you can see i can barely she driver no it ’s just him no

5. what are kids playing
they look more like
they are walking then playing i think they are hockey they are n’t shown

6. does it look sunny out not at all yes yes
7. is it black and white picture no it is not no no
8. is it snowing no it is not no it is not no it is not
9. is it raining no , but it may soon no it is not no it is not
10. do you see dark clouds yes i do no no

Table 5: Two examples in VisDial v0.5 dataset for case study.

4.5 Human Evaluation
The above results show that AMFE is especially

strong at more “general” metrics such as R@5 and

mean rank. To confirm that adversarial training

on hidden states can help much to generate re-

sponses that are more natural, we randomly se-

lect 100 dialog samples from both VisDial v0.5

and v0.9 dataset, and ask two human subjects to

vote for the responses generated by two groups of

models: HRE-MLE vs. HRE-AMFE on v0.5, and

HCIAE-G-MLE vs. HCIAE-AMFE on v0.9, both

with beam-size 5. Model names are hidden while

voting. We ask the human subjects to consider two

metrics separately: (1) the fluency of the generated

answer sentences and (2) the correctness of the an-

swers compared to the ground-truths. As shown

in Table 6, AMFE wins all the votes with different

metric and different models, indicating that AMFE

is robust in generating more natural responses.

Models MLE Wins AMFE Wins Tie

HRE-fluency 30 52 18
HCIAE-fluency 34 43 23

HRE-correctness 33 42 25
HCIAE-correctness 29 38 33

Table 6: Human voting result on 100 samples from Vis-

Dial v0.5 and v0.9.

5 Case Studies

We randomly sample some dialogs from VisDial

v0.5 validation set and illustrate the ground-truth

answers and the generated answers with/without

AMFE. Two results are shown in Table 5. In the

first example, the model trained with AMFE gen-

erates a right vs. wrong answer in the 8-th turn,

and a grammatically better response in the 5-th

turn, compared to supervised pre-training. In the

second example, the model trained with AMFE

has a generally right understanding of the ques-

tions and the image, while the HRE-MLE model is

generating response as if it does not see the image.

This indicates that encoding language features in

the image space leads to better understanding on

both modalities.

6 Conclusion

We propose AMFE: an unsupervised multi-modal

feature encoding framework and its implementa-

tions on different commonly-used visual dialog

models. Our core idea is to force features from

different modalities to have closely related distri-

butions. Experiments show that AMFE can bring

performance gains to both simple and complex

models on different scales of VisDial dataset. Fu-

ture work will possibly be visualizing the visual

and language features encoded by AMFE to find

more straightforward interpretations, as well as

trying our method on more complex structures,

discriminative models, and on discriminative tasks

such as VQA and visual reasoning.
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Lee, and Dhruv Batra. 2017b. Learning cooperative
visual dialog agents with deep reinforcement learn-
ing. In Proceedings of the IEEE international con-
ference on computer vision.

Harm De Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron C Courville.
2017. Guesswhat?! visual object discovery through
multi-modal dialogue. In CVPR, volume 1, page 3.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2016.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna
Rohrbach, Trevor Darrell, and Marcus Rohrbach.
2016. Multimodal compact bilinear pooling for
visual question answering and visual grounding.
arXiv preprint arXiv:1606.01847.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron C Courville. 2017. Im-
proved training of wasserstein gans. In Advances
in Neural Information Processing Systems, pages
5767–5777.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
conference on machine learning, pages 448–456.

Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim,
Jeonghee Kim, Jung-Woo Ha, and Byoung-Tak
Zhang. 2016. Hadamard product for low-rank bi-
linear pooling. arXiv preprint arXiv:1610.04325.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
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