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Abstract

Fine-grained Entity typing (FGET) is the task
of assigning a fine-grained type from a hierar-
chy to entity mentions in the text. As the tax-
onomy of types evolves continuously, it is de-
sirable for an entity typing system to be able to
recognize novel types without additional train-
ing. This work proposes a zero-shot entity typ-
ing approach that utilizes the type description
available from Wikipedia to build a distributed
semantic representation of the types. During
training, our system learns to align the entity
mentions and their corresponding type repre-
sentations on the known types. At test time,
any new type can be incorporated into the sys-
tem given its Wikipedia descriptions. We eval-
uate our approach on FIGER, a public bench-
mark entity tying dataset. Because the exist-
ing test set of FIGER covers only a small por-
tion of the fine-grained types, we create a new
test set by manually annotating a portion of the
noisy training data. Our experiments demon-
strate the effectiveness of the proposed method
in recognizing novel types that are not present
in the training data.

1 Introduction

Entity Typing assigns a semantic type (e.g., per-
son, location, organization) to an entity mention
in text based on the local context. It is useful for
enhancing a variety of Natural Language Process-
ing(NLP) tasks such as question answering (Han
et al., 2017; Das et al., 2017), relation extrac-
tion (Liu et al., 2014; Yaghoobzadeh et al., 2016),
and entity linking (Stern et al., 2012). Traditional
Named Entity Typing systems consider a small set
of coarse types (e.g., person, location, organiza-
tion) (Tjong Kim Sang and De Meulder, 2003; Kr-
ishnan and Manning, 2006; Chieu and Ng, 2002).
Recent studies address larger sets of fine-grained
types organized in type hierarchies (e.g., per-
son/artist, person/author) (Ling and Weld, 2012;

Corro et al., 2015; Xu and Barbosa, 2018; Murty
et al., 2018). Fine-Grained Entity Typing (FGET)
is usually approached as a multi-label classifica-
tion task where an entity mention can be assigned
multiple types that usually constitute a path in the
hierarchy (Ren et al., 2016).

In real-world scenarios, there is a need to deal
with ever-growing type taxonomies. New types
emerge, and existing types are refined into finer
sub-categories. Traditional methods for entity typ-
ing assume that the training data contains all pos-
sible types, thus require new annotation effort for
each new type that emerges. Zero-shot learning
(ZSL), a special kind of transfer learning, allows
for new types to be incorporated at the predic-
tion stage without the need for additional annota-
tion and retraining. The main idea behind ZSL is
to learn a shared semantic space for representing
both the seen and unseen types, which allows the
knowledge about how examples link to the seen
types to be transferred to unseen types.

For fine-grained entity types, we observe that
their associated Wikipedia pages often provide
a rich description of the types. To capture
this, we propose a Description-based Zero-shot
Entity Typing (DZET) approach that utilizes
the Wikipedia description of each type (e.g.,
see https://en.wikipedia.org/wiki/
Artist for description of the type person/artist)
to generate a representation of that type. We learn
to project the entity-mention representations and
the type representations into a shared semantic
space, such that the mention is closer to the cor-
rect type(s) than the incorrect types. The mid-level
type representation derived from the Wikipedia
page along with the learned projection function al-
lows the system to recognize new types requiring
zero training examples.

We investigate different approaches for
constructing the type representation based on

https://en.wikipedia.org/wiki/Artist
https://en.wikipedia.org/wiki/Artist
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Wikipedia descriptions. Note that the descriptions
can be quite long, often containing many different
parts that are useful for recognizing different
entity mentions. This motivates us to generate
a bag of representations for each type and apply
average pooling to aggregate the results.

We evaluate the performance of our methods on
FIGER, a benchmark dataset for the FNET task,
in which types are organized in 2-levels hierarchy.
In this work, We focus on testing our method’s ca-
pability in recognizing unseen fine-grained types (
Level-2 types in this dataset). As the current test
set of FIGER contains examples from only a few
level-2 types, we created a new test data that cov-
ers most of the level-2 types by manually annotat-
ing a portion of the noisy training data. Below we
summarize our main contributions.

• We proposed a description-based zero-shot
fine-grained entity typing framework that
uses Wikipedia descriptions to represent and
detect novel types unseen in training.

• We created a new test set for fine-grained en-
tity typing that provides much better cover-
age of the level-2 (fine-grained) types com-
pared to the original FIGER test data.

• We provided experimental evidence of the ef-
fectiveness of our approach in comparison
with established baselines.

2 Related Work

Existing work on FGET focuses on perform-
ing context-sensitive typing (Gillick et al., 2014;
Corro et al., 2015), learning from noisy training
data (Abhishek et al., 2017; Ren et al., 2016; Xu
and Barbosa, 2018), and exploiting the type hier-
archies to improve the learning and inference (Yo-
gatama et al., 2015; Murty et al., 2018). More re-
cent studies support even finer granularity (Choi
et al., 2018; Murty et al., 2018). However, all the
methods above have the limitation that they as-
sume all types are present during training.

Zero-Shot Learning has been extensively stud-
ied in Computer Vision (CV) (Wang et al., 2019)
for tasks such as image classification (Lampert
et al., 2014; Zhang and Saligrama, 2015; Socher
et al., 2013), object localization (Li et al., 2014,
2017) and image retrieval (Xu et al., 2017; Zhang
et al., 2018). A common approach for zero-shot
learning in CV is to represent each class (e.g.,

Zebra) by a set of semantic attributes such as its
shape and color. The semantic attributes serve as
the intermediate level that connects the visual fea-
tures with the classes. The model is trained to
learn an alignment between the semantic attributes
and the visual features where a new class can be
recognized using its semantic attributes without
the need for any training examples. In contrast,
this type of approach tends not to work well for
NLP applications as the semantic concepts/classes
in NLP are often more complex and cannot be
easily described by a set of pre-defined attributes.
This explains why the few studies of ZSL for NLP
use very different methods to create the transfer-
able intermediate representations.

Zero-Shot Learning has been studied for a
number of NLP tasks including event extraction
(Huang et al., 2018; Lee and Jha, 2018; Srivastava
et al., 2018), relation extraction(Liu et al., 2014),
Conversational Language Understanding (Lee and
Jha, 2018). Specifically, Zero shot entity typing
has also been explored, where most of the prior
methods adopt the idea of learning a shared se-
mantic space for representing the entities as well
as the types, but differ in how they construct the
type embeddings. In OTyper (Yuan and Downey,
2018), each type is represented by averaging the
embedding of the words constitutes the type label.
On the other hand, ProtoLE (Ma et al., 2016) rep-
resents each type by a prototype that consists of
manually selected entity mentions, where the type
embedding is obtained by averaging the prototype
mentions’ word embeddings.In contrast, our work
differs from OTyper and ProtoLE by constructing
the type representations based on the Wikipedia
descriptions of the types, which not only carry
more information about the type but also can be
easily adapted to other tasks such as event typing
and text classification.

3 Proposed Approaches

Following prior work on fine-grained entity typ-
ing, we formulate it as a multi-class multi-label
classification problem. Given an entity mentionm
along with its left textual context cl and right con-
text cr, We learn a classifier that predicts a binary
label vector y ∈ {0, 1}|L|, where L denotes the
set of all types, which forms a hierarchy Ψ. Here
y(t) = 1 if the mention m is of type t, and 0 oth-
erwise. In the case of zero-shot FGET, new types
can be introduced and added to L during testing.
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3.1 The Typing Function
We will begin by introducing our typing function
that is used to compute a score between a given
mention and type pair, given their corresponding
vector representations. We will discuss how to
construct the representations in later sections.

Formally, the input to this typing function con-
sists of the representation of the mention, denoted
by x ∈ Rd; and the representation of a candidate
type t, denoted by yt ∈ Rd́. It computes a bi-linear
score for the (x, yt) pair as follows:

f(x, yt,W ) = xTWyt

where W ∈ Rd×d́ is a compatibility matrix. Fol-
lowing (Yogatama et al., 2015; Ma et al., 2016),
we factorize W as a product of two low-rank ma-
trices to reduce the number of parameters. That is
W = ATB, where A ∈ Rh×d and B ∈ Rh×d́

(We use h = 20). The scoring function f can be
rewritten as:

f(x, yt, A,B) = θ(x,A) · φ(yt, B) = (Ax)TByt

where θ(x,A) : x → Ax and φ(yt, B) : yt →
Byt serve as the projection functions that map x
and yt into a shared semantic space.

3.2 Entity Mention Representation
To obtain the representation for entity mentions,
we adopt the same neural approach proposed by
Shimaoka et al. (2017). Given an entity men-
tion with its context, we compute a vector vm to
present the mention m itself, and another vector
vc to represent its left and right contexts cl and cr.
vm is computed by simply averaging the embed-
ding of the individual words in m.

To compute the context embedding vc, we first
encode cl and cr using a bidirectional-LSTM.
Let cl1, ..., c

l
s and cr1, ..., c

r
s be the word embed-

ding of the left and the right context respectively,
where s is the window size (we use s = 10),
the output layer of the bi-LSTM is denoted as:−→
hl1,
←−
hl1...,

−→
hls,
←−
hls and

−→
hr1,
←−
hr1...,

−→
hrs,
←−
hrs. We then

compute a scalar attention for each context word
using a 2-level feedforward neural network:

eji = tanh(We

−→hji←−
hji

); ãji = exp(Wae
j
i )

Where We ∈ Rdh×2×da , Wa ∈ R1×da , dh is
the dimension of LSTM, da is the attention dimen-
sion, j ∈ {l, r}. Next, we normalize aji s such

that they sum up to 1. i.e., aji =
ãji∑s

i=1(ãli+ãri )
.

Finally the context representation is computed as

vc =
∑s

i=1(ali

[−→
hli←−
hli

]
+ ari

[−→
hri←−
hri

]
). The final repre-

sentation of the entity mention x ∈ Rd is a con-
catenation of vm and vc.

3.3 Type Representation

Let Pt be the Wikipedia page that is used to build
a representation for type t. Some types do not
have a Wikipedia page with a title the same as the
type label. In such cases, we manually look for
a Wikipedia page of a similar concept. For ex-
ample, we represent the type living-thing by the
Wikipedia page organism.

To get a type representation, We started by the
simplest possible method which is averaging the
embedding of words in the Wikipedia page ( we
call this Avg encoder). Since some words in the
Wikipedia page carry more of the type semantic
than the other words we also consider a (tf-idf)-
weighted version of the Avg encoder.

Learning multiple representations. Wikipedia
descriptions are often long and contain multiple
parts, where different parts may capture different
aspects of the type and relate to different mentions.
Moreover, sequence models such as LSTM cannot
be applied to such long sequences. This motivates
us to consider the approach of constructing a bag
of multiple representations for each type based on
its Wikipedia description. To obtain a bag of rep-
resentations for type t, we first use a fixed-length
window to incrementally break Pt into multiple
parts, one paragraph at a time. If a paragraph fits in
the current Window, it is added. Otherwise, a new
window is initiated. Each window of text rti is
then used to generate one representation. To con-
struct an embedding for rti, we adopt the same Bi-
directional LSTM and attention mechanism that
are used to embed the mention context.

To compute the score for type t given its mul-
tiple representations, we compute the score with
each individual representation and average them
to produce the final score. This is equivalent to
applying average pooling to the multiple represen-
tations to obtain a single representation due to the
bi-linear typing function.
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3.4 Training and inference
Given the training data, we jointly train the repre-
sentation and the scoring function by minimizing
a ranking score. Let Y(i) and Y(i) denote the set
of correct and incorrect types assigned to the ex-
ample x(i) respectively, we learn to score types in
Y(i) higher than types in Y(i) with a multi-label
max-margin ranking objective as follows:∑
y∈Y

∑
ý∈Y

max(0, 1−f(x, y,A,B)+f(x, ý, A,B))

At testing, both seen and unseen types are mapped
to their learned representations, which are then
scored for a given input. Given the scores, we con-
duct a top-down search following the type hierar-
chy Ψ. Starting from the root we recursively find
the type with the highest score among the children.
Since we focus on the fine-grained types, we stop
the search when a leaf type is reached and predict
that the mention is positive for all types along the
path leading the to leaf type.

4 Experiments

Datasets. Our experiments use FIGER, a pub-
licly available fine-grained entity typing bench-
mark dataset in which types are organized into a 2-
level hierarchy. The training data consists of sen-
tences sampled from Wikipedia articles and auto-
matically annotated via distant supervision (Ling
and Weld, 2012). The test data consisting of man-
ually annotated sentences sampled from news re-
ports.

Setting. To evaluate our capability to recognize
fine-grained types in zero-shot setting, we assume
all second-level types are unseen during training,
i.e., we remove all level-2 types from the train and
dev data but keep them in the test data. We observe
that the FIGER test set covers only a small number
of second-level types. This renders it insufficient
for testing under the evaluation setting we adopt.
Moreover, the training data is noisy since it is au-
tomatically annotated by distant supervision. As a
result, we cannot just use part of it for testing.

Original dataset New dataset
train dev test train dev test

# of mentions 2000k 10k 563 1999k 10k 917
# of types 111 111 47 46 46 66
# of level-2 types 65 65 26 0 0 40

Table 1: Statistics of FIGER dataset.

To overcome this limitation, We manually an-
notated a new test set from the noisy training data.
We first divide the train set into clean and noisy as
suggested in (Ren et al., 2016). Clean examples
are those whose types fall on a single path (not
necessarily ending with a leaf) in Ψ. For instance,
the mention with labels person, person/author,
and person/doctor is considered as noisy exam-
ple because the labels form two paths. We then
manually verify the correctness of up to 20 exam-
ples from the clean training data for every level-2
type. These examples are removed from training
and added to the test set. We ignore the types with
no clean examples. The statistics of the new and
original datasets are reported in Table 1.

Baselines. We consider two baselines that em-
ploy the same neural architecture but use different
type representations. The Label embd baseline
use the average of the embedding of the words in
the type label as the type representation. ProtoLE
baseline uses the prototypes-based label embed-
ding learned by Ma et al. (2016), where each type
is represented by the set of the most representa-
tive entity mentions. The type embedding is the
average of all mentions in the corresponding pro-
totype.

Evaluation metrics. Following prior works in
FGET, we report Accuracy (Strict-F1), loose
Macro-averaged F1 (F1ma) and loose Micro-
averaged F1 (F1mi) (Ling and Weld, 2012). The
training and hyperparameter tuning details are de-
scribed in the Appendices.

Results and discussions. Table 2 presents the
results on FIGER, evaluated on all types (Over-
all), the seen types (Level-1) and the unseen types
(Level-2) respectively. From the results, we can
see that our description based methods have a par-
ticularly strong advantage over baselines on level-
2 types. This is consistent with our expectation
because Wikipedia descriptions tend to be highly
informative for fine-grained types, but less so for
coarser types.

Among the average encoders, we found that
weighting the word embedding by the word tf-
idf produces better results than treating the words
equivalently. As expected, using LSTM based
multi-representation adds a noticeable benefit to
our system as it produces the best performance
among all tested methods, achieving the best per-
formance for level-2 types and outperforming oth-
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Approach Overall Level-1 Level-2
Acc F1ma F1mi F1ma F1mir F1ma F1mir

Label embd 0.2846 0.5510 0.5603 0.8165 0.8163 0.2854 0.2954
ProtoLE 0.2541 0.4982 0.5093 0.7424 0.7422 0.2541 0.2657
DZET + Avg encoder 0.3141 0.5522 0.5614 0.7903 0.7902 0.3141 0.3247
DZET + Weighted Avg encoder 0.3261 0.5500 0.5607 0.7740 0.7738 0.3261 0.3390
DZET + Multi-rep 0.3806 0.5953 0.6045 0.8100 0.8098 0.3806 0.3926

Table 2: Level-1 , Level-2 and overall performance of the models on FIGER dataset.

Figure 1: The relationship between the length of the
Wikipedia description (word count) of level-2 types
and the F-score obtained by DZET+Multi-rep method.

ers by a large margin while maintaining a highly
competitive performance for level-1 types.

The effect of description quality. Figure 1 an-
alyzes the relationship between the length of the
Wikipedia description as one criterion of the de-
scription quality and the performance of Multi-rep
method. In particular, we group the types based
on the length of their Wikipedia descriptions and
provide the five-number summary box plot of the
F-scores for each group. It can be readily ob-
served that the performance is low when the de-
scription of the type’s Wikipedia page is too short
(< 1000 words) or too long ( > 4000 words).
Short descriptions are less informative and carry
less shared semantics with the type’s mentions.
On the other hand, overly long descriptions could
also be confusing as it might share a significant
number of common words with the descriptions of
other types. A closer look into the results unveils
some exceptions. For example, the F-score on
the type ‘/education/educational-degree’ is 0.7742
even it has a long description (6845 words). The
description of this type is indeed very informative
and includes a comprehensive list of the educa-
tional degrees awarded all around the world.

The length of the description is not the only fac-

tor that affects the performance of DZET meth-
ods. One factor is the performance on the Level-1
types. Since the inference is performed by follow-
ing the type hierarchy, if an incorrect type is in-
ferred at level-1, there is no hope to get the cor-
rect level-2 type. Another factor is the amount
of overlapping between the descriptions of the
related types. For instance, Multi-rep produces
zero F-score on the types‘/event/protest’ and ‘/lo-
cation/province’ because they share a lot of com-
mon words with the types ‘/event/attack’ and ‘/lo-
cation/county’ respectively, which negatively af-
fects the ability of Multi-rep to distinguish be-
tween the related types. Both ‘/event/protest’ and
‘/location/province’ have a description length be-
tween 2000 and 3000 words.

To mitigate the effect of the contents overlap-
ping between the highly related type, We plan to
apply mention-sensitive attention mechanisms for
future work to aggregate the scores in Multi-rep
instead of max-pooling.

5 Conclusions

In this paper, we propose a novel zero-shot entity
typing approach that uses Wikipedia descriptions
to construct type embeddings. Our architecture re-
lies on the type embeddings to make predictions
for unseen types. Experimental results demon-
strate the effectiveness of the proposed methods.
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A Appendices

A.1 Training and Hyperparamters
For every model we trained, we tune all of the
hyper-parameters using a dev set. We use the
version of FIGER provided by (Shimaoka et al.,
2017) which already withhold a portion of the
train set as a dev set. For each experiment, we
report that testing results of the model that has the
best accuracy on the dev set. We adopt glove 300-
dimensional word embedding (Pennington et al.,
2014) throughout this work except for prototype
baselines; we use word2vec (Mikolov et al., 2013)
as it is used to compute the prototypes embedding
in the original works (Ma et al., 2016). The hyper-
parameters used in the feature representation com-
ponent are the same as in (Shimaoka et al., 2017).
we set both of the hidden-size of the LSTM was
set and the hidden-layer size of the attention mod-
ule to 100. We use Adam optimizer (Kingma and
Ba, 2014) with the learning rate .001. The model
is trained for five epochs. We use Window of size
200 to build a bag of representations for each type
from its Wikipedia description.


