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Description 

Just like natural language is a tool that humans use to communicate with each-other, programming 
languages are tools that humans use to communicate with computers. Because of the increasing 
need for programs and programming in our working and everyday lives, there are now massive 
amounts of source code being produced every day. As a result, it is ever more important for an ever 
increasing segment of the populace to be able to understand and create programs to do what they 
would like to do. However, programming is a specialized skill, IT education is hard-pressed to make 
up for this demand. 
 
One key insight that can help us tackle this problem is that source code is bimodal. While one 
modality is targeted towards explicitly instructing the hardware on the actions to perform, the other 
is targeted towards the humans that need to read, understand, maintain and extend the code. Given 
that it is humans that are producing the software, the human-oriented modality is very strong and 
often takes the form of natural language: from natural language identifiers, such as variable and 
method names, to code comments and natural language documentation. 
 
As a result, there is recently a burgeoning interest in research that connects natural language with 
the programming language artifacts. This research area has the potential to improve the efficiency 
and ease of programming by making connections to natural language, which is (in general) easier 
for humans to understand and communicate with, particularly humans who are not yet well-versed in 
programming. Some examples of relevant tasks include: 

● Automatic explanation of programs in natural language (code-to-language): Highly 
connected with the task of grounded natural language generation in the NLP community, this 
is the task of generating natural language explanations for source code artifacts, which will 
allow them to be understood more easily. 

● Automatic generation of programs from natural language specifications 
(language-to-code): Highly connected with the task of semantic parsing in the NLP 
community, this is the task of translating natural language into code that allows for 
grounded executable representations of natural language. This also encompasses natural 
language code search, which retrieves relevant code snippets based on natural language 
queries. 

● Modelling the natural language elements of source code: As mentioned above, much of 
source code itself contains elements that are expressed in natural language (e.g. variable 
names and code comments), giving a form of grounded semantics to these aspects of code. 

● Analysis of communication in collaborative software development communities: The 
process of developing software, particularly in multi-party projects, is a collaborative act, and 
as a result, provides a rich source of data for analysis of grounded communication in 
collaborative environments, which can then be used to improve productivity in these 
environments. 
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In this tutorial, we will focus on machine learning models of source code and natural language 
tailored to tackle these tasks. These methods have attracted wide interest not only in the NLP 
community, but also in software engineering and machine learning conferences, attesting to the 
interdisciplinary nature and broad impact of this research field. An overview of many of these 
methods can be found in co-proposer Allamanis’ survey on the topic [1]. 
 
First, we will analyze the relationship between source code and natural language text. The 
similarities and differences between those types of languages drive the design of the machine 
learning models used for understanding and generating code and connecting it to natural language. 
Furthermore, despite the formal nature of programming languages, there is an abundance of natural 
language artifacts embedded within source code and vica-versa. We will discuss these artifacts, 
their special characteristics and how they relate with existing NLP research. We will also show some 
examples of how source code and source code repositories present an interesting type of grounding 
for natural language, particularly instructional or procedural language. 
 
The remainder of the tutorial will cover specific recent methods that have been used to tackle each 
of the four tasks above. In doing so, we will stress a number of aspects of the presented methods: 

1. Why the natural language artifacts occuring in each of the projects are interesting, and 
perhaps unique, compared to other sources of natural language data. 

2. How to make connections between natural language artifacts and the corresponding code, 
and how these connections can be used to benefit each of the tasks. 

3. Specific modelling techniques that have proven useful in these tasks, and how they may be 
fed back to other applications in mainstream NLP research. 

 
 Finally, we will close our tutorial by discussing open problems and challenges. 

Outline of Contents 
 
We aim for a three-hour tutorial to cover a reasonable range of aspects of this area. Times are 
approximate, and will be adjusted somewhat as we refine the tutorial content. 
 
Part 1 

● Introduction (30 minutes) 
○ Motivation for modelling source code and natural language 
○ Where does language appear in code and vice-versa? 
○ The similarities and differences between natural and programming languages. 

● Data sources (10 minutes) 
● Methods for mapping from code to natural language (40 minutes) 

Part 2 
● Methods for mapping from language to code (45 minutes) 
● Modelling natural language aspects of source code (15 minutes) 
● Modelling communicative aspects of software projects (15 minutes) 
● Conclusion (5 minutes) 

○ Where should I start? 
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