
Proceedings of NAACL-HLT 2019, pages 1942–1954
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1942

Value-based Search in Execution Space for Mapping Instructions to
Programs

Dor Muhlgay1 Jonathan Herzig1 Jonathan Berant1,2

1School of Computer Science, Tel-Aviv University
2Allen Institute for Artificial Intelligence

{dormuhlg@mail,jonathan.herzig@cs,joberant@cs}.tau.ac.il

Abstract

Training models to map natural language in-
structions to programs, given target world su-
pervision only, requires searching for good
programs at training time. Search is com-
monly done using beam search in the space
of partial programs or program trees, but as
the length of the instructions grows finding a
good program becomes difficult. In this work,
we propose a search algorithm that uses the
target world state, known at training time, to
train a critic network that predicts the expected
reward of every search state. We then score
search states on the beam by interpolating their
expected reward with the likelihood of pro-
grams represented by the search state. More-
over, we search not in the space of programs
but in a more compressed state of program ex-
ecutions, augmented with recent entities and
actions. On the SCONE dataset, we show that
our algorithm dramatically improves perfor-
mance on all three domains compared to stan-
dard beam search and other baselines.

1 Introduction

Training models that can understand natural lan-
guage instructions and execute them in a real-
world environment is of paramount importance for
communicating with virtual assistants and robots,
and therefore has attracted considerable atten-
tion (Branavan et al., 2009; Vogel and Jurafsky,
2010; Chen and Mooney, 2011). A prominent ap-
proach is to cast the problem as semantic parsing,
where instructions are mapped to a high-level pro-
gramming language (Artzi and Zettlemoyer, 2013;
Long et al., 2016; Guu et al., 2017). Because anno-
tating programs at scale is impractical, it is desir-
able to train a model from instructions, an initial
world state, and a target world state only, letting
the program itself be a latent variable.

Learning from such weak supervision results in
a difficult search problem at training time. The

model must search for a program that when ex-
ecuted leads to the correct target state. Early
work employed lexicons and grammars to con-
strain the search space (Clarke et al., 2010; Liang
et al., 2011; Krishnamurthy and Mitchell, 2012;
Berant et al., 2013; Artzi and Zettlemoyer, 2013),
but recent success of sequence-to-sequence mod-
els (Sutskever et al., 2014) shifted most of the bur-
den to learning. Search is often performed sim-
ply using beam search, where program tokens are
emitted from left-to-right, or program trees are
generated top-down (Krishnamurthy et al., 2017;
Yin and Neubig, 2017; Cheng et al., 2017; Ra-
binovich et al., 2017) or bottom-up (Liang et al.,
2017; Guu et al., 2017; Goldman et al., 2018).
Nevertheless, when instructions are long and com-
plex and reward is sparse, the model may never
find enough correct programs, and training will
fail.

In this paper, we propose a novel search algo-
rithm for mapping a sequence of natural language
instructions to a program, which extends the stan-
dard beam-search in two ways. First, we capitalize
on the target world state being available at training
time and train a critic network that given the lan-
guage instructions, current world state, and target
world state estimates the expected future reward
for each search state. In contrast to traditional
beam search where states representing partial pro-
grams are scored based on their likelihood only,
we also consider expected future reward, leading
to a more targeted search at training time. Sec-
ond, rather than search in the space of programs,
we search in a more compressed execution space,
where each state is defined by a partial program’s
execution result.

We evaluated our method on the SCONE
dataset, which includes three different domains
where long sequences of 5 instructions are mapped
to programs. We show that while standard beam
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search gets stuck in local optima and is unable to
discover good programs for many examples, our
model is able to bootstrap, improving final perfor-
mance by 20 points on average. We also perform
extensive analysis and show that both value-based
search as well as searching in execution space con-
tribute to the final performance. Our code and
data are available at http://gitlab.com/
tau-nlp/vbsix-lang2program.

2 Background

Mapping instructions to programs invariably in-
volves a context, such as a database or a robotic en-
vironment, in which the program (or logical form)
is executed. The goal is to train a model given a
training set {(x(j) = (c(j),u(j)), y(j))}Nj=1, where
c is the context, u is a sequence of natural lan-
guage instructions, and y is the target state of
the environment after following the instructions,
which we refer to as denotation. The model is
trained to map the instructions u to a program z
such that executing z in the context c results in
the denotation y, which we denote by JzKc = y.
Thus, the program z is a latent variable we must
search for at both training and test time. When the
sequence of instructions is long, search becomes
hard, particularly in the early stages of training.

Recent work tackled the training problem us-
ing variants of reinforcement learning (RL) (Suhr
and Artzi, 2018; Liang et al., 2018) or maximum
marginal likelihood (MML) (Guu et al., 2017;
Goldman et al., 2018). We now briefly describe
MML training, which we base our training proce-
dure on, and outperformed RL in past work under
comparable conditions (Guu et al., 2017).

We denote by πθ(·) a model, parameterized by
θ, that generates the program z token by token
from left to right. The model πθ receives the con-
text c, instructions u and previously predicted to-
kens z1...t−1, and returns a distribution over the
next program token zt. The probability of a pro-
gram prefix is defined to be: pθ(z1...t | u, c) =∏t
i=1 πθ(zi | u, c, z1...i−1). The model is trained

to maximize the MML objective:

JMML = log
∏

(c,u,y)

pθ(y | c,u) =∑
(c,u,y)

log(
∑
z

pθ(z | u, c) ·R(z)),

where R(z) = 1 if JzKc = y, and 0 otherwise (For
brevity, we omit c and y from R(·)). Typically,

1. The person in an orange hat moves to the left of the person in a red hat
2. He then disappears
3. Then a person in orange appears on the far right

X: 

y:

Figure 1: Example from the SCENE domain in SCONE
(3 utterances), where people with different hats and
shirts are located in different positions. The example
contains (from top to bottom): an initial world (the peo-
ple’s properties, from left to right: a blue shirt with an
orange hat, a blue shirt with a red hat, and a green shirt
with a yellow hat), a sequence of natural language in-
structions, and a target world (the people’s properties,
from left to right: blue shirt with a red hat, green shirt
with a yellow hat, and an orange shirt).

the MML objective is optimized with stochastic
gradient ascent, where the gradient for an example
(c,u, y) is:

∇θJMML =
∑
z

q(z) ·R(z)∇θ log pθ(z|c,u)

q(z) :=
R(z) · pθ(z|c,u)∑
z̃ R(z̃) · pθ(z̃|c,u)

.

The search problem arises because it is impos-
sible to enumerate the set of all programs, and
thus the sum over programs is approximated by
a small set of high probability programs, which
have high weights q(·) that dominate the gradient.
Search is commonly done with beam-search, an
iterative algorithm that builds an approximation of
the highest probability programs according to the
model. At each time step t, the algorithm con-
structs a beam Bt of at most K program prefixes
of length t. Given a beam Bt−1, Bt is constructed
by selecting the K most likely continuations of
prefixes in Bt−1 , according to pθ(z1..t|·). The al-
gorithm runs L iterations, and returns all complete
programs discovered.

In this paper, our focus is the search problem
that arises at training time when training from de-
notations, i.e., finding programs that execute to the
right denotation. Thus, we would like to focus on
scenarios where programs are long, and standard
beam search fails. We next describe the SCONE
dataset, which provides such an opportunity.
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1 2 3

Program stack (𝜓): 

Command history (h):

World state (w0):

Current utterance (u1):
The person in the yellow hat moves to the left 
of the person in blue

1 2 3

Program stack (𝜓): 

Command history (h):

World state (w1):

Current utterance (u2):
Then he disappears

Figure 2: An illustration of a state transition in SCONE. πθ predicted the action token MOVE. Before the transition
(left), the command history is empty and the program stack contains the arguments 3 and 1, which were computed
in previous steps. Note that the state does not include the partial program that computed those arguments. After
transition (right), the executor popped the arguments from the program stack and applied the action MOVE 3 1: the
man in position 3 (a person with a yellow hat and a red shirt) moved to position 1 (to the left of the person with
the blue shirt), and the action is added to the execution history with its arguments. Since this action terminated the
command, πθ advanced to the next utterance.

The SCONE dataset Long et al. (2016) pre-
sented the SCONE dataset, where a sequence of
instructions needs to be mapped to a program con-
sisting of a sequence of executable commands.
The dataset has three domains, where each do-
main includes several objects (such as people or
beakers), each with different properties (such as
shirt color or chemical color). SCONE provides
a good environment for stress-testing search al-
gorithms because a long sequence of instructions
needs to be mapped to a program. Figure 1 shows
an example from the SCENE domain.

Formally, the context in SCONE is a world
specified by a list of positions, where each po-
sition may contain an object with certain prop-
erties. A formal language is defined to inter-
act with the world. The formal language con-
tains constants (e.g., numbers and colors), func-
tions that allow to query the world and re-
fer to objects and intermediate computations,
and actions, which are functions that modify
the world state. Each command is composed
of a single action and several arguments con-
structed recursively from constants and functions.
E.g., the command MOVE(HASHAT(YELLOW),
LEFTOF(HASSHIRT(BLUE))), contains the ac-
tion MOVE, which moves a person to a spec-
ified position. The person is computed by
HASHAT(YELLOW), which queries the world
for the position of the person with a yellow
hat, and the target position is computed by
LEFTOF(HASSHIRT(BLUE)). We refer to Guu
et al. (2017) for a full description of the language.

Our goal is to train a model that given an ini-
tial world w0 and a sequence of natural language

utterances u = (u1, . . . , uM ), will map each ut-
terance ui to a command zi such that applying the
program z = (z1, . . . , zM ) onw0 will result in the
target world, i.e., JzKw0 = wM = y.

3 Markov Decision Process Formulation

To present our algorithm, we first formulate the
problem as a Markov Decision Process (MDP),
which is a tuple (S,A, R, δ). To define the state
set S, we assume all program prefixes are exe-
cutable, which can be easily done as we show be-
low. The execution result of a prefix z̃ in the con-
text c, denoted by Jz̃Kexc , contains its denotation
and additional information stored in the executor.
Let Zpre be the set of all valid programs prefixes.
The set of states is defined to be S = {(x, Jz̃Kexc ) |
z̃ ∈ Zpre}, i.e., the input paired with all possible
execution results.

The action set A includes all possible program
tokens 1, and the transition function δ : S×A → S
is computed by the executor. Last, the reward
R(s, a) = 1 iff the action a ends the program
and leads to a state δ(s, a) where the denotation is
equal to the target y. The model πθ(·) is a parame-
terized policy that provides a distribution over the
program vocabulary at each time step.

SCONE as an MDP We define the partial ex-
ecution result Jz̃Kexc in SCONE, as described by
Guu et al. (2017). We assume that SCONE’s
formal language is written in postfix notations,
e.g., the instruction MOVE(HASHAT(YELLOW),
LEFTOF(HASSHIRT(BLUE))) is written as YEL-
LOW HASHAT BLUE HASSHIRT LEFTOF MOVE.

1Decoding is constrained to valid program tokens only.
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With this notation, a partial program can be exe-
cuted left-to-right by maintaining a program stack,
ψ. The executor pushes constants (YELLOW) to ψ,
and applies functions (HASHAT) by popping their
arguments from ψ and pushing back the computed
result. Actions (MOVE) are applied by popping ar-
guments from ψ and performing the action in the
current world.

To handle references to previously executed
commands, SCONE’s formal language includes
functions that provide access to actions and argu-
ments in previous commands. To this end, the
executor maintains an execution history, hi =
(e1, . . . , ei), a list of executed actions and their ar-
guments. Thus, the execution result of a program
prefix is Jz̃Kexw0 = (wi−1, ψ,hi−1).

We adopt the model from Guu et al. (2017) (ar-
chitecture details in appendix A): The policy πθ
observes ψ and ui, the current utterance being
parsed, and predicts a token. When the model
predicts an action token that terminates a com-
mand, the model moves to the next utterance (un-
til all utterances have been processed). The model
uses functions to query the worldwi−1 and history
hi−1. Thus, each MDP state in SCONE is a pair
s = (ui, Jz̃Kexw0). Figure 2 illustrates a state transi-
tion in the SCENE domain. Importantly, the state
does not store the full program’s prefix, and many
different prefixes may lead to the same state. Next,
we describe a search algorithm for this MDP.

4 Searching in Execution Space

Model improvement relies on generating correct
programs given a possibly weak model. Stan-
dard beam-search explores the space of all pro-
gram token sequences up to some fixed length. We
propose two technical contributions to improve
search: (a) We simplify the search problem by
searching for correct executions rather than correct
programs; (b) We use the target denotation at train-
ing time to better estimate partial program scores
in the search space. We describe those next.

4.1 Reducing program search to execution
search

Program space can be formalized as a directed tree
T = (VT , ET ), where vertices VT are program
prefixes, and labeled edges ET represent prefixes’
continuations: an edge e = (z̃, z̃′) labeled with
the token a, represents a continuation of the prefix
z̃ with the token a, which yields the prefix z̃′. The

red yellow

hasHat

hasShirt
blue

hasShirt

leftOf

move

blue

hasShirt

leftOf

move

1

move

Program search space Execution search space

red

hasHathasShirt

1

blue

hasShirt

leftOf

move

yellow

1

move

Figure 3: A set of commands represented in program
space (left) and execution space (right). The commands
relate to the first world in Figure 2. Since multiple
prefixes have the same execution result (e.g., YELLOW
HASHAT and RED HASSHIRT), the execution space is
smaller.

root of the graph represents the empty sequence.
Similarly, Execution space is a directed graphG =
(VG, EG) induced from the MDP described in Sec-
tion 3. Vertices VG represent MDP states, which
express execution results, and labeled edges EG
represent transitions. An edge (s1, s2) labeled by
token a means that δ(s1, a) = s2. Since multi-
ple programs have the same execution result, ex-
ecution space is a compressed representation of
program space. Figure 3 shows a few commands
in both program and execution space. Execution
space is smaller, and so searching in it is easier.

Each path in execution space represents a differ-
ent program prefix, and the path’s final state rep-
resents its execution result. Program search can
therefore be reduced to execution search: given an
example (c,u, y) and a model πθ, we can use πθ
to explore in execution space, discover correct ter-
minal states, i.e. states corresponding to correct
full programs, and extract paths leading to those
states. As the number of paths may be exponential
in the size of the graph, we can use beam-search
to extract the most probable correct programs (ac-
cording to the model) in the discovered graph.

Our approach is similar to the DPD algo-
rithm (Pasupat and Liang, 2016), where CKY-
style search is performed in denotation space, fol-
lowed by search in a pruned space of programs.
However, DPD was used without learning, and the
search was not guided by a trained model, which
is a major part of our algorithm.

4.2 Value-based Beam Search in Execution
Space

We propose Value-based Beam Search in
eXecution space (VBSIX), a variant of beam
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Algorithm 1 Program Search with VBSIX
1: function PROGRAMSEARCH(c,u, y, πθ, Vφ)
2: G, T ← VBSIX(c,u, y, πθ, Vφ)
3: Z ← Find paths inG that lead to states in T with beam search
4: Return Z
5: function VBSIX(c,u, y, πθ, Vφ)
6: T ← ∅, P ← {} . init terminal states and DP chart
7: s0 := The empty program parsing state
8: B0 ← {s0}, G = ({s0}, ∅) . Init beam and graph
9: P0[s0]← 1 . The probability of s0 is 1

10: for t ∈ [1 . . . L] do
11: Bt ← ∅
12: for s ∈ Bt−1, a ∈ A do
13: s′ ← δ(s, a)
14: Add edge (s, s′) toG labeled with a
15: if s′ is correct terminal then
16: T ← T ∪ {s′}
17: else
18: Pt[s

′]← Pt[s
′] + Pt−1[s] · πθ(a|s)

19: Bt ← Bt ∪ {s′}
20: SortBt by AC-SCORER(·)
21: Bt ← Keep the top-K states inBt
22: ReturnG, T
23: function AC-SCORER(s, Pt, Vφ, y)
24: Return Pt[s] + Vφ(s, y)

search modified for searching in execution space,
that scores search states with a value-based net-
work. VBSIX is formally defined in Algorithm 1,
which we will refer to throughout this section.

Standard beam search is a breadth-first traver-
sal of the program space tree, where a fixed num-
ber of vertices are kept in the beam at every level
of the tree. The selection of vertices is done by
scoring their corresponding prefixes according to
pθ(z1...t | u, c). VBSIX applies the same traver-
sal in execution space (lines 10-21). However,
since each vertex in the execution space represents
an execution result and not a particular prefix, we
need to modify the scoring function.

Let s be a vertex discovered in iteration t of the
search. We propose two scores for ranking s. The
first is the actor score, the probability of reaching
vertex s after t iterations2 according to the model
πθ. The second and more novel score is the value-
based critic score, an estimate of the state’s ex-
pected reward. The AC-Score is the sum of these
two scores (lines 23-24).

The actor score, ptθ(s), is the sum of proba-
bilities of all prefixes of length t that reach s
(rather than the probability of one prefix as in
beam search). VBSIX approximates ptθ(s) by
performing the summation only over paths that
reach s via states in the beam Bt−1, which can
be done efficiently with a dynamic programming
(DP) chart Pt[s] that keeps actor score approxima-
tions in each iteration (line 18). This lower-bounds

2We score paths in different iterations independently to
avoid bias for shorter paths. An MDP state that appears in
multiple iterations will get a different score in each iteration.

0.1 0.2
0.3

10-3

0.55

0.7 0.8

0.1

0.08 0.02
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0.6 0.1

0.5
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0.6

Figure 4: An illustration of scoring and pruning states
in step t of VBSIX. Discovered edges are in full edges,
undiscovered edges are dashed, correct terminal states
are dashed and in yellow, and states that are kept in
the beam are in dark grey. The actor scores of the high-
lighted vertex (0.5) and its parents (0.6, 0.1) are in blue,
and its critic score (0.1) is in green.

the true ptθ(s) since some prefixes of length t that
reach s might have not been discovered.

Contrary to standard beam-search, we want
to score search states also with a critic score
Epθ [R(s)], which is the sum of the suffix proba-
bilities that lead from s to a correct terminal state:

Epθ [R(s)] =
∑
τ(s)

pθ(τ(s) | s) ·R(τ(s)),

where τ(s) are all possible trajectories starting
from s and R(τ(s)) is the reward observed when
taking the trajectory τ(s) from s. Enumerating
all trajectories τ(s) is intractable and so we will
approximate Epθ [R(s)] with a trained value net-
work Vφ(s, y), parameterized by φ. Importantly,
because we are searching at training time, we can
condition Vφ on both the current state s and tar-
get denotation y. At test time we will use πθ only,
which does not need access to y.

Since the value function and DP chart are used
for efficient ranking, the asymptotic run-time com-
plexity of VBSIX is the same as standard beam
search (O(K ·|A|·L)). The beam search in Line 3,
where we extract programs from the constructed
execution space graph, can be done with a small
beam size, since it operates over a small space of
correct programs. Thus, its contribution to the al-
gorithm complexity is negligible.

Figure 4 visualizes scoring and pruning with
the actor-critic score in iteration t. Vertices in Bt
are discovered by expanding vertices in Bt−1, and
each vertex is ranked by the AC-scorer. The high-
lighted vertex score is 0.6, a sum of the actor score
(0.5) and the critic score (0.1). The actor score is
the sum of its prefixes ((0.05+0.55) · 0.7+0.01 ·
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0.08 = 0.5) and the critic score is a value net-
work estimate for the sum of probabilities of out-
going trajectories reaching correct terminal states
(0.02 + 0.08 = 0.1). Only the top-K states are
kept in the beam (K = 4 in the figure).

VBSIX leverages execution space in a num-
ber of ways. First, since each vertex in execu-
tion space compactly represents multiple prefixes,
a beam in VBSIX effectively holds more prefixes
than in standard beam search. Second, running
beam-search over a graph rather than a tree is less
greedy, as the same vertex can surface back even
if it fell out of the beam.

The value-based approach has several advan-
tages as well: First, evaluating the probability of
outgoing trajectories provides look-ahead that is
missing from standard beam search. Second (and
most importantly), Vφ is conditioned on y, which
πθ doesn’t have access to, which allows finding
correct programs with low model probability, that
πθ can learn from. We note that our two contribu-
tions are orthogonal: the critic score can be used
in program space, and search in execution space
can be done with actor-scores only.

5 Training

We train the model πθ and value network Vφ
jointly (Algorithm 2). πθ is trained using MML
over discovered correct programs (Line 4, Algo-
rithm 1). The value network is trained as fol-
lows: Given a training example (c,u, y), we gen-
erate a set of correct programs Zpos with VB-
SIX. The value network needs negative exam-
ples, and so for every incorrect terminal state zneg
found during search with VBSIX we create a sin-
gle program leading to zneg. We then construct
a set of training examples Dv, where each ex-
ample ((s, y), l) labels states encountered while
generating programs z ∈ Z with the probability
mass of correct programs suffixes that extend it,
i.e., l =

∑
zt
pθ(zt...|z|), where zt ranges over all

z ∈ Z and t ∈ [1 . . . |z|] Finally, we train Vφ to
minimize the log-loss objective:

∑
((s,y),l)∈Dvl·

logVφ(s,y)+(1−l)(log(1−Vφ(s,y))) .
Similar to actor score estimation, labeling ex-

amples for Vφ is affected by beam-search errors:
the labels lower bound the true expected reward.
However, since search is guided by the model,
those programs are likely to have low probability.
Moreover, estimates from Vφ are based on multi-
ple examples, compared to probabilities in the DP

Algorithm 2 Actor-Critic Training
1: procedure TRAIN()
2: Initialize θ and φ randomly
3: while πθ not converged do
4: (x := (c,u), y)← select random example
5: Zpos ← PROGRAMSEARCH(c,u, y, πθ, Vφ)

6: Zneg ← programs leading to incorrect terminal states
7: Dv ← BUILDVALUEEXAMPLES((Zpos ∪ Zneg), c, y)

8: Update φ usingDv , update θ using (x,Zpos, y)

9: function BUILDVALUEEXAMPLES(Z, c,u, y)
10: for z ∈ Z do
11: for t ∈ [1 . . . |z|] do
12: s← Jz1...tKexc
13: L[s]← L[s] + pθ(zt...|z| | c,u) · R(z)

14: Dv ← {((s, y), L[s])}s∈L
15: ReturnDv

chart, and are more robust to search errors.

Neural network architecture: We adapt the
model proposed by Guu et al. (2017) for SCONE.
The model receives the current utterance ui and
program stack ψ, and returns a distribution over
the next token. Our value network receives the
same input, but also the next utterance ui+1, the
world statewi and target world state y, and outputs
a scalar. Appendix A provides a full description.

6 Experiments

6.1 Experimental setup
We evaluated our method on the three domains of
SCONE with the standard accuracy metric, i.e.,
the proportion of test examples where the pre-
dicted program has the correct denotation. We
trained with VBSIX, and used standard beam
search (K = 32) at test time for programs’ gen-
eration. Each test example contains 5 utterances,
and similar to prior work we reported the model
accuracy on all 5 utterances as well as the first 3
utterances. We ran each experiment 6 times with
different random seeds and reported the average
accuracy and standard deviation.

In contrast to prior work on SCONE (Long
et al., 2016; Guu et al., 2017; Suhr and Artzi,
2018), where models were trained on all se-
quences of 1 or 2 utterances, and thus were ex-
posed during training to all gold intermediate
states, we trained from longer sequences keeping
intermediate states latent. This leads to a harder
search problem that was not addressed previously,
but makes our results incomparable to previous re-
sults 3. In SCENE and TANGRAM, we used the first
4 and 5 utterances as examples. In ALCHEMY, we
used the first utterance and 5 utterances.

3For completeness, we show the performance on these
datasets from prior work in Appendix C.
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SCENE ALCHEMY TANGRAM
Beam 3 utt 5 utt 3 utt 5 utt 3 utt 5 utt

MML 32 8.4±(2.0) 7.2±(1.3) 41.9±(22.8) 33.2±(20.1) 32.5±(20.7) 16.8±(14.1)
64 15.4±(12.6) 12.3±(9.6) 44.6±(23.7) 36.3±(20.6) 45.6±(18.0) 25.8±(12.6)

EXPERT-MML 32 1.8±(1.5) 1.6±(1.2) 29.4±(22.7) 23.1±(18.8) 2.4±(0.8) 1.2±(0.5)
VBSIX 32 34.2±(27.5) 28.2±(20.7) 74.5±(1.1) 64.8±(1.5) 65.0±(0.8) 43.0±(1.3)

Table 1: Test accuracy and standard deviation of VBSIX compared to MML baselines (top) and our training
methods (bottom). We evaluate the same model over the first 3 and 5 utterances in each domain.

SCENE ALCHEMY TANGRAM
Search space Value 3 utt 5 utt 3 utt 5 utt 3 utt 5 utt
Program No 5.5±(0.5) 3.8±(0.6) 36.4±(26.5) 25.4±(23.0) 34.4±(18.3) 15.6±(12.8)
Execution No 7.4±(10.4) 4.0±(5.8) 41.3±(28.6) 28.2±(23.27) 33.5±(15.5) 12.7±(10.4)
Program Yes 7.6±(8.3) 3.4±(2.9) 78.5±(1.0) 72.8±(1.3) 66.8±(1.5) 42.8±(1.9)
Execution Yes 31.0±(24.7) 22.6±(19.6) 81.9±(1.3) 75.2±(2.9) 68.6±(2.0) 44.2±(2.1)

Table 2: Validation accuracy when ablating the different components of VBSIX. The first line presents MML, the
last line is VBSIX, and the intermediate lines examine execution space and value-based networks separately.

Training details To warm-start the value net-
work, we trained it for a few thousand steps,
and only then start re-ranking with its predictions.
Moreover, we gain efficiency by first returning
K0(=128) states with the actor score, and then
re-ranking with the actor-critic score, returning
K(=32) states. Last, we use the value network
only in the last two utterances of every example
since we found it has less effect in earlier utter-
ances where future uncertainty is large. We used
the Adam optimizer (Kingma and Ba, 2014) and
fixed GloVe embeddings (Pennington et al., 2014)
for utterance words.

Baselines We evaluated the following training
methods (Hyper-parameters are in appendix B):
1. MML: Our main baseline, where search is
done with beam search and training with MML.
We used randomized beam-search, which adds ε-
greedy exploration to beam search, which was pro-
posed by Guu et al. (2017) and performed better 4.
2. EXPERT-MML: An alternative way of using
the target denotation y at training time, based on
imitation learning (Daume et al., 2009; Ross et al.,
2011; Berant and Liang, 2015), is to train an ex-
pert policy πexpert

θ , which receives y as input in
addition to the parsing state, and trains with the
MML objective. Then, our policy πθ is trained us-
ing programs found by πexpert

θ . The intuition is that
the expert can use y to find good programs that the
policy πθ can train from.
3. VBSIX: Our proposed training algorithm.

4We did not include meritocratic updates (Guu et al.,
2017), since it performed worse in initial experiments.

We also evaluated REINFORCE, where Monte-
Carlo sampling is used as search strategy
(Williams, 1992; Sutton et al., 1999). We followed
the implementation of Guu et al. (2017), who per-
formed variance reduction with a constant baseline
and added ε-greedy exploration. We found that
REINFORCE fails to discover any correct pro-
grams to bootstrap from.

6.2 Results

Table 1 reports test accuracy of VBSIX compared
to the baselines. First, VBSIX outperforms all
baselines in all cases. MML is the strongest base-
line, but even with an increased beam (K = 64),
VBSIX (K = 32) surpasses it by a large margin
(more than 20 points on average). On top of the
improvement in accuracy, in ALCHEMY and TAN-
GRAM the standard deviation of VBSIX is lower
than the other baselines across the 6 random seeds,
showing the robustness of our model.

EXPERT-MML performs worse than MML in
all cases. We hypothesize that using the denota-
tion y as input to the expert policy πexpert

θ results in
many spurious programs, i.e., they are unrelated
to the utterance meaning. This is since the expert
can learn to perform actions that take it to the tar-
get world state while ignoring the utterances com-
pletely. Such programs will lead to bad general-
ization of πθ. Using a critic at training time elimi-
nates this problem, since its scores depend on πθ.

Ablations We performed ablations to examine
the benefit of our two technical contributions
(a) execution space (b) value-based search. Ta-
ble 2 presents accuracy on the validation set when
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Figure 5: Training hit accuracy on examples with 5 utterances, comparing VBSIX to baselines with ablated
components. The results are averaged over 6 runs with different random seeds (best viewed in color)

each component is used separately, when both of
them are used (VBSIX), and when none are used
(beam-search). We find that both contributions
are important for performance, as the full system
achieves the highest accuracy in all domains. In
SCENE, each component has only a slight advan-
tage over beam-search, and therefore both are re-
quired to achieve significant improvement. How-
ever, in ALCHEMY and TANGRAM most of the
gain is due to the value network.

We also directly measured the hit accuracy at
training time, i.e., the proportion of training ex-
amples where the beam produced by the search al-
gorithm contains a program with the correct deno-
tation, showing the effectiveness of search at train-
ing time. In Figure 5, we report train hit accuracy
in each training step, averaged across 6 random
seeds. The graphs illustrate the performance of
each search algorithm in every domain throughout
training. The validation accuracy results are corre-
lated with the improvement in train hit-accuracy.

6.3 Analysis

Execution Space We empirically measured two
quantities that we expect should reflect the advan-
tage of execution-space search. First, we mea-
sured the number of programs stored in the execu-
tion space graph compared to beam search, which
holds K programs. Second, we counted the av-
erage number of states that are connected to cor-
rect terminal states in the discovered graph, but
fell out of the beam during the search. The prop-
erty reflects the gain from running search over a
graph structure, where the same vertex can resur-
face. We preformed the analysis on VBSIX over
5-utterance training examples in all 3 domains.
The following table summarizes the results:

We found the measured properties and the con-
tribution of execution space in each domain are

Property SCENE ALCHEMY TANGRAM
Paths in beam 143903 5892 678
Correct pruned 18.5 11.2 3.8

correlated, as seen in the ablations. Differences
between domains are due to the different com-
plexities of their formal languages. As the for-
mal language becomes more expressive, the exe-
cution space is more compressed as each state can
be reached in more ways. In particular, the formal
language in SCENE contains more functions com-
pared to the other domains, and so it benefits the
most from execution-space search.

Value Network We analyzed the accuracy of the
value network at training time by measuring, for
each state, the difference between its expected re-
ward (estimated from the discovered paths) and
the value network prediction. Figure 6 shows the
average difference in each training step for all en-
countered states (in blue), and for high reward
states only (states with expected reward larger than
0.7, in orange). Those metrics are averaged across
6 runs with different random seeds.

The accuracy of the value network improves
during training, except when the policy changes
substantially, in which case the value network
needs to re-evaluate the policy. When the value
network converges, the difference between its pre-
dictions and the expected reward is 0.15 − 0.2
on average. However, for high reward states the
difference is higher (∼ 0.3). This indicates that
the value network has a bias toward lower values,
which is expected as most states lead to low re-
wards. Since VBSIX uses the value network as
a beam-search ranker, the value network doesn’t
need to be exact as long as it assigns higher val-
ues to states with higher expected rewards. Further
analysis is provided in appendix D.
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Figure 6: The difference between the prediction of the value network and the expected reward (estimated from
the discovered paths) during training. We report the average difference for all of the states (blue) and for the high
reward states only (> 0.7, orange). The results are averaged over 6 runs with different random seeds (best viewed
in color).

7 Related Work

Training from denotations has been extensively in-
vestigated (Kwiatkowski et al., 2013; Pasupat and
Liang, 2015; Bisk et al., 2016), with a recent em-
phasis on neural models (Neelakantan et al., 2016;
Krishnamurthy et al., 2017). Improving beam
search has been investigated by proposing special-
ized objectives (Wiseman and Rush, 2016), stop-
ping criteria (Yang et al., 2018), and using contin-
uous relaxations (Goyal et al., 2018).

Bahdanau et al. (2017) and Suhr and Artzi
(2018) proposed ways to evaluate intermediate
predictions from a sparse reward signal. Bah-
danau et al. (2017) used a critic network to es-
timate expected BLEU in translation, while Suhr
and Artzi (2018) used edit-distance between the
current world and the goal for SCONE. But, in
those works stronger supervision was assumed:
Bahdanau et al. (2017) utilized the gold sequences,
and Suhr and Artzi (2018) used intermediate
worlds states. Moreover, intermediate evaluations
were used to compute gradient updates, rather than
for guiding search.

Guiding search with both policy and value
networks was done in Monte-Carlo Tree Search
(MCTS) for tasks with a sparse reward (Silver
et al., 2017; T. A. and and Barber, 2017; Shen
et al., 2018). In MCTS, value network evaluations
are refined with backup updates to improve policy
scores. In this work, we gain this advantage by us-
ing the target denotation. The use of an actor and
a critic is also reminiscent of A∗ where states are
scored by past cost and an admissible heuristic for
future cost (Klein and Manning, 2003; Pauls and
Klein, 2009; lee et al., 2016). In semantic parsing,
Misra et al. (2018) recently proposed a critic dis-
tribution to improve the policy, which is based on

prior domain knowledge (that is not learned).

8 Conclusions

In this work, we propose a new training algorithm
for mapping instructions to programs given deno-
tation supervision only. Our algorithm exploits the
denotation at training time to train a critic network
used to rank search states on the beam, and per-
forms search in a compact execution space rather
than in the space of programs. We evaluated on
three different domains from SCONE, and found
that it dramatically improves performance com-
pared to strong baselines across all domains.

VBSIX is applicable to any task that supports
graph-search exploration. Specifically, for tasks
that can be formulated as an MDP with a deter-
ministic transition function, which allow efficient
execution of multiple partial trajectories. Those
tasks include a wide range of instruction mapping
(Branavan et al., 2009; Vogel and Jurafsky, 2010;
Anderson et al., 2018) and semantic parsing tasks
(Dahl et al., 1994; Iyyer et al., 2017; Yu et al.,
2018). Therefore, evaluating VBSIX on other do-
mains is a natural next step for our research.
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A Neural Network Architecture

We adopt the model πθ(·) proposed by Guu et al.
(2017). The model receives the current utterance
ui and the program stackψ. A bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) is used to
embed ui, while ψ is embedded by concatenat-
ing the embedding of stack elements. The em-
bedded input is then fed to a feed-forward net-
work with attention over the LSTM hidden states,
followed by a softmax layer that predicts a pro-
gram token. Our value network Vφ(·) shares the
input layer of πθ(·). In addition, it receives the
next utterance ui+1, the current world state wi and
the target world state wM . The utterance ui+1 is
embedded with an additional BiLSTM, and world
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Figure 7: The model proposed by Guu et al. (2017)
(top), and our value network (bottom).

states are embedded by concatenating embeddings
of SCONE elements. The inputs are concatenated
and fed to a feed-forward network, followed by a
sigmoid layer that outputs a scalar.

B Hyper-parameters

Table 3 contains the hyper-parameter setting for
each experiment. Hyper-parameters of REIN-
FORCE and MML were taken from Guu et al.
(2017). In all experiments learning rate was 0.001
and mini-batch size was 8. We explicitly define
the following hyper-parameters which are not self-
explanatory:
1. Training steps: The number of training steps
taken.
2. Sample size: Number of samples drawn from
pθ in REINFORCE
3. Baseline: A constant subtracted from the re-
ward for variance reduction.
4. Execution beam size: K in Algorithm 1.
5. Program bea size: Size of beam in line 3 of
Algorithm 1.
6. Value ranking start step: Step when we start
ranking states using the critic score.
7. Value re-rank size: Size of beam K0 returned
by the actor score before re-ranking with the actor-
critic score.

C Prior Work

In prior work on SCONE, models were trained
on sequences of 1 or 2 utterances, and thus were
exposed during training to all gold intermediate
states (Long et al., 2016; Guu et al., 2017; Suhr
and Artzi, 2018). Fried et al. (2018) assumed ac-

cess to the full annotated logical form. In con-
trast, we trained from longer sequences, keeping
the logical form and intermediate states latent. We
report the test accuracy as reported by prior work
and in this paper, noting that our results are an av-
erage of 6 runs, while prior work reports the me-
dian of 5 runs.

Naturally, our results are lower compared to
prior work that uses much stronger supervision.
This is because our setup poses a hard search prob-
lem at training time, and also requires overcom-
ing spuriousness – the fact that even incorrect pro-
grams sometimes lead to high reward.

D Value Network Analysis

We analyzed the ability of the value network to
predict expected reward. The reward of a state de-
pends on two properties, (a) connectivity: whether
there is a trajectory from this state to a correct ter-
minal state, and (b) model likelihood: the proba-
bility the model assigns to those trajectories. We
collected a random set of 120 states in the SCENE

domain from, where the real expected reward was
very high (> 0.7), or very low (= 0.0) and the
value network predicted well (less than 0.2 devia-
tion) or poorly (more than 0.5 deviation). For ease
of analysis we only look at states from the final
utterance.

To analyze connectivity, we looked at states that
cannot reach a correct terminal state with a single
action (since states in the last utterance can per-
form one action only, the expected reward is 0).
Those are states where either their current and tar-
get world differ in too many ways, or the stack
content is not relevant to the differences between
the worlds. We find that when there are many dif-
ferences between the current and target world, the
value network correctly estimates low expected re-
ward in 87.0% of the cases. However, when there
is just one mismatch between the current and tar-
get world, the value network tends to ignore it and
erroneously predicts high reward in 78.9% of the
cases.

To analyze whether the value network can pre-
dict the success of the trained policy, we consider
states from which there is an action that leads to
the target world. While it is challenging to fully
interpret the value network, we notice that the net-
work predicts a value that is > 0.5 in 86.1% of
the cases where the number of people in the world
is no more than 2, and a value that is < 0.5 in
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System SCENE ALCHEMY TANGRAM
REINFORCE Training steps = 22.5k Training steps = 31.5k Training steps = 40k

Sample size = 32 Sample size = 32 Sample size = 32
ε = 0.2 ε = 0.2 ε = 0.2
Baseline = 10−5 Baseline = 10−2 Baseline = 10−3

MML Training steps = 22.5k Training steps = 31.5k Training steps = 40k
Beam size = 32 Beam size = 32 Beam size = 32
ε = 0.15 ε = 0.15 ε = 0.15

VBSiX Training steps = 22.5k Training steps = 31.5k Training steps = 40k
Execution beam size = 32 Execution beam size = 32 Execution beam size = 32
Program beam size = 8 Program beam = 8 Program beam size = 8
ε = 0.15 ε = 0.15 ε = 0.15
Value ranking start step = 5k Value ranking start step = 5k Value ranking start step = 10k
Value re-rank size = 128 Value re-rank size = 128 Value re-rank size = 128

Table 3: Hyper-parameter settings.

SCENE ALCHEMY TANGRAM
3 utt 5 utt 3 utt 5 utt 3 utt 5 utt

Long et al. (2016) 23.2 14.7 56.8 52.3 64.9 27.6
Guu et al. (2017) 64.8 46.2 66.9 52.9 65.8 37.1
Suhr and Artzi (2018) 73.9 62.0 74.2 62.7 80.8 62.4
Fried et al. (2018) – 72.7 – 72.0 – 69.6
VBSIX 34.2 28.2 74.5 64.8 65.0 43.0

Table 4: Test accuracy comparison to prior work.

82.1% of the cases where the number of people in
the world is more than 2. This indicates that the
value network believes more complex worlds, in-
volving many people, are harder for the policy.


