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Abstract
We report on adaptation of multilingual end-
to-end speech recognition models trained on
as many as 100 languages. Our findings shed
light on the relative importance of similarity
between the target and pretraining languages
along the dimensions of phonetics, phonol-
ogy, language family, geographical location,
and orthography. In this context, experi-
ments demonstrate the effectiveness of two
additional pretraining objectives in encourag-
ing language-independent encoder representa-
tions: a context-independent phoneme objec-
tive paired with a language-adversarial classi-
fication objective.

1 Introduction

The main difficulty in creating automatic speech
recognition (ASR) systems for a large number of
the world’s 7,000 languages is a lack of training
data. Such data comes in the form of speech paired
with transcriptions, a pronunciation lexicon, and
text for language model training. A common
technique in data-constrained settings is to learn
language-independent representations of speech
via multilingual training. Popular approaches in-
clude the use of multilingual bottleneck features
(Vesely et al., 2012) as well as multilingual model
training before fine-tuning to a target language
(Scanzio et al., 2008; Vu et al., 2012).

Prior work in multilingual and cross-lingual
speech recognition has been restricted to a small
handful of the world’s most-spoken languages,
relying on multilingual corpora such as Global-
Phone (Schultz, 2002), the IARPA Babel cor-
pora (Gales et al., 2014), or the VoxForge1 cor-
pora. Most work typically only reports on models
trained on a subset of these languages.

In this paper we explore pretraining multilin-
gual ASR models using speech from as many as
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100 languages from the CMU Wilderness Mul-
tilingual Speech Dataset (Black, 2019).2 To the
best of our knowledge, this is the greatest num-
ber of languages that has been used in multilingual
ASR model training to date. We perform experi-
ments to guide the choice of languages used when
pretraining the model and assess the relative im-
portance of similarity between the pretraining lan-
guages and target language in terms of geographic
location, phonology, phonetic inventory, language
family and orthography.

We examine these variables in the context of
two experimental setups: one where models are
adapted to target language and target speakers,
and one where models are adapted to target lan-
guage but non-target speakers. The first task
is relevant to language documentation contexts,
which often involves transcribing speech of spe-
cific speakers for which there already exists some
transcribed speech as training data (Michaud et al.,
2018). The second case is relevant to incident re-
sponse as modelled by LORELEI (Strassel and
Tracey, 2016), where there may only be a sin-
gle target-language consultant available for which
transcribed speech can be elicited, but the goal is
to have an ASR model that generalizes to multiple
speakers.

Multilingual ASR training on such a scale
presents challenges because of this language
diversity. In order to guide the model to
learn language-independent representations that
are more amenable to adaptation, we experiment
with two auxiliary training tasks. The first is
context-independent phoneme sequence predic-
tion to help bridge orthographic inconsistencies
between languages. The second is a domain-
adversarial classification objective (Ganin et al.,
2016) over languages to encourage invariance

2festvox.org/cmu_wilderness/index.html
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of the model with respect to language-specific
phenomena. The hierarchical combination of
grapheme and phoneme objectives has only been
used in monolingual end-to-end frameworks (Kr-
ishna et al., 2018; Rao and Sak, 2017). Language-
adversarial training in ASR (Yi et al., 2018) has
not been done at this scale before, nor in an end-
to-end framework.

Our experiments are designed to answer the fol-
lowing questions:

1. Is there benefit in scaling multilingual model
training to a large number of languages?

2. In what circumstances, if any, does the
addition of a phoneme and/or language-
adversarial objective improve multilingual
models?

3. How should we choose languages with which
to pretrain a multilingual model?

4. Do the answers to the above questions change
when adapting to target versus non-target
speakers in the target language?

We find that using the auxiliary objectives in
pretraining facilitates model transfer to unseen
languages, especially when the pretraining lan-
guages are very dissimilar (Section 6). When
the target speakers are seen in adaptation (Section
7), similarity of the pretraining languages and the
target language is more important than quantity
of pretraining languages. Choosing as pretrain-
ing languages geographically proximal languages
tends to help more than phonetically and phono-
logically similar but otherwise distant languages.
However, when adapting to a handful of non-target
speakers of the target language (Section 8), the do-
main mismatch caused by the unseen speaker, lan-
guage, or recording environment degrades perfor-
mance. Exposing the model to as many pretraining
languages as possible becomes vital to minimize
this mismatch. Results on this task demonstrate
that a massively multilingual seed model substan-
tially outperforms other seed models trained on
languages similar to the target. We have provided
an ESPnet recipe to train and test our models.3

2 Related Work

This paper builds on work on multilingual ASR,
end-to-end ASR, and adversarial learning.

3https://github.com/espnet/espnet/
tree/master/egs/cmu_wilderness/asr1

Multilingual transfer in ASR often relies on
using bottle-neck features (Vesely et al., 2012; Vu
et al., 2012; Karafiát et al., 2018) and adapting
an acoustic model trained on one language to ef-
fectively recognize the sounds of other languages
(Schultz and Waibel, 2001; Le and Besacier, 2005;
Stolcke et al., 2006; Tóth et al., 2008; Plahl et al.,
2011; Thomas et al., 2012; Imseng et al., 2014;
Do et al., 2014; Heigold et al., 2013; Scharenborg
et al., 2017). However, while most work uses less
than 10 languages for model training, we include
up to 100 languages in training.

End-to-end ASR has recently become popular,
with approaches such as attention-based encoder-
decoder models (Chorowski et al., 2015; Chan
et al., 2015), the connectionist temporal classi-
fication (CTC) objective of Graves et al. (2006,
2013), or a combination of both (Kim et al., 2016;
Hori et al., 2017). These approaches have also
been deployed in multilingual settings (Toshni-
wal et al., 2017; Chiu et al., 2018; Müller et al.,
2017; Dalmia et al., 2018; Watanabe et al., 2017a).
Our baseline approach to multilingual knowledge
transfer is most similar to Inaguma et al. (2018),
and involves training a hybrid CTC-attention seed
model.

Hierarchical and multi-task approaches in-
cluding combining grapheme and phoneme pre-
diction in monolingual contexts (Rao and Sak,
2017; Krishna et al., 2018) at different levels of
the network, or using sub-word units of varying
granularity (Sanabria and Metze, 2018), have been
shown to improve ASR performance. In this pa-
per we extend the approach of hierarchical place-
ment of additional objectives in order to enforce
language independent, transferable models.

Domain-adversarial training is one such
method for encouraging the model to learn
language independent representations. A key
contribution of this paper is the use of a domain-
adversarial classification objective (Ganin et al.,
2016) over many languages in order to encourage
the model to learn representations that are in-
variant to language. Domain-adversarial training
incorporates an auxiliary domain classification
task, but negates gradients for encoder weights
before the parameter update in order to guide the
encoder to produce hidden representations that
fool the classifier: i.e. they minimize information
about the language while still facilitating the

https://github.com/espnet/espnet/tree/master/egs/cmu_wilderness/asr1
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primary task of speech recognition.
Domain-adversarial training has been used in

speech recognition to learn features invariant to
noise conditions (Shinohara, 2016), accents (Sun,
2018), and sex (Tripathi et al., 2018). Most closely
related to our work is that of Yi et al. (2018), who
use a language-adversarial objective when prepar-
ing multilingual bottleneck features from four lan-
guages for a hidden Markov model (HMM) ASR
pipeline. In contrast, our work uses an adversarial
objective across many languages, pairing it with a
context-independent phoneme objective in an end-
to-end framework.

3 Data

We scraped the data that forms the CMU Wilder-
ness dataset, using a freely available script.4 This
dataset consists of dramatized readings of the
Bible in hundreds of languages. Each reading is
ascribed a rating based on alignment quality which
fits into one of these classes: very good, good,
okay, and not okay.

The script used to preprocess the data uses a
universal pronunciation module in Festival (Tay-
lor et al., 1998)5 to produce pronunciation lexi-
cons using an approach based on that of UniTran
(Yoon et al., 2007), which we use to create phone-
mic transcriptions.

3.1 Characteristics of the Speech
The dataset consists of readings of the Bible, with
readings typically of just a few speakers, mostly
male. These are often dramatized, with sound
effects and background music. For many pur-
poses this could be considered a limitation of the
data. Although the characteristics of the speech
are unique, it allows us to investigate multilin-
gual models over many languages without the con-
founds of an overly noisy environment. It is not
unreasonable to expect our findings to generalize
to other speech recognition domains.

3.2 Evaluation Languages
While the dataset includes only a single reading
of the Bible for most languages, there are a num-
ber with two or more. We evaluate on languages
for which we can find two or more readings. This
is so that we can compare adaptation to a target

4https://github.com/festvox/
datasets-CMU_Wilderness

5http://www.cstr.ed.ac.uk/projects/
festival/

Hours:minutes/quality per reading

Aymara (ayr) 16:19/G 18:37/G -
SB Quechua (quh) 27:41/G 20:02/G -

Kekchi (kek) 19:32/G 18:30/G -
Ixil (ixl) 35:06/VG 25:35/G 18:29/G

Malagasy (mlg) 12:29/NO 15:52/O 15:59/G
Indonesian (ind) 19:01/G 21:20/G 30:34/G

Garap (kia) 15:34/G 12:17/VG -

Swedish (swe) 15:55/G 16:46/VG -
Spanish (spn) 16:35/G 15:19/G -

Table 1: The duration of each reading in the evalua-
tion languages (ISO 639-3 language codes in parenthe-
ses), before our preprocessing. Alignment quality cat-
egories are very good (VG), good (G), okay (O),
not okay (NO). SB Quechua denotes South Bolivian
Quechua.

language but not the speakers of the target reading
(we refer to this task as language adaptation, as
explored in Section 8) with adaptation to the tar-
get language as well as the target reading (we refer
to this task as reading adaptation). We addition-
ally restricted the evaluation languages to those
that have at least one good or very good read-
ing in terms of alignment quality. Table 1 presents
the evaluation languages and readings grouped by
family or geographic location, along with their du-
rations.

4 Auxiliary Training Objectives

In addition to scaling ASR training to 100 lan-
guages, a key contribution of our work is the use of
a context-independent phoneme objective paired
with a language-adversarial classification objec-
tive in a end-to-end grapheme-based neural net-
work, as illustrated in Figure 1.

4.1 Baseline Model

Our experiments are conducted within the frame-
work of a hybrid CTC-attention end-to-end neu-
ral model using ESPnet (Watanabe et al., 2017b),
which uses an encoder-decoder architecture im-
plemented in PyTorch (Paszke et al., 2017). The
encoder we use consists of VGG-like convolu-
tion layers (Simonyan and Zisserman, 2014; Sercu
et al., 2016) followed by a multilayer bidirec-
tional long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997). The decoder uses location-based attention
(Chorowski et al., 2015) and an LSTM. In addition
to the attention, the decoder also incorporates CTC

https://github.com/festvox/datasets-CMU_Wilderness
https://github.com/festvox/datasets-CMU_Wilderness
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/
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probabilities over graphemes to encourage mono-
tonicity in decoding.

4.2 Phoneme Objective

The end-to-end neural model performs direct
grapheme prediction without recourse to a pronun-
ciation lexicon as traditional hybrid HMM-DNN
models do. Since different orthographies may be
mutually disjoint or only weakly related to the
phonetic content of the input speech, we use a
context-independent phoneme CTC objective to
encourage learning of representations independent
of such orthographic idiosyncrasies.

We performed limited preliminary experiments
to determine how best to use the phoneme objec-
tive, which corroborated recent work in hierarchi-
cal training objectives that supports inserting the
phoneme objective in the layers below the final
layer (Krishna et al., 2018). We also found that us-
ing the phoneme objective during adaptation was
harmful and therefore in all reported experiments
we use it only during multilingual pretraining.

4.3 Language-Adversarial Pretraining

For language-adversarial training we used a log-
linear classifier over all languages seen in pretrain-
ing. An utterance-level mean of the penultimate
encoder layer states is fed into the classifier. For
each batch in training we update the network us-
ing the interpolated grapheme and phoneme objec-
tives before a separate update step using the adver-
sarial objective.

We follow the learning rate scheduling of Ganin
et al. (2016), where the weight of the adversarial
objective relative to the speech recognition tasks
follows λ(p) = 2

1+exp(−10p) −1 over the course of
training, where p ∈ [0, 1] is a measure of training
progress. We drop the adversarial objective during
target language adaptation.

5 Experimental Setup

5.1 Language Versus Reading Adaptation

We chose as target adaptation languages those lan-
guages for which we have multiple readings of the
Bible. This allows us to assess adaptation of the
pretrained multilingual model in two scenarios:
language adaptation and reading adaptation. In
reading adaptation, it is adapted to data from each
reading of the target language, including the read-
ing from which we select held-out evaluation ut-
terances. In language adaptation it is adapted only

x

Encoder

Encoder Last Layer

Attention

Decoder

y1, y2, . . . , yn
y1, y2, . . . , yn

CTC

Phoneme CTC

φ1, φ2, . . . , φm

Adv

Lx

Figure 1: The end-to-end architecture used during pre-
training. x is the input speech features, y1, y2, . . . , yn
is a character sequence the model is trained to output
(eg. “knife”). φ1, φ2, . . . , φm is a phoneme sequence
the model is trained to output (eg. /naIf/), and Lx is the
language identity of the input speech x.

to readings that are not represented in the evalu-
ation set. This last case, of adapting to just one
or several speakers of a new language (in order to
ultimately have a system that generalizes beyond
those speakers in the language) is not common in
speech recognition experimentation. Results and
findings for language adaptation will be presented
in Section 8.

5.2 Training Settings

We established training, validation and test sets for
each reading using a random 80/10/10 split. When
pretraining or adapting the multilingual systems,
we used the combined training sets of the con-
stituent readings.

We used 80-dimensional log Mel filterbank fea-
tures with 3-dimensional pitch features. We tuned
hyperparameters for these models using one Ay-
mara reading.6 We found that a 4 layer encoder, 1
layer decoder with 768 for the encoder hidden size
and projections, decoder hidden size, and attention
hidden size yielded equal-best results with deeper
models. These settings were then used for training
the models used in our experiments.

For the training objective, we linearly interpo-
lated the the attentional decoder cross-entropy loss
with the grapheme CTC and phoneme CTC objec-
tives. Equal weight was given to all three since
we found that to be effective in preliminary exper-
iments. Note however, that the effective weight of

6CMU Wilderness reading ID: AYMSBU.
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Target MONO QUE CYR QUE+CYR

- +phn+adv - +phn+adv - +phn +adv +phn+adv

Aymara 40.6 34.3 34.5 (+0.6%) 37.9 35.9 (-5.3%) 34.6 34.2 34.8 34.2 (-1.2%)
SB Quechua 14.8 13.8 14.0 (+1.4%) 16.3 17.0 (+4.3%) 14.9 14.2 14.0 13.9 (-6.7%)
Indonesian 14.9 15.1 15.3 (+1.3%) 16.1 17.9 (+11.2%) 15.8 15.6 15.5 14.7 (-7.0%)

Avg. rel. ∆: (+1.1%) Avg. rel. ∆: (+3.4%) Avg. rel. ∆: (-4.9%)

Table 2: Word error rate (%) comparison of multilingual models adapted to target languages, with and without
auxiliary training objectives (relative change in parentheses). Additionally including Cyrillic-script languages
in pretraining (CYR) doesn’t consistently improve over a model pretrained on Quechuan languages (QUE) unless
additional phoneme and language-adversarial objectives (+phn and +adv) are used in combination (+phn+adv).
The auxiliary objectives help when pretraining languages are varied, but hinder when they are very similar. The
final four columns suggest that the objectives are complementary. Average relative word error rate change for each
pretraining set when adding in the auxiliary objectives (versus no aditional objectives) is indicated by Avg. rel. ∆.

the adversarial objective effectively changes over
the course of training because of the learning rate
scheduling mentioned in §4.3. We trained for 15
epochs in all cases except where otherwise noted.

Note that during adaptation we initialize the
model using both the multilingual encoder and de-
coder. We found this to work best in preliminary
experimentation on a Spanish reading.

6 Preliminary Investigation of the
Auxiliary Objectives

In this section we evaluate the use of the auxiliary
phoneme and language-adversarial objectives de-
scribed in Section 4 on two divergent groups of
languages that are distinct along a number of di-
mensions, including orthography, language fam-
ily and phonology, in order to assess the auxiliary
objectives’ capacity to bridge the divide between
these languages during pretraining. This serves as
an initial exploration before further experiments in
Section 7 and Section 8, where we choose from a
broader set of pretraining languages.

Pretraining languages We pretrained models
on two groups of languages separately and to-
gether. The first consists of six languages from
the Quechuan language family, including sub-
varieties of Quechua I and II (qub, quf, qvs, qvw,
qwh and qvh). We henceforth refer to this group
as QUE. The second consists of six languages
that use the Cyrillic script and we refer to this
group as CYR. These languages include Nogai
(nog), Bashkir (bak), Gagauz (gag), Khakas (kjh),
Crimean Tatar (crh), and Russian (rus). With the
exception of Russian, these languages are all Tur-
kic. The character sets do not overlap between
QUE and CYR and this was a deliberate choice in

this preliminary experiment to maximize the dif-
ferences between the two groups.

Evaluation languages To test the pretrained
models in varied contexts, we evaluate our models
on three languages: Central Aymara (ayr), South
Bolivian Quechua (SB Quechua; quh), and In-
donesian (ind). These languages vary in a num-
ber of dimensions: SB Quechua is very closely
related to QUE, while Indonesian is distant; Ay-
mara is phonologically very similar to Quechuan
languages, but is considered to be from a different
family; Aymara had a high monolingual baseline
error rate, while the others are lower; and Indone-
sian has three readings while the others have two.
However, all evaluation languages use the Latin
script. Note that in this section we assess perfor-
mance in the reading adaptation case, while Sec-
tion 8 presents results on the held-out reading case.

Experiments Table 2 compares the performance
of monolingual target-language models to mod-
els adapted to the target language after being
pretrained on QUE, CYR and their combination,
QUE+CYR. CYR pretraining underperforms pre-
training with QUE for all evaluation languages
likely due to the orthographic mismatch with all
of the evaluation languages. The model pre-
trained on QUE+CYR also underperforms QUE.
Introducing the auxiliary phoneme and language-
adversarial objectives helps to overcome this per-
formance loss, making the QUE+CYR-pretrained
model the best for adaptation to Aymara and In-
donesian. QUE remained the best pretraining set
for adaptation to SB Quechua, which is unsur-
prising given how well represented SB Quechua
is by the languages included in the Quechuan lan-
guage group. This suggests that when a substantial
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qvh / /

qvh /i/

rus / /

rus /i/

nog / /

nog /i/

qvh / /

qvh /i/

rus / /

rus /i/

nog / /

nog /i/

Figure 2: t-SNE representation of encoder states corresponding to /A/ and /i/ across Quechua (Huamalies Dos
de Mayo; qvh), Russian (rus), and Nogai (nog). Left: the model without the phoneme and adversarial objective.
Right: the phoneme and language-adversarial objectives are added in, causing phoneme clusters between languages
to gather closer together, and language to become less relevant in cluster placement.

amount of data in very closely related languages is
available (in this case, close to 100 hours of QUE

data), then there is little to be gained from highly
unrelated languages.

When pretraining on QUE and CYR separately,
the auxiliary objectives underperformed baseline
multilingual pretraining on average. The varia-
tion in languages within these groups is far less
than the variation between groups. Given that the
phoneme and adversarial objectives are intended
to overcome variation between pretraining lan-
guages, this result indicates that there must be a
sufficient level of diversity in the pretraining lan-
guages before the auxiliary objectives are of ben-
efit when adapting to certain target languages.

Results from pretraining on QUE+CYR showed
either objective to help on average, and that the
effects are complementary. Because of this, we
opted to include them together in subsequent ex-
perimentation. We evaluated this best perform-
ing model on the larger set of other evaluation
languages. Results in Table 3 show that in all
cases multilingual pretraining of QUE+CYR with
the auxiliary objectives outperformed its counter-
part without the objectives (which frequently un-
deperformed the monolingual model), and in all
but one case this led to an improvement over the
monolingual baseline.7

To gain insight into how the auxiliary objectives
change the representation of speech learnt by the

7However, this doesn’t hold in the language adaptation
scenario, where the auxiliary objectives help QUE+CYR only
slightly; see Section 8.

models, we applied 2D t-SNE dimensionality re-
duction (Van Der Maaten and Hinton, 2008). Fig-
ure 2 plots the representations of two phonemes
in three languages learnt by the encoder8 in the
case without and with the auxiliary objectives.
In the multilingual pretraining baseline, six clus-
ters are represented for each language–phoneme
combination. These appear stratified by language,
with different phoneme clusters within languages
close to one another. With the auxiliary objectives,
phoneme clusters between languages move closer
to one another, while language identity becomes
less relevant in determining which phoneme clus-
ters neighbour one another. In the latter plot, the
Nogai phonemes become separated by a Russian
/A/. This is particularly salient since the Nogai
speaker was female, while the Russian speaker had
a deep male voice.

7 Reading Adaptation

In the previous section we explored the use of two
dissimilar groups of languages in a multilingual
setup. Multilingual pretraining of languages from
a different language family and script benefitted
from an explicit phoneme objective and adversar-
ial objective when there was sufficient diversity
in the pretraining languages. However, a change
in orthography was conflated with a change in
language family, geographic location, and phono-

8We established the correspondence between encoder
states and phonemes by using forced alignment with Kaldi
(Povey et al., 2011), taking the encoder state at the mid-point
of the duration on the phonemes.
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MONO QUE+CYR PHONOLOGY GEO 100-LANG

- +phn+adv - +phn+adv - +phn+adv - +phn+adv

ayr 40.6 34.6 34.2 (-1.2%) 33.9 34.5 (+1.8%) 35.4 34.9 (-1.4%) 34.2 34.5 (+0.9%)
quh 14.8 14.9 13.9 (-6.7%) 14.4 14.5 (+0.7%) 15.5 14.8 (-4.5%) 15.1 14.7 (-2.6%)
kek 23.9 24.8 23.7 (-4.4%) 24.8 24.5 (-1.2%) 23.0 22.9 (-0.4%) 24.9 24.4 (-2.0%)
ixl 20.7 21.2 20.1 (-5.2%) - - 19.7 20.1 (+2.0%) 20.8 20.6 (-1.0%)
mlg 45.2 43.5 41.4 (-4.8%) 43.2 41.7 (-3.5%) 43.3 42.2 (-2.5%) 44.4 42.2 (-5.0%)
ind 14.9 15.8 14.7 (-7.0%) 13.7 14.3 (+4.4%) 14.0 13.7 (-2.1%) 14.7 14.2 (-3.4%)
kia 14.6 14.6 13.2 (-9.6%) - - 12.1 12.1 (-0.0%) 14.4 13.0 (-9.7%)
swe 20.5 22.7 21.6 (-4.9%) 26.4 24.2 (-8.3%) 22.0 21.2 (-3.6%) 23.9 24.6 (+2.9%)
spn 14.5 19.7 14.4 (-26.9%) 13.9 13.8 (-0.7%) 13.1 12.1 (-7.6%) 15.8 14.8 (-6.3%)

Avg. rel. ∆: (-7.8%) Avg. rel. ∆: (-1.0%) Avg. rel. ∆: (-2.3%) Avg. rel. ∆: (-2.9%)

Table 3: Word error rate (%) comparison of adaptation of models pretrained on: Quechuan and Cyrillic-script
languages (QUE+CYR), languages phonologically and phonetically similar to the target (PHON/INV), geograph-
ically proximate languages (GEO), and a massively multilingual set of languages (100-LANG). In each case we
compared the average relative WER change when adding auxiliary phoneme and language-adversarial objectives
(+phn+adv). Dashed entries had phonology and phonetic inventories that weren’t well attested in URIEL, so
were not assessed.

logical/phonetic characteristics. In this section,
we investigate which factors are most important
in choosing languages for multilingual pretraining
and how useful it is to scale up model pretraining
to many languages. This exploration is conducted
in the reading adaptation scenario; language adap-
tation with unseen target speakers is addressed in
Section 8. Beyond answering these questions, this
investigation reveals more information about the
utility of the proposed auxiliary objectives in dif-
ferent scenarios.

Phonology & Geography We test across a num-
ber of evaluation languages (c.f. Table 1) by de-
termining, for each evaluation language, groups
of pretraining languages that are similar to the
evaluation languages in different ways. In or-
der to determine language similarity in a prin-
cipled way we used URIEL and lang2vec (Lit-
tell et al., 2017) to produce feature vectors for
each language based on information from sev-
eral linguistic resources before calculating their
cosine similarity. For each language we used
two feature vectors. The first is a concate-
nation of the lang2vec phonology average
and inventory average vectors, characteriz-
ing phonological properties and phonetic inven-
tory. The second represents geographic loca-
tion. We denote these two groups PHON/INV and
GEO respectively.9 Geographic proximity may

9We didn’t create PHON/INV sets for Ixil and Garap be-
cause their phonological features and phonetic inventories
were not well attested, and we didn’t use the lang2vec lan-

serve as a proxy for other similarities not captured
in PHON/INV, including language family, ortho-
graphic similarity, and the likelihood of exchanged
loan words.

We filtered for languages in the dataset with
good or very good alignments before rank-
ing them by cosine similarity with the evaluation
languages in terms of phonological and phonetic
similarity as well as geographical proximity. To
create each of the pretraining sets, we took be-
tween 7 and 14 of the top languages, matching
approximately the total duration of the phoneti-
cally/phonologically similar groups with the ge-
ographically proximate language groups.10 For
most languages, there is no overlap between the
GEO and PHON/INV sets.

Massively multilingual model As a further
point of comparison, we pretrain a model on
around 100 languages (denoted 100-LANG), for
approximately 1650 training hours in total.11

7.1 Auxiliary Objectives Findings
The results in Table 3 extend on our findings in
Section 6, continuing to support the benefit of
the use of the auxiliary objectives while shedding
more light on the type of language variability the
objectives help to overcome. GEO and 100-LANG

guage family vectors since most of the Quechuan languages
were not captured as being highly similar to SB Quechua.

10An exhaustive list of the CMU Wilderness language
codes for each pretraining group can be found in Appendix
A, along with durations of each pretraining set.

11These models were pretrained for 6 epochs.
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benefitted comparably from the objectives on av-
erage, while PHON/INV did less so. QUE+CYR

benefitted the most. This suggests that the objec-
tives may help more when pretraining languages
are orthographically, phonetically and phonologi-
cally diverse.

Unlike the other languages, the Swedish
PHON/INV vectors were not well attested. As a re-
sult the Swedish PHON/INV group has languages
with a similar phonetic inventory that were also
unattested phonologically. This model underper-
formed the monolingual model by a large margin,
suggesting that similarity of phonetic inventory
alone may not be so useful alone without similar-
ity of phonological features. Models pretrained on
this set also benefitted the most from the auxiliary
objectives. It may be the case that the auxiliary
objectives push together representations of allo-
phones within languages, and pronunciation vari-
ations of the same phonemes between languages.
When Swedish is discounted, the average relative
improvement when adding auxiliary objectives for
PHON/INV becomes negligable.

The PHON/INV configurations are hurt by the
auxiliary objectives for SB Quechua and Aymara
and Indonesian. The PHON/INV sets for the
first two of these languages emphasized Quechuan
languages, and this corroborates the indication
in Section 6 that the auxiliary objectives may
not help so much when pretraining languages
are similar. On the other hand, the Indone-
sian PHON/INV included Afro-Asiatic and Niger-
Congo languages, as well an Indo-European lan-
guage and Huave, a language isolate from Mexico,
yet it was not improved by auxiliary objectives.

7.2 Choice of Pretraining Languages

The average relative word error rate (WER)
change for GEO against PHON/INV was -2.2%
without auxiliary objectives, and -4.4% with
them,12 suggesting that features correlated with
geography are useful for guiding pretraining lan-
guage selection. Counter-examples were Aymara,
SB Quechua and Malagasy, which performed
worse when pretrained on GEO. In the case of SB
Quechua, only one Quechuan language was repre-
sented in GEO (Inga), while PHON/INV had three
(qub, qvh, quf). Madagascar is far removed from
where most Austronesian languages are spoken, so
Malagasy’s GEO set were almost all Niger-Congo

12Discounting Swedish, this becomes +0.2% and -3.1%.
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Figure 3: Scaling training/adaptation data for Swedish.
Adapting to the full dataset, the auxiliary objectives un-
derperformed both the monolingual and baselines, but
yields an advantage when the model is adapted to less
target language data.

languages, while the PHON/INV had a diverse ar-
ray of Austronesian, Indo European, Afro-Asiatic,
Sino-Tibetan and Mayan languages. However, on
average, these results suggest that geographical
proximity is a decent guide to pretraining language
selection. Another advantage is that it requires no
explicit phonological features, making it applica-
ble to a much larger number of languages.

The average relative WER change of 100-
LANG against MONO was +1.3%, indicating that
massively multilingual pretraining by itself not
useful if the target speakers are seen in train-
ing. Using the auxiliary objectives overcame
the difference, resulting in a -1.6% average rel-
ative WER change. However, pretraining with
GEO+phn+adv yielded an average relative delta
of -7.4% over the monolingual model. Though
more languages help, they are not necessarily bet-
ter than geographically proximal languages (how-
ever, results are very different when not adapting
to target speakers: see Section 8).

In two cases pretraining with 100-LANG was
hindered by the auxiliary objective. In one of these
cases, Swedish, both 100-LANG variations sub-
stantially underperformed the monolingual base-
line. One possible reason is that there is enough
target language and speaker data that the multi-
lingual pretraining and auxiliary objectives offer
no benefit. We scaled training/adaptation data for
Swedish from under 1 hour. Figure 3 indicates that
in this case the auxiliary objectives do lead to bet-
ter initialization, with gains being lost only when
around 5 hours of target language and reading data
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are seen.

8 Language Adaptation

Previous sections have addressed the reading
adaptation scenario, where the ASR model is
adapted to speech from the target reading (ie.
where target speakers have been heard in adapta-
tion). In this section we evaluate in a language
adaptation scenario, adapting to readings in the
target language, but not the target reading. The
question of how well a multilingual model can be
adapted to a language on the basis of recordings
from a small number of target-language speakers
is relevant to incident response situations such as
those modelled by LORELEI (Strassel and Tracey,
2016), where a single language consultant is avail-
able for which recorded speech can be made. We
performed experiments analogous to those of the
previous sections where the evaluation reading
was not seen in training or adaptation. This is a
challenging task as the model must generalize to
multiple speakers of a language on the basis of
seeing only several in training. Most of the find-
ings corroborate what was found in the previous
sections. Here we highlight differences.

Massively multilingual pretraining led to sub-
stantially better performance than other methods,
unlike in the reading adaptation task. For each
evaluation language, the 100-LANG model outper-
formed the next best method, with one exception:
Indonesian. In that case GEO set performed the
best, as the languages were not only geograph-
ically proximate, but also consisted entirely of
other Austronesian languages. The takeaway (c.f.
Table 4) is that you should always use more pre-
training languages unless you know your target
speakers, as in the reading adaptation scenario.

Auxiliary objectives remained useful on the
whole. However, while the difference in WER
achieved when adding the auxiliary objectives
was similar to those reported in Section 7 for
PHON/INV and 100-LANG, GEO and QUE+CYR

no longer achieved improvements. QUE+CYR

notably only achieved a -0.2% average relative
WER change when adding the auxiliary objec-
tives, while achieving -7.8% in the reading adapta-
tion case. While the auxiliary objectives remained
useful on the whole, their effect was dwarfed by
the value of adding more languages.

MONO
QUE

+CYR

PHON

+INV
GEO 100-LANG

ayr 91.4 86.3 86.7 87.2 79.2 (-8.2%)
quh 62.3 35.8 35.5 42.8 30.1 (-15.2%)
kek 75.6 74.3 73.8 74.4 73.5 (-0.4%)
ixl 81.8 79.8 - 78.4 74.3 (-6.9%)

mlg 103.6 68.3 64.0 63.7 62.2 (-2.4%)
ind 24.6 23.5 22.1 21.1 21.6 (+2.4%)
kia 57.2 51.5 - 49.9 48.2 (-6.4%)
swe 72.9 64.4 75.4 62.5 55.1 (-11.8%)
spn 44.8 33.8 33.4 32.7 29.9 (-8.6%)
Avg. rel. ∆ of 100-LANG wrt. next best method: (-6.0%)

Table 4: Adaptation to the non-target reading in the
target language. All language sets use the auxiliary
training objectives, which again exhibited an relative
gain over the corresponding model without. The rel-
ative deltas of 100-LANG are with respect to the next
closest model on a language-by-language basis.

Phonology versus Geography GEO sets with or
without auxiliary objectives lost their edge over
PHON/INV, with high variance in scores. The
amount of training data becomes the dominating
variable affecting WER.

9 Conclusions

We have explored the utility of pretraining multi-
lingual models on a variety of language sets, scal-
ing to as as many as 100 languages. Our exper-
iments have demonstrated the value of auxiliary
phoneme and language-adversarial pretraining ob-
jectives in a multilingual end-to-end ASR frame-
work, particularly when the pretraining languages
are diverse. Our results suggest how to pick pre-
training languages when target speakers are seen
in the adaptation data: find geographically prox-
imal languages. When adapting to just several
non-target speakers, exposure to more speech in
pretraining is the most important thing for model
generality, even if from a wide range of dissimilar
languages.
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Target language readings MLGEIV, ML-
GRCV, MLGRPV, IX1WBT, IXIWBT, IXL-
WBT, INZNTV, INZSHL, INZTSI, QUHRBV,
QUHSBB, QEJLLB, QUBPBS, QUFLLB,
QVSTBL, QVWTBL, QWHLLB, SPNBDA,
SPNWTC, KIABSC, KIAWBT, KEKIBS,
KEKSBG, SWESFB, SWESFV, AYMSBU,
AYMBSB.

Evaluation readings AYMSBU, MLGRPV,
IXIWBT, INZSHL, QUHRBV, SPNBDA,
KIAWBT, KEKIBS, SWESFV.

QUE (97.6 training hours) QEJLLB,
QUBPBS, QUFLLB, QVSTBL, QVWTBL,
QWHLLB.

CYR (59.6 training hours) NOGIBT, BAKIBT,
GAGIB1, KJHIBT, RUSS76, CRHIBT.

AYR-PHON/INV (145.3 training hours)
QUBPBS, TOBBSA, QUFLLB, QVSTBL,
INBWBT, QEJLLB, JICWBT, QU1LSM,
QUTIBS.

AYR-GEO (146.2 training hours) IGNSBB,
TNATBL, GNWNTM, ESENTM, MCBTBL,
GYRSBB, CBSBSP

QUH-PHON/INV (177.9 training hours) TO-
BBSA, DUGBTL, QUBPBS, TZHSBM, HUS-
LLB, NYFBTL, NCUWBT, QEJLLB, QUFLLB,
HAGGIL, NZIBSG, MNBTBL.

QUH-GEO (178.5 training hours) GNWNTM,
IGNSBB, TOBBSA, ENXBSP, GYRSBB,
CAXSBB, CEGNTP, TNATBL, ESENTM,
TERTBL.

KEK-PHON+INV (142.1 training hours)
QU1LSM, QUTIBS, TZTWBT, TUFWYI,
QWHLLB, PAGPBS, UDUSIM, YUASBM.

KEK-GEO (137.0 training hours) MOPWBT,
POHBSG, CA1WBT, CKIWBT, TZTWBT,
QU1LSM, QUTIBS, BZJBSW.

MLG-PHON/INV (198.2 training hours)
RONBSR, TGLPBS, KVNWBT, HUVTBL,
KBRSIM, TPMWBT, BTXLAI, KACUBS,
WMWWYI, IGNSBB, HAEBSE, IBATIV,
HILHPV, TZBSBM.

MLG-GEO (205.38 training hours)
WMWWYI, VMWBSM, MFEBSM, SEHBSM,
TOHSBM, CCESBM, KDCPBT, CWEPBT,

KKIBST, NYYBST, KSBBST, KDNBSZ,
DUGBTL, GOGBST.

IND-PHON/INV (193.1 training hours) IBA-
TIV, TGLPBS, HAEBSE, KERABT, KACUBS,
NYFBTL, RONBSR, CWTATB, HUVTBL,
BTXLAI, IGNSBB, JAVNRF, DUGBTL,
MNKBSG.

IND-GEO (191.5 training hours) SUNIBS, NI-
JLAI, JAVNRF, PSELAI, IBATIV, PTULAI, MV-
PLAI, PPKLAI, BEPLAI, NPYLAI, LEWLAI,
MWVLAI.

SWE-PHON/INV (122.4 training hours)
KDJBSU, NZIBSG, ANVWBT, DGABSG,
SHKBSS, SLDTBL, KUSTBL, MUYWBT,
NCUWBT, LIABSL, CKOGIL.

SWE-GEO (122.4 training hours) RMCWFW,
EN1NIV, RMORAM, RONBSR, GAGIB1, GAG-
IBT, CRHIBT, KPVIBT, LTNNVV, ALSBSA,
UDMIBT, XALIBT, BAKIBT.

SPN-PHON/INV (123.7 training hours) KVN-
WBT, HAEBSE, HUVTBL, GUGRPV, HUSLLB,
GUMTBL, NYFBTL, KWIWBT.

SPN-GEO (129.5 training hours) PORARA,
LTNNVV, EN1NIV, RMORAM, ALSBSA, RM-
CWFW, RONBSR, GAGIB1, GAGIBT, CRHIBT,
TAQWBT, FUQWBT, MYKWBT.

100-LANG (1646.8 training hours) OBOWBT,
ACUTBL, SEYWBT, HAUCLV, BZHPNG,
AMKWBT, GAGIB1, GNWNTM, URBWBT,
RUGWBT, PAUUBS, SEHBSM, SNNWBT,
KQETBL, TGOTBL, NOGIBT, XTMTBL,
OJ1CBS, TNATBL, AIAWYI, PABTBL,
MEJTBL, TWBOMF, HUSLLB, ESENTM,
BAKIBT, HNNOMF, IFAWBT, ENXBSP,
ALJOMF, PXMBSM, JAISBG, PIRWBT,
DOMBEC, NINWYI, BEPLAI, JAMBSW,
TERTBL, LAWNTM, URATBL, AGNWPS,
TPIPNG, TTCWBT, HUUTBL, NPYLAI,
KJHIBT, AZZTBL, COKWBT, KWIWBT, SAB-
WBT, PADTBL, GUMTBL, CRHIBT, QXRBSE,
RMORAM, NHYTBL, TPPTBL, TUFWYI,
ZLMAVB, PRFWBT, TWULAI, GAGIBT, FAR-
WBT, OM1TBL, RUSS76, PTULAI, MIFWBT,
MIYWYI, MRWNVS, KNETBL, PBCBSS,
MYYWBT, ACHBSU, ACNBSM, ADETBL,
AHKTBS, AK1BSG, ALPWBT, ALSBSA,
ALTIBT, ANVWBT, ATGWYI, AVNWBT,
AVUWBT, AYMBSB, AYMSBU, AZEBSA,
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BEXWBT, BQJATB, BTXLAI, BZJBSW,
CA1WBT, CARBSS, CAXSBB, CBSBSP,
CMRWBT, CNLTBL, CNMRGB, CRNWBT.


