
Proceedings of NAACL-HLT 2019, pages 2267–2277
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

2267

Step-by-Step: Separating Planning from Realization
in Neural Data-to-Text Generation∗

Amit Moryossef† Yoav Goldberg†‡ Ido Dagan†

amitmoryossef@gmail.com, {yogo,dagan}@cs.biu.ac.il

†Bar Ilan University, Ramat Gan, Israel
‡Allen Institute for Artificial Intelligence

Abstract

Data-to-text generation can be conceptually
divided into two parts: ordering and struc-
turing the information (planning), and gener-
ating fluent language describing the informa-
tion (realization). Modern neural generation
systems conflate these two steps into a sin-
gle end-to-end differentiable system. We pro-
pose to split the generation process into a sym-
bolic text-planning stage that is faithful to the
input, followed by a neural generation stage
that focuses only on realization. For training a
plan-to-text generator, we present a method for
matching reference texts to their correspond-
ing text plans. For inference time, we de-
scribe a method for selecting high-quality text
plans for new inputs. We implement and evalu-
ate our approach on the WebNLG benchmark.
Our results demonstrate that decoupling text
planning from neural realization indeed im-
proves the system’s reliability and adequacy
while maintaining fluent output. We observe
improvements both in BLEU scores and in
manual evaluations. Another benefit of our ap-
proach is the ability to output diverse realiza-
tions of the same input, paving the way to ex-
plicit control over the generated text structure.

1 Introduction

Consider the task of data-to-text generation, as ex-
emplified in the WebNLG corpus (Colin et al.,
2016). The system is given a set of RDF triplets
describing facts (entities and relations between
them) and has to produce a fluent text that is faith-
ful to the facts. An example of such triplets is:

John, birthPlace, London
John, employer, IBM

With a possible output:
∗This research was supported in part by the German Re-

search Foundation through the German-Israeli Project Coop-
eration (DIP, grant DA 1600/1-1) and by a grant from Theo
Hoffenberg and Reverso.

1. John, who was born in London, works for IBM.

Other outputs are also possible:

2. John, who works for IBM, was born in London.

3. London is the birthplace of John, who works for IBM.

4. IBM employs John, who was born in London.

These variations result from different ways of
structuring the information: choosing which fact
to mention first, and in which direction to express
each fact. Another choice is to split the text into
two different sentences, e.g.,

5. John works for IBM. John was born in London.

Overall, the choice of fact ordering, entity order-
ing, and sentence splits for these facts give rise to
12 different structures, each of them putting the fo-
cus on somewhat different aspect of the informa-
tion. Realistic inputs include more than two facts,
greatly increasing the number of possibilities.

Another axis of variation is in how to verbalize
the information for a given structure. For example,
(2) can also be verbalized as

2a. John works for IBM and was born in London.

and (5) as:

5a. John is employed by IBM. He was born in London.

We refer to the first set of choices (how to structure
the information) as text planning and to the second
(how to verbalize a plan) as plan realization.1

The distinction between planning and realiza-
tion is at the core of classic natural language gen-
eration (NLG) works (Reiter and Dale, 2000; Gatt
and Krahmer, 2017). However, a recent wave
of neural NLG systems ignores this distinction

1Note that the variation from 5 to 5a includes the introduc-
tion of a pronoun. This is traditionally referred to as referring
expression generation (REG), and falls between the planning
and realization stages. We do not treat REG in this work, but
our approach allows natural integration REG systems’ out-
puts.

2268

and treat the problem as a single end-to-end task
of learning to map facts from the input to the
output text (Gardent et al., 2017; Dušek et al.,
2018). These neural systems encode the input
facts into an intermediary vector-based represen-
tation, which is then decoded into text. While not
stated in these terms, the neural system designers
hope for the network to take care of both the plan-
ning and realization aspect of text generation. A
notable exception is the work of Puduppully et al.
(2018), who introduce a neural content-planning
module in the end-to-end architecture.

While the neural methods achieve impressive
levels of output fluency, they also struggle to main-
tain coherency on longer texts (Wiseman et al.,
2017), struggle to produce a coherent order of
facts, and are often not faithful to the input facts,
either omitting, repeating, hallucinating or chang-
ing facts (the NLG community refers to such er-
rors as errors in adequacy or correctness of the
generated text). When compared to template-
based methods, the neural systems win in fluency
but fall short regarding content selection and faith-
fulness to the input (Puzikov and Gurevych, 2018).
Also, they do not allow control over the output’s
structure. We speculate that this is due to de-
manding too much of the network: while the neu-
ral system excels at capturing the language details
required for fluent realization, they are less well
equipped to deal with the higher levels text struc-
turing in a consistent and verifiable manner.

Proposal we propose an explicit, symbolic, text
planning stage, whose output is fed into a neu-
ral generation system. The text planner deter-
mines the information structure and expresses it
unambiguously—in our case as a sequence of or-
dered trees. This stage is performed symbolically
and is guaranteed to remain faithful and complete
with regards to the input facts. Once the plan is
determined,2 a neural generation system is used
to transform it into fluent, natural language text.
By being able to follow the plan structure closely,
the network is alleviated from the need to de-
termine higher-level structural decisions and can
track what was already covered more easily. This
allows the network to perform the task it excels in,
producing fluent, natural language outputs.

2The exact plan can be determined based on a data-driven
scoring function that ranks possible suggestions, as in this
work, or by other user provided heuristics or a trained ML
model. The plans’ symbolic nature and precise relation to the
input structures allow verification of their correctness.

We demonstrate our approach on the WebNLG
corpus and show it results in outputs which are
as fluent as neural systems, but more faithful
to the input facts. The method also allows ex-
plicit control of the output structure and the gen-
eration of diverse outputs (some diversity exam-
ples are available in the Appendix). We re-
lease our code and the corpus extended with
matching plans in https://github.com/
AmitMY/chimera.

2 Overview of the Approach

Task Description Our method is concerned
with the task of generating texts from inputs in the
form of RDF sets. Each input can be considered as
a graph, where the entities are nodes, and the RDF
relations are directed labeled edges. Each input is
paired with one or more reference texts describ-
ing these triplets. The reference can be either a
single sentence or a sequence of sentences. For-
mally, each input G consists of a set of triplets of
the form (si, ri, oi), where si, oi ∈ V (“subject”
and “object”) correspond to entities from DBPe-
dia, and ri ∈ R is a labeled DBPedia relation (V
and R are the sets of entities and relations, respec-
tively). For example, Figure 1a shows a triplet
set G and Figure 1d shows a reference text. We
consider the data set as a set of input-output pairs
(G, ref), where the same G may appear in several
pairs, each time with a different reference.

Method Overview We split the generation pro-
cess into two parts: text planning and sentence re-
alization. Given an input G, we first generate a
text plan plan(G) specifying the division of facts
to sentences, the order in which the facts are ex-
pressed in each sentence, and the ordering of the
sentences. This data-to-plan step is non-neural
(Section 3). Then, we generate each sentence ac-
cording to the plan. This plan-to-sentence step is
achieved through an NMT system (Section 4).

Figure 1 demonstrates the entire process.
To facilitate our plan-based architecture, we de-

vise a method to annotate (G, ref) pairs with the
corresponding plans (Section 3.1), and use it to
construct a dataset which is used to train the plan-
to-text translation. The same dataset is also used
to devise a plan selection method (Section 3.2).

General Applicability It is worth considering
the dataset-specific vs. general applicability as-
pects of our method. On the low-level details, this

https://github.com/AmitMY/chimera
https://github.com/AmitMY/chimera

2269

(a) Example input RDF

AIP Advances | editor | A.T. Charlie Johnson
A.T. Charlie Johnson | almaMater | Harvard University
AIP Advances | ISSN number | ”2158-3226”
A.T. Charlie Johnson | residence | United States

(b) Possible corresponding text plan

AT Charlie Johnson AIP Advances 2158-32261 ⃗editor ⃗ISSNNumber

AT Charlie Johnson

United States

Harvard University

2
⃗residence

⃗almamater

(c) Linearization of the text plan

A.T. Charlie Johnson ← editor [AIP Advances → issn number [2158-3226]] .
A.T. Charlie Johnson → residence [United States] → alma mater [Harvard University]

(d) Possible output sentence

A.T. Charlie Johnson is the editor of AIP Advances which has the ISSN number 2158-3226.
He lives in the United States, and graduated from Harvard University.

Figure 1: Summary of our proposed generation process: the planner takes the input RDF triplets in (a), and
generates the explicit plan in (b). The plan is then linearized (c) and passed to a neural generation system, producing
the output (d).

work is very much dataset dependent. We show
how to represent plans for specific datasets, and,
importantly for this work, how to automatically
construct plans for this dataset given inputs and
expected natural language outputs. The method
of plan construction will likely not generalize “as
is” to other datasets, and the plan structure itself
may also be found to be lacking for more demand-
ing generation tasks. However, on a higher level,
our proposal is very general: intermediary plan
structures can be helpful, and one should consider
ways of obtaining them, and of using them. In
the short term, this will likely take the form of
ad-hoc explorations of plan structures for specific
tasks, as we do here, to establish their utility. In
the longer term, research may evolve to looking
into how general-purpose plan are structured. Our
main message is that the separation of planning
from realization, even in the context of neural gen-
eration, is a useful one to be considered.

3 Text Planning

Plan structure Our text plans capture the divi-
sion of facts to sentences and the ordering of the
sentences. Additionally, for each sentence, the
plan captures (1) the ordering of facts within the
sentence; (2) The ordering of entities within a fact,
which we call the direction of the relation. For ex-
ample, the {A, location, B} relation can be
expressed as either A is located in B or B is the
location of A; (3) the structure between facts that
share an entity, namely chains and sibling struc-

tures as described below.

John London England⃗residence ⃗capital

(a) Chain: John lives in London, the capital of England.

John

London

Bartender

⃗residence

⃗occupation

(b) Sibling: John lives in London and works as a bartender.

John

London

Bartender

England

⃗residence

⃗occupation

⃗capital

(c) Combination: John lives in London, the capital of Eng-
land, and works as a bartender.

Figure 2: Fact construction structure.

A text plan is modeled as a sequence of sen-
tence plans, to be realized in order. Each sentence
plan is modeled as an ordered tree, specifying the
structure in which the information should be real-
ized. Structuring each sentence as a tree enables
a clear succession between different facts through
shared entities. Our text-plan design assumes that
each entity is mentioned only once in a sentence,
which holds in the WebNLG corpus. The order-
ing of the entities and relations within a sentence
is determined by a pre-order traversal of the tree.

Figure 1b shows an example of a text plan. For-
mally, given the input G, a text plan T is a se-
quences of sentence plans T = s1, ..., sNT

. A sen-

2270

tence plan s is a labeled, ordered tree, with arcs of
the form (h, `,m), where h,m ∈ V are head and
modifier nodes, each corresponding to an input en-
tity, and ` = (r, d) is the relation between nodes,
where r ∈ R is the RDF relation, and d ∈ {→,←}
denotes the direction in which the relation is ex-
pressed: d =→ if (h, r,m) ∈ G, and d =← if
(m, r, h) ∈ G. A text plan T is said to match an
input G iff every triplet (s, r, o) in G is expressed
in T exactly once, either as an edge (s, (r,→), o)
or as an edge (o, (ri,←), s).

Chains (h, `1,m), (m, `2, x) represent a suc-
cession of facts that share a middle entity (Figure
2a), while siblings — nodes with the same parent
— (h, `1,m1), (h, `2,m2) represents a succession
of facts about the same entity (Figure 2b). Sib-
ling and chain structures can be combined (Figure
2c). An example of an input we addressed in the
WebNLG corpus, and matching text plan is given
in Figure 1b.
Exhaustive generation For small-ish input
graphs G—such as those in the WebNLG task we
consider here—it is trivial to generate all possible
plans by first considering all the ways of grouping
the input into sets, then from each set generating
all possible trees by arranging it as an undirected
graph and performing several DFS traversals start-
ing from each node, where each DFS traversal fol-
lows a different order of children.3

3.1 Adding Plans to Training Data
While the input RDFs and references are present
in the training dataset, the plans are not. We devise
a method to recover the latent plans for most of the
input-reference pairs in the training set, construct-
ing a new dataset of (G, ref, T) triplets of inputs,
reference texts, and corresponding plans.

We define the reference ref , and the text-plan T
to be consistent with each other iff (a) they exhibit
the same splitting into sentences—the facts in ev-
ery sentence in ref are grouped as a sentence plan
in T , and (b) for each corresponding sentence and
sentence-plan, the order of the entities is identical.

The matching of plans to references is based
on the observations that (a) it is relatively easy to
identify entities in the reference texts, and a pair
of entities in an input is unique to a fact; (b) it is
relatively easy to identify sentence splits; (c) a ref-
erence text and its matching plan must share the

3If a graph includes a cycle (0.4% of the graphs in the
WebNLG corpus contain cycles) we skip it, as it is guaranteed
that a different split will result in cycle-free graphs.

same entities in the same order, and with the same
sentence splits.
Sentence split consistency We define a set of
triplets to be potentially consistent with a sentence
iff each triplet contains at least one entity from the
sentence (either its subject or object appear in the
sentence), and each entity in the sentence is cov-
ered by at least one triplet. Given a reference text,
we split it into sentences using NLTK (Bird and
Loper, 2004), and look for divisions of G into dis-
joint sets such that each set is consistent with a
corresponding sentence. For each such division,
we consider the exhaustive set of all induced plans.
Facts order consistency A natural criterion
would be to consider a reference sentence and a
sentence-plan originating from the corresponding
RDF as matching iff the sets of entities in the sen-
tence and the plan are identical, and all entities ap-
pear in the same order.4 Based on this, we could
represent each sentence and each plan as a se-
quence of entities, and verify the sequences match.

However, using this criterion is complicated by
the fact that it is not trivial to map between the
entities in the plan (that originate from the RDF
triplets) and the entities in the text. In partic-
ular, due to language variability, the same plan
entity may appear in several forms in the textual
sentences. Some of these variations (i.e. “A.F.C
Fylde” vs. “AFC Fylde”) can be recognized
heuristically, while others require external knowl-
edge (“UK conservative party” vs. “the Tories”),
and some are ambiguous and require full-fledged
co-reference resolution (“them”, “he”, “the for-
mer”). Hence, we relax our matching criterion to
allow for possible unrecognized entities in the text.

Concretely, we represent each sentence plan as
a sequence of its entities (pe1, ..., pek), and each
sentence as the sequence of its entities which we
managed to recognize and to match with an input
entity (se1, ..., sem),m ≤ k.5

We then consider a sentence and a sentence-
plan to be consistent if the following two condi-

4An additional constraint is that no two triplets in the
RDFs set share the same entities. This is to ensure that if
two entities appeared in a structure, only one relation could
have been expressed there. This almost always holds in the
WebNLG corpus, failing on only 15 out of 6,940 input sets.

5We match plan entities to sentence entities using greedy
string matching with Levenshtein distance (Levenshtein,
1966) for each token and a manually tuned threshold for a
match. While this approach results in occasional false posi-
tives, most cases are detected correctly. We match dates by
using the chrono-python package that parses dates from nat-
ural language texts.

2271

tions hold: (1) The sentence entities (se1, ..., sem)
are a proper sub-sequence of the plan entities
(pe1, ..., pek); and (2) each of the remaining enti-
ties in the plan already appeared previously in the
plan. The second condition accounts for the fact
that most un-identified entities are due to pronouns
and similar non-lexicalized referring expressions,
and that these only appear after a previous occur-
rence of the same entity in the text.6

3.2 Test-time Plan Selection
To select the plan to be realized, we propose
a mechanism for ranking the possible plans.
Our plan scoring method is a product-of-experts
model, where each expert is a conditional proba-
bility estimate for some property of the plan. The
conditional probabilities are MLE estimates based
on the plans in the training set constructed in sec-
tion 3.1. Estimates involving relation names are
smoothed using Lidstone smoothing to account for
unseen relations. We use the following experts:
Relation direction For every relation r ∈ R, we
compute its probability to be expressed in the plan
in its original order (d =→) or in the reverse or-
der (d =←): pdir(d =→ ∣R). This captures
the tendency of certain relations to be realized in
the reversed order to how they are defined in the
knowledge base. For example, in the WebNLG
corpus the relation “manager” is expressed as a
variation of “is managed by” instead of one of
“is the manager of” in 68% of its occurrences
(pdir(d =← ∣manager) = 0.68).
Global direction We find that while the probabil-
ity of each relation to be realized in a reversed
order is usually below 0.5, still in most plans of
longer texts there are one or two relations that ap-
pear in the reversed order. We capture this ten-
dency using an expert that considers the condi-
tional probability pgd(nr = n∣ ∣G∣) of observing
n reversed edges in an input with ∣G∣ triplets.
Splitting tendencies For each input size, we keep
track of the possible ways in which the set of
facts can be split to subsets of particular sizes.
That is, we keep track of probabilities such as
ps(s = [3, 2, 2] ∣ 7) of realizing an input of 7
RDF triplets as three sentences, each realizing the
corresponding number of facts.
Relation transitions We consider each sentence
plan as a sequence of the relation types expressed

6A sensible alternative would be to use a coreference res-
olution system at this stage. In our case it turned out to not
help, and even performed somewhat worse.

in it r1, . . . , rk followed by an EOS symbol, and
compute the markov transition probabilities over
this sequence: ptrans(r1, r2, . . . , rk, EOS) =

∏i=1,k pt(ri+1∣ri). The expert is the product of
the transition probabilities of the individual sen-
tence plans in the text plan. This captures the ten-
dencies of relations to follow each other and in
particular, the tendencies of related relations such
as birth-place and birth-date to group, allowing
their aggregation in the generated text (John was
born in London on Dec 12th, 1980).

Each of the possible plans are then scored based
on the product of the above quantities.7

The scores work well for separating good from
lousy text plans, and we observe a threshold above
which most generated plans result in adequate
texts. We demonstrate in Section 6 that realizing
highly-ranked plans manages to obtain good auto-
matic realization scores. We note that the plan in
Figure 1b is the one our ranking algorithm ranked
first for the input in Figure 1a.

Possible Alternatives In addition to the single
plan selection, the explicit planning stage opens up
additional possibilities. Instead of choosing and
realizing a single plan, we can realize a diverse
set of high-scoring plans, or realizing a random
high-scoring plan, resulting in a diverse and less
templatic set of texts across runs. This relies on the
combination of two factors: the ability of the scor-
ing component to select plans that correspond to
plausible human-authored texts, and the ability of
the neural realizer to faithfully realize the plan into
fluent text. While it is challenging to directly eval-
uate the plans adequacy, we later show an evalu-
ation of the plan realization component. Figure 3
shows three random plans for the same graph and
their realizations. Further examples of the diver-
sity of generation are given in the appendix.

The explicit and symbolic planning stage also
allows for user control over the generated text, ei-
ther by supplying constraints on the possible plans
(e.g., number of sentences, entities to focus on, the
order of entities/relations, or others) or by supply-
ing complete plans. We leave these options for
future work.

7We note that for an input of n triplets, there are O(22n+
n ∗ n!) possible plans, making this method prohibitive for
even moderately sized input graphs. However, it is suffi-
cient for the WebNLG dataset in which n ≤ 7. For larger
graphs, better plan scoring and more efficient search algo-
rithms should be devised. We leave this for future work.

2272

(a) Dessert ← course [Bionico → country [Mexico] → ingredient [Granola] → region [Jalisco]]
The Dessert Bionico requires Granola as one of its ingredients and originates from the Jalisco region of Mexico .

(b)

Bionico → country [Mexico] → region [Jalisco] .
Dessert ← course [Bionico → ingredient [Granola]]
Bionico is a food found in the Mexico region Jalisco.
The Dessert Bionico requires Granola as an ingredient.

(c)

Bionico → ingredient [Granola] → course [Dessert] .
Bionico → region [Jalisco] → country [Mexico]
Bionico contains Granola and is served as a Dessert.
Bionico is a food found in the region of Jalisco, Mexico

Figure 3: Three random linearized plans for the same input graph, and their text realizations. All taken from the
top 10% scoring plans. (a) structures the output as a single sentence, while (b) and (c) as two sentences. The
second sentence in (b) puts emphasis on Bionico being a dessert, while in (c) the emphasis is on the ingredients.

4 Plan Realization

For plan realization, we use an off-the-shelf
vanilla neural machine translation (NMT) system
to translate plans to texts. The explicit division
to sentences in the text plan allows us to real-
ize each sentence plan individually which allows
the realizer to follow the plan structure within
each (rather short) sentence, reducing the amount
of information that the model needs to remem-
ber. As a result, we expect a significant reduction
in over- and under-generation of facts, which are
common when generating longer texts. Currently,
this comes at the expense of not modeling dis-
course structure (i.e., referring expressions). This
deficiency may be handled by integrating the dis-
course into the text plan, or as a post-processing
step.8. We leave this for future work.

To use text plans as inputs to the NMT, we lin-
earize each sentence plan by performing a pre-
order traversal of the tree, while indicating the
tree structure with brackets (Figure 1c). The di-
rected relations (r, d) are expressed as a sequence
of two or more tokens, the first indicating the di-
rection and the rest expressing the relation.9 En-
tities that are identified in the reference text are
replaced with single, entity-unique tokens. This
allows the NMT system to copy such entities from
the input rather than generating them. Figure 1d
is an example of possible text resulting from such
linearization.

Training details We use a standard NMT setup
with a copy-attention mechanism (Gulcehre et al.,
2016)10 and the pre-trained GloVe.6B word em-

8Minimally, each entity occurrence can keep track of the
number of times it was already mentioned in the plan. Other
alternatives include using a full-fledged referring expression
generation system such as NeuralREG (Ferreira et al., 2018)

9We map DBPedia relations to sequences of tokens by
splitting on underscores and CamelCase.

10Concretely, we use the OpenNMT toolkit (Klein et al.,
2017) with the copy attn flag. Exact parameter values are

beddings11 (Pennington et al., 2014). The pre-
trained embeddings are used to initialize the re-
lation tokens in the plans, as well as the tokens in
the reference texts.

Generation details We translate each sentence
plan individually. Once the text is generated, we
replace the entity tokens with the full entity string
as it appears in the input graph, and lexicalize all
dates as Month DAY+ordinal, YEAR (i.e., July 4th,
1776) and for numbers with units (i.e., “5”(min-
utes)) we remove the parenthesis and quotation
marks (5 minutes).

5 Experimental Setup

The WebNLG challenge (Colin et al., 2016) con-
sists of mapping sets of RDF triplets to text in-
cluding referring expression generation, aggrega-
tion, lexicalization, surface realization, and sen-
tence segmentation. It contains sets with up to
7 triplets each along with one or more reference
texts for each set. The test set is split into two
parts: seen, containing inputs created for entities
and relations belonging to DBpedia categories that
were seen in the training data, and unseen, con-
taining inputs extracted for entities and relations
belonging to 5 unseen categories. While the un-
seen category is conceptually appealing, we view
the seen category as the more relevant setup: gen-
erating fluent, adequate and diverse text for a mix
of known relation types is enough of a challenge
also without requiring the system to invent verbal-
izations for unknown relation types. Any realistic
generation system could afford to provide at least a
few verbalizations for each relation of interest. We
thus focus our attention mostly on the seen case
(though our system does also perform well on the
unseen case).

Following Section 3.1, we manage to match a

detailed in the appendix.
11nlp.stanford.edu/data/glove.6B.zip

nlp.stanford.edu/data/glove.6B.zip

2273

consistent plan for 76% of the reference texts and
use these plan-text pairs to train the plan real-
ization NMT component. Overall, the WebNLG
training set contains 18, 102 RDF-text pairs while
our plan-enhanced corpus contains 13, 828 plan-
text pairs.12

Compared Systems We compare to the best
submissions in the WebNLG challenge (Gardent
et al., 2017): Melbourne, an end-to-end system
that scored best on all categories in the automatic
evaluation, and UPF-FORGe (Mille et al., 2017),
a classic grammar-based NLG system that scored
best in the human evaluation.

Additionally, we developed an end-to-end neu-
ral baseline which outperforms the WebNLG neu-
ral systems. It uses a set encoder, an LSTM
(Hochreiter and Schmidhuber, 1997) decoder with
attention (Bahdanau et al., 2014), a copy-attention
mechanism (Gulcehre et al., 2016) and a neural
checklist model (Kiddon et al., 2016), as well as
applying entity dropout. The entity-dropout and
checklist component are the key differentiators
from previous systems. We refer to this system
as StrongNeural.

6 Experiments and Results

6.1 Automatic Metrics

We begin by comparing our plan-based sys-
tem (BestPlan) to the state-of-the-art using the
common automatic metrics: BLEU (Papineni
et al., 2002), Meteor (Banerjee and Lavie, 2005),
ROUGEL (Lin, 2004) and CIDEr (Vedantam et al.,
2015), using the nlg-eval13 tool (Sharma et al.,
2017) on the entire test set and on each part sepa-
rately (seen and unseen).

In the original challenge, the best performing
system in automatic metric was based on end-to-
end NMT (Melbourne). Both the StrongNeu-
ral and BestPlan systems outperform all the
WebNLG participating systems on all automatic
metrics (Table 1). BestPlan is competitive with
StrongNeural in all metrics, with small differ-
ences either way per metric.14

12Note that this only affects the training stage. At test time,
we do not require gold plans, and evaluate on all sentences.

13https://github.com/Maluuba/nlg-eval
14At least part of the stronger results for StrongNeural can

be attributed to its ability to generate referring expressions,
which we currently do not support.

BLEU METEOR ROUGEL CIDEr
UPF-FORGe♥ 38.5 0.390 60.9 2.500
Melbourne♦ 45.0 0.376 63.5 2.814

RandomPlan-1♠ 43.3 0.384 57.6 2.342
RandomPlan-2♠ 43.5 0.384 57.4 2.332
RandomPlan-3♠ 43.5 0.384 57.4 2.303
StrongNeural♦ 46.5 0.392 65.4 2.866
BestPlan♠ 47.4 0.391 63.1 2.692

Table 1: Results for all categories. Team color indicates
the type of system used (NMT♦, Rule-Based♥, Rule-
Based + NMT♠).

6.2 Manual Evaluation

Next, we turn to manually evaluate our system’s
performance regarding faithfulness to the input on
the one hand and fluency on the other. We de-
scribe here the main points of the manual evalu-
ation setup, with finer details in the appendix.

Faithfulness As explained in Section 3, the first
benefit we expect of our plan-based architecture is
to make the neural systems task simpler, helping it
to remain faithful to the semantics expressed in the
plan which in turn is guaranteed to be faithful to
the original RDF input (by faithfulness, we mean
expressing all facts in the graph and only facts
from the graph: not dropping, repeating or hal-
lucinating facts). We conduct a manual evaluation
over the seen portion of the WebNLG human eval-
uated test set (139 input sets). We compare Best-
Plan and StrongNeural.15 For each output text,
we manually mark which relations are expressed
in it, which are omitted, and which relations ex-
ist with the wrong lexicalization. We also count
the number of relations the system over generated,
either repeating facts or inventing new facts.16

Table 2 shows the results. BestPlan reduces all
error types compared to StrongNeural, by 85%,
56% and 90% respectively. While on-par regard-
ing automatic metrics, BestPlan substantially out-
performs the new state-of-the-art end-to-end neu-
ral system in semantic faithfulness.

For example, Figure 4 compares the output of

15We do not evaluate UPF-FORGe as it is a verifiable
grammar-based system that is fully faithful by design.

16This evaluation was conducted by the first author, on a
set of shuffled examples from the BestPlan and StrongNeu-
ral systems, without knowing which outputs belongs to
which system. We further note that evaluating for faithfulness
requires careful attention to detail (making it less suitable for
crowd-workers), but has a precise task definition which does
not involve subjective judgment, making it possible to an-
notate without annotator biases influencing the results. We
release our judgments for this stage together with the code.

https://github.com/Maluuba/nlg-eval

2274

1. William Anders | dateOfRetirement | ”1969-09-01”

2. William Anders | was selected by NASA | 1963

3. William Anders | timeInSpace | ”8820.0”(minutes)

4. William Anders | birthDate | ”1933-10-17”

5. William Anders | occupation | Fighter pilot

6. William Anders | birthPlace | British Hong Kong

7. William Anders | was a crew member of | Apollo 8

(a) The last RDF in the seen test-set

William Anders was born on October 17th, 1933 in British Hong Kong.

He was selected by nasa in 1963 and became a crew member on the Apollo 8 flight mission.

He retired on September 1st, 1969.

(b) Output from StrongNeural

William Anders was a fighter pilot who joined nasa in 1963 and served as a crew member of Apollo 8.

William Anders retired on September 1st, 1969 and spent 8820.0 minutes in space.

William Anders was born in British Hong Kong on october October 17th, 1933.

(c) Output from BestPlan

Figure 4: Comparing end-to-end neural generation with our plan based system.

StrongNeural (4b) and BestPlan (4c) on the last
input in the seen test set (4b). While both sys-
tems chose three sentences split and aggregated
details about birth in one sentence and details
about the occupation in another, StrongNeural
also expressed the information in chronological
order. However, StrongNeural failed to generate
facts 3 and 5. BestPlan made a lexicalization mis-
take in the third sentence by expressing “October”
before the actual date, which is probably caused
by faulty entity matching for one of the references,
and (by design) did not generate any referring ex-
pression, which we leave for future work.

BestPlan StrongNeural
Expressed 417 360
Omitted 6 41
Wrong-lexicalization 17 39
Over-generation 3 29

Table 2: Semantic faithfulness of each system regard-
ing 440 RDF triplets from 139 input sets in the seen
part of the manually evaluated test set.

Fluency Next, we assess whether our systems
succeed at maintaining the high-quality fluency of
the neural systems. We perform pairwise evalu-
ation via Amazon Mechanical Turk wherein each
task the worker is presented with an RDF set (both
in a graph form, and textually), and two texts
in random order, one from BestPlan, the other
from a competing system. We compare Best-
Plan against a strong end-to-end neural system
(StrongNeural), a grammar-based system which

StrongNeural Reference UPF-FORGe
BestPlan -0.6% -5.4% +5.1%

Table 3: MTurk average worker score for BestPlan
compared to each system. It is a worse than the ref-
erence texts, on-par with the neural end-to-end system,
and a better than the previous state-of-the-art.

is the state-of-the-art in human evaluation (UPF-
FORGe), and the human-supplied WebNLG ref-
erences (Reference). The workers were pre-
sented with three possible answers: BestPlan text
is better (scored as 1), the other text is better
(scored as -1), and both texts are equally fluent
(scored as 0). Table 3 shows the average worker
score given to each pair divided by the number
of texts compared. BestPlan performed on-par
with StrongNeural, and surpassed the previous
state-of-the-art UPF-FORGe. It, however, scored
worse than the reference texts, which is expected
given that it does not produce referring expres-
sions. Our approach manages to keep the same
fluency level typical to end-to-end neural systems,
thanks to the NMT realization component.

6.3 Plan Realization Consistency

We test the extent to which the realizer generates
texts that are consistent with the plans. For several
subsets of ranked plans (best plan, top 1%, and top
10%) for the seen and unseen test sets separately,
we realize up to 100 randomly selected text-plans
per input. We realize each sentence plan and eval-
uate using two criteria: (1) Do all entities from the
plan appear in the realization; (2) Like the consis-

2275

Best Plan Top 1% Plans Top 10% Plans
Entities Order Entities Order Entities Order

Seen 98.9% 100% 95.9% 99.9% 93.6% 100%
Unseen 66.7% 100% 45.3% 100% 41.3% 100%

Table 4: Surface realizer performance. Entities: Per-
cent of sentence plans that were realized with all the
requested entities. Order: of the sentences that were
realized with all requested entities, percentage of real-
izations that followed the requested entity order.

tency we defined above, do all entities appear in
the same order in the plan and the realization.

Table 4 indicates that for decreasingly probable
plans our realizer does worse in the first criterion.
However, for both parts of the test set, if the real-
izer managed to express all of the entities, it ex-
pressed them in the requested order, meaning the
outputs are consistent with plans. This opens up a
potential for user control and diverse outputs, by
choosing different plans for realization.

Finally, we verify that the realization of poten-
tially diverse plans is not only consistent with each
given plan but also preserves output quality. For
each input, we realize a random plan from the top
10%. We repeat this process three times with dif-
ferent random seeds to generate different outputs,
and mark these systems as RandomPlan-1/2/3.
Table 1 shows that these random plans maintain
decent quality on the automatic metrics, with a
limited performance drop, and the automatic score
is stable across random seeds.17

7 Related Work

Text planning is a major component in classic
NLG. For example, Stent et al. (2004) shows a
method of producing coherent sentence plans by
exhaustively generating as many as 20 sentence
plan trees for each document plan, manually tag-
ging them, and learning to rank them using the
RankBoost algorithm (Schapire, 1999). Our plan-
ning approach is similar, but we only have a set
of “good” reference plans without internal ranks.
While the sentence planning decides on the aggre-
gation, one crucial decision left is sentence order.
We currently determine order based on a splitting
heuristic which relies on the number of facts in ev-
ery sentence, not on the content. Lapata (2003) de-
vised a probabilistic model for sentence ordering
which correlated well with human ordering. Our

17While the scores for the different sets are very similar,
the plans are very different from each other. See for examples
the plans in Figure 3.

plan selection procedure is admittedly simple, and
can be improved by integrating insights from pre-
vious text planning works (Barzilay and Lapata,
2006; Konstas and Lapata, 2012, 2013).

Many generation systems (Gardent et al., 2017;
Dušek et al., 2018) are based on a black-box NMT
component, with various pre-processing transfor-
mation of the inputs (such as delexicalization) and
outputs to aid the generation process.

Generation from structured data often requires
referring to a knowledge base (Mei et al., 2015;
Kiddon et al., 2016; Wen et al., 2015). This led to
input-coverage tracking neural components such
as the checklist model (Kiddon et al., 2016) and
copy-mechanism (Gulcehre et al., 2016). Such
methods are effective for ensuring coverage and
reducing the number of over-generated facts and
are in some ways orthogonal to our approach.
While our explicit planning stage reduces the
amount of over-generation, our realizer may be
further improved by using a checklist model.

More complex tasks, like RotoWire (Wiseman
et al., 2017) require modeling also document-level
planning. Puduppully et al. (2018) explored a
method to explicitly model document planning us-
ing the attention mechanism.

The neural text generation community has also
recently been interested in “controllable” text gen-
eration (Hu et al., 2017), where various aspects of
the text (often sentiment) are manipulated (Ficler
and Goldberg, 2017) or transferred (Shen et al.,
2017; Zhao et al., 2017; Li et al., 2018). In con-
trast, like in (Wiseman et al., 2018), here we fo-
cused on controlling either the content of a gen-
eration or the way it is expressed by manipulating
the sentence plan used in realizing the generation.

8 Conclusion

We proposed adding an explicit symbolic plan-
ning component to a neural data-to-text NLG sys-
tem, which eases the burden on the neural com-
ponent concerning text structuring and fact track-
ing. Consequently, while the plan-based system
performs on par with a strong end-to-end neural
system regarding automatic evaluation metrics and
human fluency evaluation, it substantially outper-
forms the end-to-end system regarding faithful-
ness to the input. Additionally, the planning stage
allows explicit user-control and generating diverse
sentences, to be pursued in future work.

2276

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Regina Barzilay and Mirella Lapata. 2006. Aggrega-
tion via set partitioning for natural language genera-
tion. In Proceedings of the main conference on Hu-
man Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, pages 359–366. Association for
Computational Linguistics.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Emilie Colin, Claire Gardent, Yassine Mrabet, Shashi
Narayan, and Laura Perez-Beltrachini. 2016. The
webnlg challenge: Generating text from dbpedia
data. In Proceedings of the 9th International Nat-
ural Language Generation conference, pages 163–
167.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the e2e nlg challenge. arXiv
preprint arXiv:1810.01170.

Thiago Castro Ferreira, Diego Moussallem, Ákos
Kádár, Sander Wubben, and Emiel Krahmer.
2018. Neuralreg: An end-to-end approach to
referring expression generation. arXiv preprint
arXiv:1805.08093.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. arXiv preprint arXiv:1707.02633.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg
challenge: Generating text from rdf data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133.

Albert Gatt and Emiel Krahmer. 2017. Survey of
the state of the art in natural language generation:
Core tasks, applications and evaluation. CoRR,
abs/1703.09902.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. arXiv preprint
arXiv:1603.08148.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward
controlled generation of text. arXiv preprint
arXiv:1703.00955.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 329–339.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
arXiv preprint arXiv:1701.02810.

Ioannis Konstas and Mirella Lapata. 2012. Unsuper-
vised concept-to-text generation with hypergraphs.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 752–761. Association for Computational Lin-
guistics.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing document plans for concept-to-text generation.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1503–1514.

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics-Volume 1, pages 545–
552. Association for Computational Linguistics.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Juncen Li, Robin Jia, He He, and Percy Liang.
2018. Delete, retrieve, generate: A simple approach
to sentiment and style transfer. arXiv preprint
arXiv:1804.06437.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2015. What to talk about and how? selective gen-
eration using lstms with coarse-to-fine alignment.
arXiv preprint arXiv:1509.00838.

Simon Mille, Roberto Carlini, Alicia Burga, and Leo
Wanner. 2017. Forge at semeval-2017 task 9: Deep
sentence generation based on a sequence of graph
transducers. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 920–923.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1703.09902
http://arxiv.org/abs/1703.09902
http://arxiv.org/abs/1703.09902

2277

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2018.
Data-to-text generation with content selection and
planning. arXiv preprint arXiv:1809.00582.

Yevgeniy Puzikov and Iryna Gurevych. 2018. E2e nlg
challenge: Neural models vs. templates. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 463–471.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge university
press.

Robert E Schapire. 1999. A brief introduction to boost-
ing. In Ijcai, volume 99, pages 1401–1406.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsupervised
metrics in task-oriented dialogue for evaluating nat-
ural language generation. CoRR, abs/1706.09799.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems, pages 6830–6841.

Amanda Stent, Rashmi Prasad, and Marilyn Walker.
2004. Trainable sentence planning for complex in-
formation presentation in spoken dialog systems. In
Proceedings of the 42nd annual meeting on associa-
tion for computational linguistics, page 79. Associ-
ation for Computational Linguistics.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recog-
nition, pages 4566–4575.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems.
arXiv preprint arXiv:1508.01745.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2018. Learning neural templates for text gen-
eration. arXiv preprint arXiv:1808.10122.

Junbo Jake Zhao, Yoon Kim, Kelly Zhang, Alexan-
der M. Rush, and Yann LeCun. 2017. Adversari-
ally regularized autoencoders for generating discrete
structures. CoRR, abs/1706.04223.

http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.04223
http://arxiv.org/abs/1706.04223
http://arxiv.org/abs/1706.04223

