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Abstract

We explore the problem of audio caption-
ing1: generating natural language description
for any kind of audio in the wild, which has
been surprisingly unexplored in previous re-
search. We contribute a large-scale dataset of
46K audio clips with human-written text pairs
collected via crowdsourcing on the AudioSet
dataset (Gemmeke et al., 2017). Our thorough
empirical studies not only show that our col-
lected captions are indeed loyal to the audio
inputs but also discover what forms of audio
representation and captioning models are ef-
fective for audio captioning. From extensive
experiments, we also propose two novel com-
ponents that are integrable with any attention-
based captioning model to help improve audio
captioning performance: the top-down multi-
scale encoder and aligned semantic attention.

1 Introduction

Captioning, the task of translating a multimedia
input source into natural language, has been sub-
stantially studied over the past few years. The vast
majority of the journey has been through the vi-
sual senses ranging from static images to videos.
Yet, the exploration into the auditory sense has
been circumscribed to human speech transcrip-
tion (Panayotov et al., 2015; Nagrani et al., 2017),
leaving the basic natural form of sound in an un-
charted territory of the captioning research.

Recently, sound event detection has gained
much attention such as DCASE challenges
(Mesaros et al., 2017) along with the release of
a large scale AudioSet dataset (Gemmeke et al.,
2017). However, sound classification (e.g. pre-
dicting multiple labels for a given sound) and
event detection (e.g. localizing the sound of in-
terest in a clip) may not be sufficient for a full un-
derstanding of the sound. Instead, a natural sen-

1For a live demo and details, https://audiocaps.github.io

[Audio Classification] rumble | vehicle | speech | car | outside

[Video Captioning] A bus passing by with some people 
walking by in the afternoon.

[Audio Captioning] A muffled rumble with man and woman 
talking in the background while a siren blares in the distance.

Figure 1: Comparison of audio captioning with audio
classification and video captioning tasks.

tence offers a greater freedom to express a sound,
because it allows to characterize objects along
with their states, properties, actions and interac-
tions. For example, suppose that suddenly sirens
are ringing in the downtown area. As a natural re-
action, people may notice the presence of an emer-
gency vehicle, even though they are unable to see
any flashing lights nor feel the rush of wind from
a passing vehicle. Instead of simply tagging this
sound as ambulance or siren, it is more informa-
tive to describe which direction the sound is com-
ing from or whether the source of the sound is
moving closer or further away, as shown in Fig-
ure 1.

To that end, we address the audio captioning
problem for audios in the wild, which has not
been studied yet, to the best of our knowledge.
This work focuses on one of the most important
bases toward this research direction, contributing
a large-scale dataset. The overarching sources
of in-the-wild sounds are grounded on the Au-
dioSet (Gemmeke et al., 2017), so far the largest
collection of sound events collected from Youtube
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videos. We newly collect human-written sen-
tences for a subset of AudioSet audio clips via
crowdsourcing on Amazon Mechanical Turk (sec-
tion 3). We also develop two simple yet effec-
tive techniques to generate captions through the
joint use of multi-level pretrained features and bet-
ter attention mechanism named aligned-semantic
attention (section 4). Lastly, we perform exper-
iments contrasting between video-based captions
and audio-focused captions by employing a vari-
ety of features and captioning models (section 5).

The contributions of this work are as follows.

1. To the best of our knowledge, this work is
the first attempt to address the audio caption-
ing task for sound in the wild. We contribute
its first large-scale dataset named AudioCaps,
which consists of 46K pairs of audio clips
and text description.

2. We perform thorough empirical studies not
only to show that our collected captions are
indeed true to the audio inputs and but also
to discover what forms of audio represen-
tations and captioning models are effective.
For example, we observe that the embeddings
from large-scale pretrained VGGish (Her-
shey et al., 2017) are powerful in describing
the audio input, and both temporal and se-
mantic attention are helpful to enhance cap-
tioning performance.

3. From extensive experiments, we propose two
simple yet effective technical components
that further improve audio captioning per-
formance: the top-down multi-scale encoder
that enables the joint use of multi-level fea-
tures and aligned semantic attention that ad-
vances the consistency between semantic at-
tention and spatial/temporal attention.

2 Related Work

Speech recognition and separation. One of the
most eminent tasks for audio understanding may
be speech recognition, the task of recognizing
and translating human spoken language into text
with less emphasis on background sound that may
coexist. A multitude of datasets exist for such
task e.g. Speech Commands dataset (Warden,
2018), Common Voice dataset (Mozilla, 2017),
Librispeech (Panayotov et al., 2015), LS Speech
(Ito, 2017). As one of similar lineage, automatic
speech separation forks an input audio signal into

several individual speech sources (Hershey et al.,
2016; Ephrat et al., 2018). To most of these tasks,
in the wild sound is deemed as background noise
to be removed as an obstructer of speech recogni-
tion. On the other hand, our work puts the spot-
light on these neglected sounds and express them
through natural language.

Audio classification and sound event detec-
tion. This line of tasks emphasizes categorizing
a sound into a set of predefined classes. There
exist a number of datasets to aid in achieving
this goal, including DCASE series (Stowell et al.,
2015; Mesaros et al., 2016, 2017), UrbanSound8k
(Salamon et al., 2014), ESC (Piczak, 2015). Au-
dioSet (Gemmeke et al., 2017) is an audio event
dataset collected from Youtube that is unsurpassed
in terms of coverage and size, structured with an
ontology containing 527 classes. Another pre-
dominant large-scale dataset is Freesound (Fon-
seca et al., 2017). It consists of audio samples
from freesound.org recordings based on the pre-
ceding AudioSet ontology. In contrast to audio
classification, which uniquely map the audio to a
set of labels, our task generates a descriptive sen-
tence. Hence, it needs to not only detect salient
sounds of classes but also explores their states,
properties, actions or interactions.

Captioning tasks and datasets. The vast ma-
jority of captioning tasks and datasets focus on the
visual domain. Image captioning generates text
description of an image, and numerous datasets
are proposed, such as Flickr 8k (Rashtchian et al.,
2010), Flickr 30k (Young et al., 2014), MS COCO
(Lin et al., 2014), DenseCap (Johnson et al., 2016)
and Conceptual Captions (Sharma et al., 2018).
Akin to the image captioning is video captioning,
for which there are many datasets too, including
MSVD (Guadarrama et al., 2013), MSR-VTT (Xu
et al., 2016), LSMDC (Rohrbach et al., 2017) and
ActivityNet Captions (Krishna et al., 2017).Com-
pared to previous captioning tasks and datasets,
our work confines the problem by focusing on in
the wild audio inputs.

Recently, there have been some efforts to
solve video captioning with audio input (Hori
et al., 2017, 2018; Wang et al., 2018). How-
ever, the audio input merely serves as auxiliary
features for video captioning, and as a result, it
only marginally improves the performance (e.g.
BLEU-4 score: 39.6 (video only) vs. 40.3 (video
+ MFCC) (Wang et al., 2018)). These results are
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partly culpable to dataset collection, where the an-
notators mostly rely on the video input. On the
contrary, our collection induces the annotators to
mainly abide to audio, hence, increasing the de-
pendency of written text on the audio input as can
be shown in our survey analysis in Figure 5.

3 The Audio Captioning Dataset

Our AudioCaps dataset entails 46K audio caption
pairs. Table 1 outlines its key statistics. The
audio sources are rooted in AudioSet (Gemmeke
et al., 2017), a large-scale audio event dataset,
from which we draft the AudioCaps, as discussed
below. We present more details of data collection
and statistics in the Appendix.

3.1 AudioSet Tailoring

It is important to select qualified audio clips as the
first step of dataset collection. The chosen cat-
egories of clips must be well-rounded in cover-
age of naturally occurring audios, be relevant to
practical applications and appear with high fre-
quency. To that end, we tailor the AudioSet dataset
(Gemmeke et al., 2017) that comprises 1,789,621
human-labeled 10 second YouTube excerpts with
an ontology of 527 audio event categories. How-
ever, an immediate collection of captions from
these audios pose several difficulties: (i) too many
audio clips, (ii) inconsistent level of abstraction
among the classes, (iii) distribution bias of some
labels and (iv) noisy labels that are only notice-
able from visual cues. We circumvent these is-
sues through a controlled sampling process as de-
scribed below.

Among 527 audio event categories of AudioSet,
we first exclude all the labels whose number of
clips are less than 1,000 to promote a balanced
distribution within the dataset. We also remove
all 151 labels in the music super-category, be-
cause they are often indiscernible even for a hu-
man. For example, a human with no expertise
can hardly discriminate the sound of Guitar from
Banjo. Thus, we set aside the musical territory for
future exploration. We further discard categories if
they do not satisfy the following two constraints.
The word labels should be identifiable solely from
sound (i) without requiring visuals (e.g. remove
the category inside small room) and (ii) without
requiring any expertise (e.g. remove power win-
dows and electric windows because their distinc-
tion may be possible only for car experts). Fi-

Split # clips # captions # words/caption # labels/clip
Train 38,118 38,118 8.79 (8) 4.25 (4)
Val 500 2,500 10.12 (9) 4.06 (3)
Test 979 4,895 10.43 (9) 4.03 (3)
Total 39,597 45,513 9.03 (9) 4.22 (4)

Table 1: Some statistics of AudioCaps dataset. We also
show average and median (in parentheses) values. la-
bels refer to the semantic attributes.

Figure 2: The AMT interface for audio annotation.

nally, we select 75 word labels derived from 7
augmented super-categories as avoiding the sharp
skewness in the word labels (e.g. 48.5% clips in-
clude speech label). We limit the number of in-
stances per category to 2,000 by sampling with
preference to audio clips associated with more
word labels to prioritize the audios with diverse
content. The final number of audio clips is about
115K, from which we obtain captions for 46K as
the first version.

3.2 Audio Annotation

The collected captions should be precise, spe-
cific, diverse, expressive, large-scale and corre-
lated with the paired audios with minimal visual
presumptions. Such complex nature of our re-
quirements necessitates employing crowdworkers
through Amazon Mechanical Turk (AMT). Some
qualification measures are set for the crowdwork-
ers, such as they should hold a +95% HIT approval
rate and the total number of approved HITs that are
greater than 1,000 and be located at one of [AU,
CA, GB, NZ, US]. In total, 108 caption writing
workers and 3 caption reviewing workers partici-
pate and are compensated at 10 cents per clip.

Annotation Interface. Figure 2 shows our an-
notation interface, which is designed to minimize
the visual presumption while maintaining diver-
sity. Each task page consists of an audio clip of
about 10 seconds, word hints and video hints.

The word hints are the word labels that are pro-
vided by AudioSet for the clip and are employed
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A train is approaching with a low 
rumble and rhythmic click and squeal

Below officers creep toward the 
entrance the door and points a gun

(a) LSMDC (c) AudioCaps(b) MSR-VTT

A black andwhite video of about actors

Figure 3: Comparison between two video captioning datasets and AudioCaps. The text from (a) LSMDC
(Rohrbach et al., 2017) and (b) MSR-VTT (Xu et al., 2016) includes multiple visually grounded vocabularies
(indicated in blue), whereas the text from (c) AudioCaps contains vocabularies relying on auditory cues (in red).

as hints to the crowdworkers. Even to humans,
recognizing the true identity of a sound can be am-
biguous, and thus the word hints act as a precursor
to accurately guide the crowdworkers during the
description process, while staying aloof from vi-
sual bias. Another benefit is that the diversity of
the word labels may also enrich the expressive-
ness of the description. Also derived from Au-
dioSet, the video hints are provided as a stronger
hint for sounds that are too difficult even to the
human ear or for clips associated with some er-
roneous or missing word hints (weak labels). We
advise the workers to use them as a last resort mea-
sure.

Some instructions2 are also provided to demar-
cate crowdworkers’ descriptions as follows. (i) Do
not include the words for visuals in the video that
are not present in the sound. (ii) Ignore speech
semantics. (iii) When applicable, be detailed and
expressive. (iv) Do not be imaginative and be lit-
eral and present with the descriptions.

Quality Control. We use a qualification test
to discern many crowdworkers who frequently
violate the given instructions (e.g. transcribing
instead of describing, just enumerating provided
word hints or writing visual captions). Interested
crowdworkers must participate in the test and sub-
mit a response, which the authors manually check
and approve if they are eligible. We employ three
additional workers to verify the data in accordance
to our guidelines. In order to maintain high ap-
proval rates, we periodically blacklist malicious
crowdworkers while granting reasonable incen-
tives to benevolent workers.

2https://audiocaps.github.io/
instruction_only.html.

3.3 Post-processing

We exclude the period symbol from all the
captions, convert numbers to words using
num2words3 and correct grammar errors by
languagetool4. We then tokenize words with
spacy 5. Finally, we build a dictionary V with a
size of 4506 by choosing all the unique tokens.

3.4 Comparison with Other Datasets

Figure 3 qualitatively compares some caption ex-
amples between our AudioCaps and two caption-
ing datasets with audio: LSMDC (Rohrbach et al.,
2017) and MSR-VTT (Xu et al., 2016). Since both
LSMDC and MSR-VTT focus more on describ-
ing videos than audios, their captions are charac-
terized by visually grounded vocabularies (blue).
On the other hand, the captions of AudioCaps ac-
company sound-based vocabularies (red).

4 Approach

We present a hierarchical captioning model that
can attend to the fine details of the audio. The
backbone of our model is an LSTM (Hochreiter
and Schmidhuber, 1997) that we fortify with two
novel components which are easily integrable with
any attention-based captioning model. The top-
down multi-scale encoder enables the contextual
use of multi-level features, and the aligned seman-
tic attention enhances the consistency between se-
mantic attention and temporal attention (see Fig-
ure 4). Our experiments in section 5.3 show that
these two techniques lead to non-trivial perfor-
mance improvement.

3https://github.com/savoirfairelinux/
num2words.

4https://github.com/languagetool-org/
languagetool.

5https://spacy.io.
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The input to our model are mel-frequency cep-
stral coefficient (MFCC) audio features (Davis
and Mermelstein, 1980) and the output is a se-
quence of words {ym}Mm=1, each of which is a
symbol from the dictionary. For text representa-
tion, we use fastText (Bojanowski et al., 2016)
trained on the Common Crawl corpus to initialize
the word embedding matrix Wemb, which is fine-
tuned with the model during training. We repre-
sent word sequences (e.g. attribute words for se-
mantic attention and output words for answer cap-
tions) in a distributional space as {dn}Nn=1 with
dn = Wembwn where wn is a one-hot vector for
n-th word in the word sequence and dn ∈ R300.

4.1 Top-down Multi-scale Encoder

Unlike speech data, sound in the wild is not always
continuous. It can be often brief, noisy, occluded,
in-the-distance and randomly sparsed throughout
the audio. Hence, the lower-level features can be
useful to capture such characteristics of natural
sound, although they may lack the semantics of the
higher-level features. Thus, the joint use of these
two levels of features can be mutually beneficial.

The top-down multi-scale encoder takes as
input the two-level audio embedding {ft}Tt=1,
{ct}Tt=1 and generates the fused encoding vector,
where T is the sequence length of the audio. For
input, we use the features from the two layers of
the pretrained VGGish network (Hershey et al.,
2017): the fc2 vector {ft}Tt=1 as a high-level se-
mantic feature, and the conv4 vector {ct}Tt=1 as
a mid-level feature.

The first level of hierarchy encodes high-level
features {ft}Tt=1 using a bi-directional LSTM. We
regard the last hidden state as the global audio em-
bedding hctxt ∈ RI :

←→
h a1
t = biLSTM(ft,

−→
h a1
t−1,
←−
h a1
t+1), (1)

hctxt = Wc[
−→
h a1
T ;
←−
h a1

1 ] + bc, (2)

where Wc ∈ RI×D1
and bc ∈ RI are parameters,

I is the dimension of input to the next layer andD1

is the dimension of the first layer hidden states.
We then reshape and encode mid-level fea-

tures {ct}Tt=1 ∈ R512 using another bi-directional
LSTM. In order to inject the global semantics, we
perform an element-wise addition of hctxt to the
mid-level feature along the time axis, and feed
them into the bi-directional LSTM one at a time,

ℎ"#ℎ$#

“a cat meows …and cry”

VGGish

“cry”

“baby”

“cat”

c4 fc2

Aligned Semantic Attention

Decoder

Semantic Encoder

TopDown Encoderf$ f"

&$ &"
ℎ'()(

*$ *+

ℎ$,

ℎ-,
attention flow

temporal attention

Figure 4: The audio captioning model with top-down
multi-scale encoder and aligned semantic attention.

producing a hidden state
←→
h a2
t ∈ RD2

at each step:

←→
h a2
t = biLSTM(ct + hctxt,

−→
h a2
t−1,
←−
h a2
t+1). (3)

4.2 Aligned Semantic Attention
In many captioning models (You et al., 2016; Yu
et al., 2017; Laokulrat et al., 2018; Long et al.,
2018), semantic attention has been independently
used from temporal/spatial attention. However, it
can be troublesome because there may exist some
discrepancies between the two attentions i.e. they
do not attend to the same part of the input. For in-
stance, given an audio of a cat meowing and a baby
crying, temporal attention may attend to the crying
baby while semantic attention attends to the word
cat. We propose a simple yet effective approach
that implicitly forces both semantic and tempo-
ral/spatial attention to be correctly aligned to one
another to maximize the mutual consistency.

For semantic attention, we extract a set of N at-
tribute words for each audio: following You et al.
(2016), we retrieve the nearest training audio from
the subset of AudioSet and transfer its labels as at-
tribute words. We encode each attribute word vec-
tor using a bi-directional LSTM (named semantic
encoder):
←→
h w
n = biLSTM(dn,

−→
h w
n−1,
←−
h w
n+1), (4)

where dn is the input text representation of the at-
tribute word sequence. We then align these seman-
tic word features

←→
h w
n to the temporal axis of the
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audio features
←→
h a2
t via the attention flow layer

(Seo et al., 2017). For notational simplicity, we
omit the bidirectional arrow in the following.

Attention flow layer. We first compute the sim-
ilarity matrix, S ∈ RT×N between each pair of
audio and word features using the score function
α(ha2t ,h

w
n ) ∈ R:

α(ha2t ,h
w
n ) = Wα[h

a2
t ;hwn ;h

a2
t ◦ hwn ], (5)

Stn = α(ha2t ,h
w
n ), (6)

where ◦ is element-wise multiplication.
We then use S to obtain the attentions and the

attended vectors in two directions: word-to-audio
{h̃wt }Tt=1 ∈ RD2

and audio-to-word h̃a2 ∈ RD2
:

at = softmax(St:), h̃wt =
∑
n

atnh
w
n , (7)

b = softmax(max
row

(S)), h̃a2 =
∑
t

bth
a2
t , (8)

where at ∈ RN , b ∈ RT .
Lastly, we concatenate them into {hflowt }Tt=1 ∈

R4D2
, while keeping the temporal axis intact:

hflowt = [ha2t ; h̃wt ;h
a2
t ◦ h̃wt ;ha2t ◦ h̃a2]. (9)

Temporal attention over attention flow. We
now have an embedding that aligns the semantic
features of words with the time steps of audio fea-
tures. Subsequently, we apply temporal attention
over it; the attention weight is calculated as in Lu-
ong et al. (2015). Specifically, we use the global
method for each t in {hflowt }Tt=1:

αm = align(hdecm ,hflowt ), (10)

cm =
∑
t

αmth
flow
t , (11)

am = tanh(Wdec[cm;h
dec
m ]), (12)

where hdecm ∈ RDo
is the state of the de-

coder LSTM, cm ∈ R4D2
is the context vector,

αm ∈ RT is the attention mask, and Wdec ∈
RDo×(4D2+Do) is a parameter.

Next, we obtain the output word probability:

sm = softmax(Woam) (13)

where Wo ∈ RV×Do
. Finally, we select the out-

put word as ym+1 = argmaxs∈V(sm). We repeat
this process until ym+1 reaches an EOS token.

The model is trained to maximize the log-
likelihood assigned to the target labels via the soft-
max as done in most captioning models.

5 Evaluation

We perform several quantitative evaluations to
provide more insights about our AudioCaps
dataset. Specifically, our experiments are designed
to answer the following questions:

1. Are the collected captions indeed faithful to
the audio inputs?

2. Which audio features are useful for audio
captioning on our dataset?

3. What techniques can improve the perfor-
mance of audio captioning?

We present further implementation details and
more experimental results in the Appendix. Some
resulting audio-caption pairs can be found at
https://audiocaps.github.io/supp.

Before presenting the results of our experiments
on these three questions, we first explain the ex-
perimental setting and baseline models.

5.1 Experimental Setting
Evaluation metrics. Audio captioning can be
quantitatively evaluated by the language similarity
between the predicted sentences and the ground-
truths (GTs) such as BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), METEOR (Baner-
jee and Lavie, 2005), ROUGE-L (Lin, 2004) and
SPICE (Anderson et al., 2016). In all metrics,
higher scores indicate better performance.

Audio features. Audios are resampled to
16kHz, and stereo is converted into mono by aver-
aging both channels. We zero-pad clips that are
shorter than 10 seconds and extract three levels
of audio features. For the low-level audio feature,
the lengthy raw audios are average-pooled by the
WaveNet encoder as in Engel et al. (2017). For
the mid-level feature, mel-frequency cepstral co-
efficients (MFCC) (Davis and Mermelstein, 1980)
are extracted using librosa (McFee et al., 2015)
with a window size of 1024, an overlap of 360
and the number of frames at 240, and encoded
further with a bi-directional LSTM followed by
a gated convolutional encoder (Xu et al., 2018).
Lastly, we use two high-level features: the 24th
output layer of SoundNet6 (Aytar et al., 2016) with
a (10× 1024) dimension and the final output em-
bedding of VGGish7 (Hershey et al., 2017) with a
(10× 128) dimension of (time × embedding).

6https://github.com/cvondrick/soundnet.
7https://github.com/tensorflow/models/

tree/master/research/audioset.
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Video features. To contrast with video cap-
tioning datasets, we also extract video features
at the frame-level and at the sequence-level
from YouTube clips. For frame features, we
use VGG16 (Simonyan and Zisserman, 2015)
pretrained on the ILSVRC-2014 dataset (Rus-
sakovsky et al., 2015). For sequence features, we
use C3D8 (Tran et al., 2015) pretrained on the
Sport1M dataset (Karpathy et al., 2014). We ex-
tract subsequent frames with 50% overlap cen-
tered at each time step on the input clips for Au-
dioSet videos, while proceeding with no overlap
for MSR-VTT clips as in the original paper. We
sample videos at 25fps.

5.2 Baselines

Retrieval methods. As straightforward baselines,
we test the 1-nearest search with audio features,
denoted by 1NN-MFCC, 1NN-SoundNet and
1NN-VGGish. For a query audio, we find its
closest training audio using the `2 distance on the
features and return its text as a prediction. We
mean-pool all the audio features over time, be-
cause it empirically leads to a strong performance.

LSTM methods. As simple generative base-
lines, we test with the LSTM decoder, denoted by
-LSTM postfix, where the encoded audio feature is
set as the initial state of the LSTM. For instance,
WaveNet-LSTM is the model with the WaveNet
encoder and the LSTM decoder. We use a single-
layer LSTM with dropout (Srivastava et al., 2014)
and layer normalization (Ba et al., 2016).

Attention models. We test two popular at-
tention models developed in video captioning re-
search: (i) TempAtt (Luong et al., 2015; Yao
et al., 2016) generates captions by selectively
attending to audio features over time, and (ii)
SemAtt (You et al., 2016) creates text attending
to attribute words as secondary information.

Our models. We denote our top-down multi-
scale encoder as the prefix TopDown- and
aligned semantic attention as AlignedAtt-.

Upper-bounds. Given that each test data has
five human-generated captions, we perform cross
validation on the five GT captions as an upper-
bound of performance denoted as Human. We re-
gard one of five human annotations as model pre-
diction and compute the performance metric with
the other four as ground-truths. After doing this
on each of five, we then average the scores.

8https://github.com/facebook/C3D.

AudioCaps MSR-VTT

AUDIO(a) VISUAL(b) BOTH(c)

33.2%(c)

43.7%(b)

23.1%(a)
4.2%(a)

33.5%(c)

62.3%(b)

Figure 5: Comparison of vocabulary tag distribution
between AudioCaps and MSR-VTT.

5.3 Results

We discuss experimental results in response to the
three questions regarding the AudioCaps dataset.

5.3.1 Audio vs Video Captioning

We first evaluate whether the collected audio-
based captions are indeed loyal to the audio clips.
As one possible method to validate it, we perform
comparative experiments with the video-oriented
MSR-VTT dataset (Xu et al., 2016). Note that
MSR-VTT and AudioCaps both provide pairs of
audio clips and its corresponding videos, allowing
us to perform this comparative study. We hypoth-
esize that the captions from MSR-VTT would not
coherently map to audio features, because they are
written mainly based on the visual information.
In contrast, AudioCaps captions would be better
aligned to audio features than visual features.

The results in Table 4 support our hypothesis.
In MSR-VTT, the video-based captioning model
C3D-LSTM attains better scores than the preced-
ing three audio-captioning models *-LSTM, while
in AudioCaps the video-based model performs far
worse than the audio models. This may be due
to our collection method of AudioCaps, which en-
courages turkers to submit the descriptions based
on the audio rather than the visual.

Vocabulary comparison. We also make com-
parisons between AudioCaps and MSR-VTT in
terms of vocabulary usage in the captions. We se-
lect the 1,800 most frequent vocabularies of verbs,
adjectives and adverbs from each dataset, and run
a user study in which three different workers are
asked to categorize each sampled word into one
of (Audio, Visual, Both, Not Applicable). The
category label per word is decided by a majority
vote of three workers’ opinions. We use AMT
once more to collect the unbiased opinions. In or-
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Methods B-1 B-2 B-3 B-4 METEOR CIDEr ROUGE-L SPICE
1NN-MFCC 34.1 17.8 10.0 5.3 9.9 8.7 23.4 4.7
1NN-SoundNet (Aytar et al., 2016) 39.1 22.0 12.9 7.6 12.0 16.4 27.2 6.9
1NN-VGGish (Hershey et al., 2017) 44.2 26.5 15.8 9.0 15.1 25.2 31.2 9.2
WaveNet-LSTM (Engel et al., 2017) 48.9 31.5 20.2 13.0 13.8 29.6 35.5 9.0
MFCC-LSTM (Xu et al., 2018) 57.3 40.0 26.8 16.4 18.4 44.8 41.1 11.5
SoundNet-LSTM (Aytar et al., 2016) 54.0 38.0 26.4 17.6 16.5 43.2 39.2 10.8
VGGish-LSTM (Hershey et al., 2017) 58.7 42.3 29.8 20.4 18.7 50.4 42.6 13.0
TempAtt-WaveNet-LSTM (Luong et al., 2015) 50.7 34.3 22.9 14.8 14.8 28.2 36.4 8.6
TempAtt-MFCC-LSTM (Luong et al., 2015) 57.7 40.7 27.6 17.9 18.2 49.3 41.8 12.4
TempAtt-SoundNet-LSTM (Luong et al., 2015) 55.5 37.4 24.8 15.8 17.0 43.4 40.0 11.6
TempAtt-VGGish(FC2)-LSTM (Luong et al., 2015) 61.3 43.2 29.6 19.5 19.3 50.9 43.5 13.5
TempAtt-VGGish(C4)-LSTM (Luong et al., 2015) 61.8 44.5 30.7 20.4 19.4 55.3 44.0 13.2
TempAtt-VGGish(C3)-LSTM (Luong et al., 2015) 61.2 44.1 30.3 20.9 19.0 52.3 43.7 13.0
TopDown-VGGish(FC2,C4)-LSTM 62.9 45.1 31.5 21.4 19.9 57.7 44.8 14.3
TopDown-VGGish(FC2,C4,C3)-LSTM 60.9 43.7 30.7 20.8 20.0 55.8 43.7 13.6
TopDown-SemTempAtt(1NN) (You et al., 2016) 62.2 44.9 31.3 20.9 20.2 58.1 44.9 13.6
TopDown-AlignedAtt(1NN) 61.4 44.6 31.7 21.9 20.3 59.3 45.0 14.4
Human 65.4 48.9 37.3 29.1 28.8 91.3 49.6 21.6

Table 2: Captioning results of different methods on AudioCaps measured by language similarity metrics.

Methods B-1 B-2 B-3 B-4 METEOR CIDEr ROUGE-L SPICE
SemTempAtt(1NN)-VGGish-LSTM (You et al., 2016) 62.2 44.5 31.0 20.5 19.3 52.5 44.0 13.7
AlignedAtt(1NN)-VGGish-LSTM 62.0 45.1 32.0 21.6 19.6 56.1 44.4 13.5
SemTempAtt(GT)-VGGish-LSTM (You et al., 2016) 67.0 50.3 36.4 24.8 22.5 72.0 48.3 16.3
AlignedAtt(GT)-VGGish-LSTM 69.1 52.3 38.0 26.1 23.6 77.7 49.6 17.2

Table 3: Upper-bound of aligned semantic attention by language similarity metrics.

MSR-VTT AudioCaps
Methods METEOR CIDEr METEOR CIDEr

MFCC-LSTM 21.4 19.2 18.2 49.3
SoundNet-LSTM 20.0 14.7 17.0 43.4
VGGish-LSTM 22.8 26.1 19.3 50.9
C3D-LSTM 24.8 36.8 15.9 42.7

Gap (Audio - Video) -2.0 -10.7 +3.4 +8.2

Table 4: Comparison of captioning results between
video-based and audio-based datasets. The first three
methods perform captioning using only audios while
the last method C3D-LSTM, only use videos. The
gaps empirically show how much AudioCaps is audio-
oriented in contrast to MSR-VTT.

der to guarantee thoughtful submissions, we ask
the workers to provide a description using the
word. We compensate $0.05 per word to English-
speaking workers with a 95% approval rate.

Figure 5 shows that AudioCaps has more vo-
cabularies tagged as Audio (e.g. neighs, rustling)
by 18.9%p more than MSR-VTT. Furthermore,
56.3% of the total vocabularies in AudioCaps are
categorized as audio-related, that is, labeled as Au-
dio or Both (e.g. vibrating, applauds). Hence, this
vocabulary comparison result reassures that Au-
dioCaps is more audio-oriented than MSR-VTT.

5.3.2 Comparison of Audio Features

The methods in the second group of Table 2
are compared to investigate which audio features

are more suitable for captioning on AudioCaps.
The best results are obtained by VGGish-LSTM.
This may be because VGGish is pretrained on
YouTube audio clips, similar to AudioCaps. Al-
though the topics of YouTube are extremely di-
verse, the domain proximity may help VGGish
learn more utilizable features for AudioCaps.
SoundNet-LSTM shows inferior performance
compared to VGGish-LSTM, one possible reason
being because it is pretrained with Flickr videos,
which are rather distant in domain from the source
of our dataset, in terms of topic diversity and the
amount of possible noise. MFCC-LSTM does not
perform as well as VGGish-LSTM, even with the
similar convolutional recurrent encoder. This re-
sult hints that pretraining with a proper dataset is
essential for audio captioning. A comparison be-
tween MFCC-LSTM and WaveNet-LSTM reveals
that using MFCC is better than directly taking raw
waveform as input. The raw waveform is rela-
tively long (>500× longer than MFCC); hence,
it may pose a difficulty for RNN-based encoders
to precisely represent the whole audio context.

5.3.3 Comparison of Models
Temporal attention consistently boosts the cap-
tioning performance of the LSTM decoder in
all audio features, as shown in the models
with TempAtt- prefix in Table 2. No-
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(Ours) a man and woman 
talking, then a baby crying
(1NN-VGGish) an engine 
runs, and people speak
(SemTempAtt) a dog 
barks and a woman laughs
(GT) a child cries followed 
by a man and woman 
speaking and then the child 
resumes sobbing

(Ours) a truck engine is running, a 
siren is occurring, and an adult male 
speaks
(1NN-VGGish) a loud fire engine is 
followed by an emergency siren
(SemTempAtt) emergency sirens 
and a siren blaring
(GT) a large engine passes as people 
speak followed by a siren

(Ours) a large explosion 
followed by a loud pop
(1NN-VGGish) a man speaking 
followed by a loud bang
(SemTempAtt) a large explosion 
followed by a loud splash and 
thunder
(GT) a whooshing noise 
followed by an explosion

(Ours) a small motor is running, 
whirring occurs, and a high-pitched 
whine is present
(1NN-VGGish) a drill is operated, 
then a man speaks and restarts the 
drill
(SemTempAtt) a small motor 
running and a man speaking
(GT) a drone whirring followed by a 
crashing sound

Figure 6: Four examples of audio captioning with captured video frames, grouthtruths (GT), and generated captions
by our method (Ours) and baselines. They can be heard at https://audiocaps.github.io/supp.

tably, a large performance gain is observed for
TempAtt-MFCC-LSTM. This may be because
MFCC features are transformed to temporally
longer features than SoundNet and VGGish fea-
tures (240 > 10), and thus allow temporal atten-
tion to better aid the model and bypass the vanish-
ing gradient problem.

The semantic attention is also favorable for cap-
tioning performance, as SemTempAtt(1NN)-
VGGish-LSTM in Table 3 slightly outperforms
TempAtt-VGGish(FC2)-LSTM in Table 2.
That is, the additional use of semantic attention en-
hances the temporal attention model. Obviously,
when using GT labels instead of 1NN retrieved la-
bels as attribute words, the performance increases
much, hinting that better semantic attributes are
more synergetic with the aligned attention.

The comparison between different layers (C4,
C3, FC2) confirms the effectiveness of jointly us-
ing multi-level features. The fused features by the
top-down multi-scale encoder (i.e. TopDown-)
prove the most beneficial as they outperform their
counterparts in Table 2. However, a stack of
(FC2,C4) layers performs the best, while the
three layer stack is slightly inferior, presum-
ably due to overfitting and weak information
flow between the upper and lower levels of the
stacks. Finally, our best performing model is
TopDown-AlignedAtt where both the top-
down multi-scale encoder and aligned semantic at-
tention are jointly used. We postulate that the two
techniques synergize well thanks to rich informa-
tion provided by TopDown allowing for better at-
tention alignment.

5.3.4 Captioning Examples
Figure 6 shows selected examples of audio cap-
tioning. In each set, we show a video frame, GT
and text descriptions generated by our method and
baselines. Many audio clips consist of sounds with
multiple sources in sequence, for which baselines
often omit some details or mistakenly order the
event sequence, whereas our model is better at
capturing the details in the correct order.

6 Conclusion

We addressed a new problem of audio captioning
for sound in the wild. Via Amazon Mechanical
Turk, we contributed a large-scale dataset named
AudioCaps, consisting of 46K pairs of audio clips
and human-written text. In our experiments, we
showed that the collected captions were indeed
faithful to the audio inputs as well as improve the
captions by two newly proposed components: the
top-down multi-scale encoder and aligned seman-
tic attention.

There are several possible directions beyond
this work. First, we can further expand the scope
of AudioCaps. Second, our model is integrable
with speech counterparts to achieve more com-
plete auditory captioning tasks.
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Appendix

In the supplemental material, we enlist the fol-
lowing which may shed further insights:

• Additional related work [section A]

• Additional dataset analysis [section B]

• Training Details [section C]

A Related Work

Audio-Visual correspondence. Over the past
year, a great interest has been shone to the inter-
connection of auditory and visual senses. The task
of localizing the sound source within the visual in-
put have been actively explored (Nagrani et al.,
2017; Chung et al., 2018; Senocak et al., 2018;
Afouras et al., 2018; Gao et al., 2018; Arand-
jelovic and Zisserman, 2018; Zhao et al., 2018),
along with blind source separation aided by vi-
sual features (Ephrat et al., 2018) and learning of
audio-visual multisensory representation (Owens
and Efros, 2018). These previous studies com-
pensate the lack of information in the auditory in-
put with visual information, whereas this work fo-
cuses solely on the auditory input to generate in-
formative descriptions.

B Dataset

The full ontology of selected labels is outlined in
Figure 7.

Figure 8 shows the number of clips per word
label. The original AudioSet has an extreme la-
bel bias. For instance, a difference of 660,282 be-
tween the average of top 3 most common and aver-
age of top 3 most uncommon classes. Whereas our
dataset at the moment has a difference of 971. No-
tice the label bias is significantly reduced in com-
parison to the original AudioSet. We plan to re-
duce this further in the upcoming releases.

Table 5 compares our audio captioning dataset
with some representative benchmarks of video
captioning: MSR-VTT (Xu et al., 2016) and
LSMDC (Rohrbach et al., 2017). One interesting

Sound of Things
• Alarm
- Siren
- Vehicle horn, car horn, honking
- Train horn
- Beep, bleep (source ambiguous)
- Telephone
- Bell

• Mechanical Sound
- Truck
- Motorboat, speedboat
- Motorcycle
- Idling
- Race car, auto racing
- Aircraft
- Bus
- Helicopter
- Drill
- Sewing machine
- Engine starting

• Domestic, Home Sound
- Tick-tock
- Water tap, faucet
- Door
- Toilet flush
- Typing
- Dishes, pots, pans
- Frying (food)

• Etc
- Gunshot, gunfire
- Car passing by
- Hiss
- Spray
- Rub
- Burst, pop
- Tire squeal
- Whoosh, swoosh, swish
- Trickle, dribble

Source Ambiguous
- Hiss
- Rub 
- Whoosh, swoosh, swish
- Crumpling, crinkling
- Sizzle

Animal
- Pigeon dove
- Bird vocalization, Chirp, tweet
- Bow-wow (dog)
- Clip-clop
- Insect
- Horse
- Hiss
- Duck
- Sheep
- Goat
- Bee wasp
- Whimper (dog)
- Meow
- Oink
- Frog

Natural Sound
- Wind
- Rain
- Wood
- Stream
- Gurgling
- Thunder
- Trickle, dribble
- Waves, surf
- Rustling leaves
- Gurgling
- Hiss

Human
- Male speech, man speaking
- Child speech, kid speaking
- Female speech, woman speaking
- Laughter
- Snoring
- Baby cry, infant cry
- Whistling
- Applause
- Crying, sobbing
- Burping, eructation
- Sneeze

Figure 7: The curated ontology for AudioCaps on the
basis of AudioSet.

property of our dataset is that the portion of verbs
in the vocabularies are larger than the others. This
may imply that the captions describe what is hap-
pening rather than what is in the content.

C Training Details

All the parameters are initialized with Xavier
method (Glorot and Bengio, 2010). We apply
the Adam optimizer (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.999 and ε = 1e− 8.
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Dataset Clips Sentences Unique clips Tokens Vocabs Nouns Verbs Adjectives Adverbs Duration(h)
MSR-VTT 10,000 200,000 7,180 1,856,523 29,316 16,437 6,379 3,761 872 41.2
LSMDC 128,085 128,118 200 1,157,155 22,500 12,181 3,394 5,633 1,292 147

AudioCaps 39,106 43,022 39,106 567,927 4,506 2,747 1,825 766 353 108.6

Table 5: Comparison of AudioCaps with MSR-VTT (Xu et al., 2016), LSMDC (Rohrbach et al., 2017).

Audio class

Number of examples

Figure 8: The frequencies of annotated instances per category (i.e. word labels) for AudioCaps.
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12/11/2018 Natural Audio Captioning

http://147.46.219.13:3999/tasks/render?id=4 1/1

If First Time, Click to Show Instructions
Natural Audio Captioning

For each audio below, write a one sentence description (caption) for the given audio with the given
word hint & when unsure a video hint.
Do not describe events that may have happened in the past or future. i.e., describe the audio clip as it is
(all instruction examples do this in the link above).
Use Present Tense.
We provide Word-labels. Feel free to actively use them in your description. Their purpose is to aid you in
choosing the vocab of the sound sources. (Hover over them to obtain their definitions)
Do not give speaker proper names, but rather give gender and maybe approximate age if salient. e.g., old;
young; little; adult; kid; she; he; male; female. They cannot be presenters; broadcasters; announcers.

Try to be Detailed and Expressive (Instruction example 3).
If video hint is used, DO NOT include visuals in the video that are not present in the sound (Instruction
example 1).
Do not start the caption containing "this is", "there is", "this is the sound of", "this sounds like", "you

can hear", "in this video".. etc. Get straight to the point.
Ignore speech semantics (Instruction example 4). This includes no direction of speech!(Instruction
example 4.2)
If youtube link is broken, notify us via email, or type "video unavailable" and submit.
Experts will be checking through each of your answers to block and or reject any malicious

workers.

Common mistake: Simply separating the sounds by multiple commas. It needs to be a connected
coherent sentence! try conjunctions(immediately, shortly after, leading up to, followed by, and, along with,
together with, concurrently, etc!).
for Higher Acceptance Rate: Distance, Frequency (if sound is repeated Instruction 7), Speed, Volume

of the sounds included in the descriptions are some of the best ways for the experts to accept the Hit.
Common mistake: when we state describe the audio clip as is above, we mean low-level audio sounds.
Be less abstract whenever possible. Have a look at Instruction 8

The Audio & Hint video

N  D  A
Word Hints (not always accurate): 
sizzle stir  
67221-audio Description:

DO NOT INCLUDE VISUAL INFO YOU CANNOT HEAR.

Video Hint. If Unsure of Source.

You must ACCEPT the HIT before you can submit the results.

Figure 9: The AMT interface for sentence annotation with instructions.


