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Abstract
Pre-trained word vectors are ubiquitous in
Natural Language Processing applications. In
this paper, we show how training word em-
beddings jointly with bigram and even trigram
embeddings, results in improved unigram em-
beddings. We claim that training word embed-
dings along with higher n-gram embeddings
helps in the removal of the contextual infor-
mation from the unigrams, resulting in better
stand-alone word embeddings. We empirically
show the validity of our hypothesis by outper-
forming other competing word representation
models by a significant margin on a wide va-
riety of tasks. We make our models publicly
available.

1 Introduction

Distributed word representations are essential
building blocks of modern NLP systems. Used
as features in downstream applications, they often
enhance generalization of models trained on a lim-
ited amount of data. They do so by capturing rel-
evant distributional information about words from
large volumes of unlabeled text.

Efficient methods to learn word vectors have
been introduced in the past, most of them based
on the distributional hypothesis of Harris (1954);
Firth (1957): “a word is characterized by the com-
pany it keeps”. While a standard approach re-
lies on global corpus statistics (Pennington et al.,
2014) formulated as a matrix factorization us-
ing mean square reconstruction loss, other widely
used methods are the bilinear word2vec architec-
tures introduced by Mikolov et al. (2013a): While
skip-gram aims to predict nearby words from a
given word, CBOW predicts a target word from
its set of context words.

Recently, significant improvements in the qual-
ity of the word embeddings were obtained by

* indicates equal contribution

augmenting word-context pairs with sub-word in-
formation in the form of character n-grams (Bo-
janowski et al., 2017), especially for morpholog-
ically rich languages. Nevertheless, to the best
of our knowledge, no method has been introduced
leveraging collocations of words with higher order
word n-grams such as bigrams or trigrams as well
as character n-grams together.

In this paper, we show how using higher order
word n-grams along with unigrams during training
can significantly improve the quality of obtained
word embeddings. The addition furthermore helps
to disentangle contextual information present in
the training data from the unigrams and results in
overall better distributed word representations.

To validate our claim, we train two modifica-
tions of CBOW augmented with word-n-gram in-
formation during training. One is a recent sen-
tence embedding method, Sent2Vec (Pagliardini
et al., 2018), which we repurpose to obtain word
vectors. The second method we propose is a
modification of CBOW enriched with character n-
gram information (Bojanowski et al., 2017) that
we again augment with word n-gram information.
In both cases, we compare the resulting vectors
with the most widely used word embedding meth-
ods on word similarity and analogy tasks and show
significant quality improvements. The code used
to train the models presented in this paper as well
as the models themselves are made available to the
public1.

2 Model Description

Before introducing our model, we recapitulate
fundamental existing word embeddings methods.

CBOW and skip-gram models. Continuous
bag-of-words (CBOW) and skip-gram models are

1publicly available on http://github.com/
epfml/sent2vec
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standard log-bilinear models for obtaining word
embeddings based on word-context pair informa-
tion (Mikolov et al., 2013a). Context here refers to
a symmetric window centered on the target word
wt, containing the surrounding tokens at a distance
less than some window size ws: Ct = {wk | k ∈
[t − ws, t + ws]}. The CBOW model tries to pre-
dict the target word given its context, maximizing
the likelihood

∏T
t=1 p(wt|Ct), whereas skip-gram

learns by predicting the context for a given target
word maximizing

∏T
t=1 p(Ct|wt). To model those

probabilities, a softmax activation is used on top
of the inner product between a target vector uwt

and its context vector 1
|Ct|

∑
w∈Ct

vw.
To overcome the computational bottleneck of

the softmax for large vocabulary, negative sam-
pling or noise contrastive estimation are well-
established (Mikolov et al., 2013b), with the idea
of employing simpler pairwise binary classifier
loss functions to differentiate between the valid
context Ct and fake contexts NCt sampled at ran-
dom. While generating target-context pairs, both
CBOW and skip-gram also use input word sub-
sampling, discarding higher-frequency words with
higher probability during training, in order to pre-
vent the model from overfitting the most frequent
tokens. Standard CBOW also uses a dynamic con-
text window size: for each subsampled target word
w, the size of its associated context window is
sampled uniformly between 1 and ws (Mikolov
et al., 2013b).

Adding character n-grams. Bojanowski et al.
(2017) have augmented CBOW and skip-gram by
adding character n-grams to the context represen-
tations. Word vectors are expressed as the sum
of its unigram and average of its character n-gram
embeddings Ww:

v := vw +
1

|Ww|
∑

c∈Ww

vc

Character n-grams are hashed to an index in
the embedding matrix . The training remains the
same as for CBOW and skip-gram. This approach
greatly improves the performances of CBOW and
skip-gram on morpho-syntactic tasks. For the rest
of the paper, we will refer to the CBOW and skip-
gram methods enriched with subword-information
as CBOW-char and skip-gram-char respectively.

GloVe. Instead of training online on lo-
cal window contexts, GloVe vectors (Penning-
ton et al., 2014) are trained using global co-

occurrence statistics by factorizing the word-
context co-occurrence matrix.

Ngram2vec. In order to leverage the perfor-
mance of word vectors, training of word vec-
tors using the skip-gram objective function with
negative sampling is augmented with n-gram co-
occurrence information (Zhao et al., 2017).

2.1 Improving unigram embeddings by
adding higher order word-n-grams to
contexts

CBOW-char with word n-grams. We propose to
augment CBOW-char to additionally use word n-
gram context vectors (in addition to char n-grams
and the context word itself). More precisely, dur-
ing training, the context vector for a given wordwt

is given by the average of all word-n-gramsNt, all
char-n-grams, and all unigrams in the span of the
current context window Ct:

v :=

∑
w∈Ct

vw +
∑

n∈Nt
vn +

∑
w∈Ct

∑
c∈Ww

vc

|Ct|+ |Nt|+
∑

w∈Ct
|Ww|

(1)
For a given sentence, we apply input subsam-
pling and a sliding context window as for standard
CBOW. In addition, we keep the mapping from
the subsampled sentence to the original sentence
for the purpose of extracting word n-grams from
the original sequence of words, within the span
of the context window. Word n-grams are added
to the context using the hashing trick in the same
way char-n-grams are handled. We use two dif-
ferent hashing index ranges to ensure there is no
collision between char n-gram and word n-gram
representations.

Sent2Vec for word embeddings. Initially im-
plemented for sentence embeddings, Sent2Vec
(Pagliardini et al., 2018) can be seen as a deriva-
tive of word2vec’s CBOW. The key differences
between CBOW and Sent2Vec are the removal of
the input subsampling, considering the entire sen-
tence as context, as well as the addition of word-
n-grams.

Here, word and n-grams embeddings from an
entire sentence are averaged to form the corre-
sponding sentence (context) embedding.

For both proposed CBOW-char and Sent2Vec
models, we employ dropout on word n-grams dur-
ing training. For both models, word embeddings
are obtained by simply discarding the higher order
n-gram embeddings after training.
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Model WS 353 WS 353 Relatedness WS 353 Similarity
CBOW-char .709± .006 .626± .009 .783± .004
CBOW-char + bi. .719± .007 .652± .010 .778± .007
CBOW-char + bi. + tri. .727± .008 .664± .008 .783± .004
Sent2Vec uni. .705± .004 .593± .005 .793± .006
Sent2Vec uni. + bi. .755± .005 .683± .008 .817± .007
Sent2Vec uni. + bi. + tri. .780± .003 .721± .006 .828± .003

Model SimLex-999 MEN Rare Words Mechanical Turk
CBOW-char .424± .004 .769± .002 .497± .002 .675± .007
CBOW-char + bi. .436± .004 .786± .002 .506± .001 .671± .007
CBOW-char + bi. + tri. .441± .003 .788± .002 .509± .003 .678± .010
Sent2Vec uni. .450± .003 .765± .002 .444± .001 .625± .005
Sent2Vec uni. + bi. .440± .002 .791± .002 .430± .002 .661± .005
Sent2Vec uni. + bi. + tri. .464± .003 .798± .001 .432± .003 .658± .006

Model
Google

(Syntactic Analogies)
Google

(Semantic Analogies)
MSR

CBOW-char .920± .001 .799± .004 .842± .002
CBOW-char + bi. .928± .003 .798± .006 .856± .004
CBOW-char + bi. + tri. .929± .001 .794± .005 .857± .002
Sent2Vec uni. .826± .003 .847± .003 .734± .003
Sent2Vec uni. + bi. .843± .004 .844± .002 .754± .004
Sent2Vec uni. + bi. + tri. .837± .003 .853± .003 .745± .001

Table 1: Impact of using word n-grams: Models are compared using Spearman correlation measures for word
similarity tasks and accuracy for word analogy tasks. Top performances on each dataset are shown in bold. An
underline shows the best model(s) restricted to each architecture type. The abbreviations uni., bi., and tri. stand
for unigrams, bigrams, and trigrams respectively.

3 Experimental Setup

3.1 Training

We train all competing models on a wikipedia
dump of 69 million sentences containing 1.7 bil-
lion words, following (Pagliardini et al., 2018).

Sentences are tokenized using the Stanford NLP
library (Manning et al., 2014). All algorithms are
implemented using a modified version of the fast-
text (Bojanowski et al., 2017; Joulin et al., 2017)
and sent2vec (Pagliardini et al., 2018) libraries re-
spectively. Detailed training hyperparameters for
all models included in the comparison are pro-
vided in Table 3 in the supplementary material.
During training, we save models checkpoints at 20
equidistant intervals and found out that the best
performance for CBOW models occurs around
60−80% of the total training. As a result, we also
indicate the checkpoint at which we stop training
the CBOW models. We use 300-dimension vec-
tors for all our word embedding models. For the
Ngram2vec model, learning source and target em-
beddings for all the n-grams upto bigrams was the

best performing model and is included in the com-
parison.

For each method, we extensively tuned hyper-
parameters starting from the recommended val-
ues. For each model, we select the parameters
which give the best averaged results on our word-
similarity and analogy tasks. After selecting the
best hyperparameters, we train 5 models for each
method, using a different random seed. The re-
ported results are given as mean and standard de-
viation for those five models.

3.2 Evaluation

In order to evaluate our model, we use six datasets
covering pair-wise word-similarity tasks and two
datasets covering word-analogy tasks.

Word-similarity tasks. Word-similarity tasks
consist of word pairs along with their human
annotated similarity scores. To evaluate the
performance of our models on pair-wise word-
similarity tasks, we use WordSim353 (353 word-
pairs) (Finkelstein et al., 2002) divided into two
datasets, WordSim Similarity (203 word-pairs) and
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Model WS 353 WS 353 Relatedness WS 353 Similarity
CBOW-char + bi. + tri. .727± .008 .664± .008 .783± .004
Sent2Vec uni. + bi. + tri. .780± .003 .721± .006 .828± .003
CBOW-char .709± .006 .626± .009 .783± .004
CBOW .722± .008 .634± .008 .796± .005
Skip-gram-char .724± .007 .655± .008 .789± .004
Skip-gram .736± .004 .672± .007 .796± .005
GloVe .559± .002 .484± .005 .665± .008
Ngram2vec bi. - bi. .745± .003 .687± .003 .797± .004

Model SimLex-999 MEN Rare Words Mechanical Turk
CBOW-char + bi. + tri. .441± .003 .788± .002 .509± .003 .678± .010
Sent2Vec uni. + bi. + tri. .464± .003 .798± .001 .432± .003 .658± .006
CBOW-char .424± .004 .769± .002 .497± .002 .675± .007
CBOW .432± .004 .757± .002 .454± .002 .674± .006
Skip-gram-char .395± .003 .762± .001 .487± .002 .684± .003
Skip-gram .405± .001 .770± .001 .468± .002 .684± .005
GloVe .375± .002 .690± .001 .327± .002 .622± .004
Ngram2vec bi. - bi. .424± .000 .756± .001 .462± .002 .681± .004

Model
Google

(Syntactic Analogies)
Google

(Semantic Analogies)
MSR

CBOW-char + bi. + tri. .929± .001 .794± .005 .857± .002
Sent2Vec uni. + bi. + tri. .837± .003 .853± .003 .745± .001
CBOW-char .920± .001 .799± .004 .842± .002
CBOW .816± .002 .805± .005 .713± .004
Skip-gram-char .860± .001 .828± .005 .796± .003
Skip-gram .829± .002 .837± .002 .753± .005
GloVe .767± .002 .697± .007 .678± .003
Ngram2vec bi. - bi. .834± .001 .812± .003 .761± .001

Table 2: Improvement over existing methods: Models are compared using Spearman correlation measures for word
similarity tasks and accuracy for word analogy tasks. Top performance(s) on each dataset is(are) shown in bold.
The abbreviations uni., bi., and tri. stand for unigrams, bigrams, and trigrams respectively.

WordSim Relatedness (252 word-pairs) (Agirre
et al., 2009); MEN (3000 word-pairs) (Bruni et al.,
2012); Mechanical Turk dataset (Radinsky et al.,
2011) (287 word-pairs); Rare words dataset (2034
word-pairs) (Luong et al., 2013); and SimLex-999
(999 word-pairs) (Hill et al., 2015) dataset.

To calculate the similarity between two words,
we use the cosine similarity between their word
representations. The similarity scores then, are
compared to the human ratings using Spear-
man’s ρ (Spearman, 1904) correlation scores.

Word-analogy tasks. Word analogy tasks pose
analogy relations of the form “x is to y as x? is to
y?”, where y is hidden and must be guessed from
the dataset vocabulary.

We use the MSR (Mikolov et al., 2013c) and the
Google (Mikolov et al., 2013a) analogy datasets.

The MSR dataset contains 8000 syntactic analogy
quadruplets while the Google set has 8869 seman-
tic and 10675 syntactic relations.

To calculate the missing word in the relation,
we use the 3CosMul method (Levy and Goldberg,
2014):

y? := arg max
z∈V\{x,y,x?}

cos(vz,vy) · cos(vz,vx?)

cos(vz,vx) + ε
(2)

where ε = 0.0001 is used to prevent division by
0 and V is the dataset vocabulary.

We remove all the out of vocabulary words and
are left with 6946 syntactic relations for the MSR
dataset and 1959 word-pairs for the Rare Words
dataset. All other datasets do not have any out of
vocabulary words.
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4 Results

Impact of word n-grams. In Table 1, we eval-
uate the impact of adding contextual word n-
grams to two CBOW variations: CBOW-char and
Sent2Vec. By adding n-gram information, we con-
sistently observe a boost in the Spearman corre-
lation on the word similarity tasks. On the few
datasets where we do not observe an improvement,
the results for word-n-gram augmented methods
are within standard deviation reach. The Rare
Words dataset for Sent2Vec is the only exception,
despite getting some improvement for CBOW-
char based methods. This observation can be
attributed to the fact that character ngrams are
shared between unigrams, enhancing generaliza-
tion to infrequent words. Without char n-grams,
the model might underfit those rare words, even
more so with word n-grams.

We also see that the boost obtained by adding n-
grams on word-similarity tasks is much larger for
Sent2Vec models as compared to the CBOW-char
ones possibly due to the fact that during training,
Sent2Vec models use a much larger context and
hence can use much more n-gram information for
obtaining a better context representation.

For analogy tasks, we see an improvement in
the augmented CBOW-char methods for morpho-
syntactic analogy datasets with little or no gain
for semantic analogy datasets. Yet, for Sent2Vec
models, the gain is the other way around. This ob-
servation indicates the strong role played by char-
acter n-grams in boosting the performance on the
syntactic tasks as well as restricting the word n-
grams from improving the performance on seman-
tic analogies.

Comparison with competing methods. In
Table 2, we compare word n-gram augmented
methods with the most prominent word embed-
ding models. We obtain state-of-the-art results for
standalone unigram embeddings on most of the
datasets confirming our hypothesis. The Mechan-
ical Turk dataset is the only exception.

We notice that Sent2Vec trigrams model dom-
inates the word-similarity tasks as well as the se-
mantic analogy tasks. However, character n-grams
are quite helpful when it comes to syntactic anal-
ogy tasks underlining the importance of subword
information. We also note that the Ngram2vec
model outperforms our augmented CBOW-char
model in some of the tasks but is always inferior
to Sent2Vec in those cases.

5 Conclusion and Future Work

We empirically show how augmenting the con-
text representations using higher-order word n-
grams improves the quality of word representa-
tions. The empirical success also calls for a new
theoretical model on the composite effect of train-
ing higher order n-grams simultaneously with un-
igrams. Also, the success of Sent2Vec on word-
level tasks, a method originally geared towards
obtaining general purposed sentence embeddings,
hints towards the additional benefits of using com-
positional methods for obtaining sentence/phrase
representations.
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A Training parameters for selected
models

Training parameters for all models except GloVe
and Ngram2vec are provided in Table 3. For the
GloVe model , the minimum word count is set to
10; the window size is set to 10; we use 10 epochs
for training; Xmax, the weighting parameter for
the word-context pairs is set to 100; all other pa-
rameters are set to default. For Ngram2vec, the
minimum word count is set to 10; the window
size is set to 5; both source and target vectors
are trained for unigrams and bigrams; overlap be-
tween the target word and source n-grams is al-
lowed. All other features are set to default. To
train the Ngram2vec models, we use the library
provided by (Zhao et al., 2017)2.

2https://github.com/zhezhaoa/ngram2vec
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Model Sent2Vec
uni.

Sent2Vec
uni.+bi.

Sent2Vec
uni.+bi+tri.

CBOW
(char.)

CBOW
(char.)+bi.

CBOW
(char.)+bi.+tri. CBOW Skip-gram

(char.) Skip-gram

Embedding
Dimensions 300 300 300 300 300 300 300 300 300

Max Vocab.
Size 750k 750k 750k 750k 750k 750k 750k 750k 750k

Minimum
Word Count 5 5 5 5 5 5 5 5 5

Initial
Learning Rate 0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.05 0.05

Epochs 9 9 9 9 9 9 5 15 15
Subsampling
hyper-param. 1 × 10−5 5 × 10−5 5 × 10−6 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Word-Ngrams
Bucket Size - 2M 4M - 2M 4M - - -

Char-Ngrams
Bucket Size - - - 2M 2M 2M - 2M -

Word-Ngrams
Dropped

per context
- 4 4 - 2 2 - - -

Window
Size - - - 10 10 10 10 5 5

Number of
negatives
sampled

10 10 10 5 5 5 5 5 5

Max
Char-Ngram

Size
- - - 6 6 6 - 6 -

Min
Char-Ngram

Size
- - - 3 3 3 - 3 -

Percentage at
which training

is halted
(For CBOW
models only)

- - - 75% 80% 80% 60% - -

Table 3: Training parameters for all non-GloVe models


