
Proceedings of NAACL-HLT 2018: Demonstrations, pages 61–65
New Orleans, Louisiana, June 2 - 4, 2018. c©2018 Association for Computational Linguistics

CNNs for NLP in the Browser: Client-Side Deployment
and Visualization Opportunities

Yiyun Liang, Zhucheng Tu, Laetitia Huang, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo
{yiyun.liang, michael.tu, laetitia.huang, jimmylin}@uwaterloo.ca

Abstract

We demonstrate a JavaScript implementation
of a convolutional neural network that per-
forms feedforward inference completely in the
browser. Such a deployment means that mod-
els can run completely on the client, on a wide
range of devices, without making backend
server requests. This design is useful for ap-
plications with stringent latency requirements
or low connectivity. Our evaluations show the
feasibility of JavaScript as a deployment tar-
get. Furthermore, an in-browser implemen-
tation enables seamless integration with the
JavaScript ecosystem for information visual-
ization, providing opportunities to visually in-
spect neural networks and better understand
their inner workings.

1 Introduction

Once trained, feedforward inference using neu-
ral networks (NNs) is straightforward: just a se-
ries of matrix multiplications, application of non-
linearities, and other simple operations. With
the rise of model interchange formats such as
ONNX, we now have clean abstractions that sepa-
rate model training from model inference. In this
context, we explore JavaScript as a deployment
target of neural networks for NLP applications.
To be clear, we are not concerned with training,
and simply assume the existence of a pre-trained
model that we wish to deploy for inference.

Why JavaScript? We provide two compelling
reasons. First, JavaScript is the most widely de-
ployed platform in the world since it resides in ev-
ery web browser. An implementation in JavaScript
means that a NN can be embedded in any web
page for client-side execution on any device that
has a browser—from laptops to tablets to mobile
phones to even potentially “smart home” gadgets.
Performing inference on the client also obviates

the need for server requests and the associated la-
tencies. With such a deployment, NLP applica-
tions that have high demands on responsiveness
(e.g., typeahead prediction, grammar correction)
or suffer from low connectivity (e.g., remote lo-
cations or developing countries) can take advan-
tage of NN models. Such a deployment also pro-
tects user privacy, since user data does not leave
the client. Second, the browser has emerged as
the dominant platform for information visualiza-
tion, and JavaScript-based implementations sup-
port seamless integration with modern techniques
and existing toolkits (e.g., D3.js). This provides
opportunities to visually inspect neural networks.

We demonstrate a prototype implementation of
a convolutional neural network for sentence classi-
fication, applied to sentiment analysis—the model
of Kim (2014)—in JavaScript, running completely
inside a web browser. Not surprisingly, we
find that inference performance is significantly
slower compared to code running natively, but the
browser is nevertheless able to take advantage of
GPUs and hardware acceleration on a variety of
platforms. Our implementation enables simple
visualizations that allow us to gain insights into
what semantic n-gram features the model is ex-
tracting. This is useful for pedagogy (teaching stu-
dents about neural networks) as well as research,
since understanding a model is critical to improv-
ing it. Overall, our visualizations contribute to an
emerging thread of research on interpretable ma-
chine learning (Lipton, 2016).

2 Background and Related Work

Browser-based neural networks are by no means
new. Perhaps the best illustration of their poten-
tial is the work of Smilkov et al. (2016a), who
illustrate backpropagation on simple multi-layer
perceptrons with informative visualizations. This

61

work, however, can be characterized as focusing
on toy problems and useful primarily for peda-
gogy. More recently, Google Brain introduced
TensorFlow.js (formerly deeplearn.js), an open-
source library that brings NN building blocks to
JavaScript. We take advantage of this library in
our implementation.

Our work overcomes a technical challenge that
to date remains unaddressed—working with word
embeddings. Most NNs for NLP applications be-
gin by converting an input sentence into an em-
bedding matrix that serves as the actual input to
the network. Embeddings can be quite large, of-
ten gigabytes, which makes it impractical to store
directly in a web page. Following Lin (2015),
we overcome this challenge by using an HTML
standard known as IndexedDB, which allows word
vectors to be stored locally for efficient access
(more details below).

3 Technical Implementation

The convolutional neural network of Kim (2014)
is a sentence classification model that consists
of convolutions over a single sentence input em-
bedding matrix with a number of feature maps
and pooling followed by a fully-connected layer
with dropout and softmax output. Since it has a
straightforward architecture, we refer the reader to
Kim’s original paper for details. The starting point
for this work is a PyTorch reimplementation of the
model, which achieves accuracy comparable to the
original reported results.1

Since our demonstration focuses on inference
performance, we simply used a pre-trained model
for sentiment analysis based on the Stanford Senti-
ment Treebank. We manually exported all weights
from PyTorch and hand-coded the model archi-
tecture in TensorFlow.js, which at startup im-
ports these weights. Since Kim CNN has a rela-
tively simple architecture, this implementation is
straightforward, as TensorFlow.js provides primi-
tives that are quite similar to those in PyTorch. Be-
cause our implementation is pure JavaScript, the
entire model can be directly included in the source
of any web page, and, for example, connect to
text entry boxes for input and DOM-manipulating
code for output. However, there is one additional
technical hurdle to overcome:

Nearly all neural networks for NLP applications
make use of pre-trained word vectors to build an

1https://github.com/castorini/Castor

input representation (the embedding matrix) as the
first step in inference. For a non-toy vocabulary,
these word vectors consume many gigabytes. It is
impractical to embed these data directly within a
web page or as an external resource due to mem-
ory limitations, since all JavaScript code and as-
sociated resources are loaded into memory. Even
if this were possible, all data would need to be
reloaded every time the user refreshes the browser
tab, leading to long wait times and an awkward
user experience.

To address this challenge, we take advantage of
IndexedDB, which is a low-level API for client-
side storage of arbitrary amounts of data. Since
IndexedDB is an HTML5 standard, it does not re-
quire additional plug-ins (assuming a standards-
compliant browser). Although IndexedDB has
a rich API, for our application we use it as a
simple key–value store, where the key is a word
and the value is its corresponding word vec-
tor. In Google’s Chrome browser (which we
use for our experiments), IndexedDB is supported
by LevelDB, an on-disk key–value store built
on the same basic design as the Bigtable tablet
stack (Chang et al., 2006). In other words, in-
side every Chrome browser there is a modern data
management platform that is directly accessible
via JavaScript.

With IndexedDB, prior to using the model for
inference, the user must first download and store
the word embeddings locally. For convenience,
the model weights are treated the same way. Note
that this only needs to be performed once, and all
data are persisted on the client until storage is ex-
plicitly reclaimed. This means that after a one-
time setup, model inference happens locally in the
browser, without any need for external connectiv-
ity. This enables tight interaction loops that do not
depend on unpredictable server latencies.

4 Performance Evaluation

The first obvious question we tackle is the per-
formance of our JavaScript implementation. How
much slower is it than model inferencing per-
formed natively? We evaluated in-browser infer-
ence on a 2015 MacBook Pro laptop equipped
with an Intel Core i5-5257U processor (2 cores),
running MacOS 10.13. We compared perfor-
mance with the desktop machine used to train the
model, which has an Intel Core i7-6800K proces-
sor (6 cores) and an NVIDIA GeForce GTX 1080

62

Latency (ms) / batch
1 32 64 128

PyTorch
Desktop GPU (Ubuntu 16.04) 2.9 3.0 3.1 3.1
Desktop CPU (Ubuntu 16.04) 4.3 43 86 130

Chrome Browser
Desktop GPU (Ubuntu 16.04) 30 56 100 135
Desktop CPU (Ubuntu 16.04) 783 47900 110000 253000
MacBook Pro GPU (MacOS 10.13) 33 180 315 702
MacBook Pro CPU (MacOS 10.13) 779 56300 126000 297000
iPad Pro (iOS 11) 170 472 786 1283
Nexus 6P (Android 8.1.0) 103 541 1117 1722
iPhone 6 (iOS 11) 400 1336 3055 7324

Table 1: Latency of our CNN running in Chrome on
different devices for a batch of N sentences.

GPU (running Ubuntu 16.04). Our model was im-
plemented using PyTorch v0.3.0 running CUDA
8.0. All experiments were performed on the Stan-
ford Sentiment Treebank validation set. Due to the
asynchronous nature of JavaScript execution in the
browser, the TensorFlow.js API applies inference
to batches of input sentences at a time. Thus, we
measured latency per batch for batches of 1, 32,
64, and 128 sentences.

Evaluation results are shown in Table 1. The
first block of the table shows the performance of
PyTorch running on the desktop, with and without
GPU acceleration. As expected, the GPU is able
to exploit parallelism for batch inferencing, but
on individual sentences, the CPU is only slightly
slower. In the bottom block of the table, we report
results of running our JavaScript implementation
in Google Chrome (v64). We compared the desk-
top and the laptop, with and without GPU accel-
eration. For the most common case (inference on
a single sentence), the browser is about an order
of magnitude slower with the GPU. Without the
GPU, performance drops by another ∼25×.

The above figures include only inference time.
Loading the word vectors takes 7.4, 214, 459,
and 1184 ms, for batch sizes of 1, 32, 64, and
128, respectively, on the MacBook Pro. As ex-
plained previously, using IndexedDB requires a
one-time download of the word vectors and the
model weights. This step takes approximately
16s on our MacBook Pro for 16,271 word vectors
(for simplicity, we only download the vocabulary
needed for our experiments). Loading the model
itself takes approximately one second.

Because our implementation is in JavaScript,
our model runs in any device that has a web
browser. To demonstrate this, we evaluated per-
formance on a number of other devices we had

convenient access to: an iPad Pro with an Apple
A10X Fusion chip, a Nexus 6P with a Qualcomm
Snapdragon 810 octa-core CPU, and an iPhone 6
with an Apple A8 chip. These results are also
shown in Table 1. As expected, performance on
these devices is lower than our laptop, but inter-
estingly, batch inference on these devices is faster
than batch inference in the browser without GPU
acceleration. This indicates that hardware accel-
eration is a standard feature on many devices to-
day. These experiments illustrate the feasibility of
deploying neural networks on a wide range of de-
vices, exploiting the ubiquity of JavaScript.

5 Visualization of Feature Maps

Another major advantage of in-browser JavaScript
implementations of neural networks is seamless
integration with modern browser-based informa-
tion visualization techniques and toolkits (e.g.,
D3.js), which we describe in this section. Visu-
alizations are useful for two purposes: First, they
serve as intuitive aids to teach students how neu-
ral networks function. Although there are plenty
of pedagogical resources for deep learning, noth-
ing beats the convenience of an interactive neu-
ral network directly embedded in a web page that
students can manipulate. Second, contributing to
growing interest in “interpretable” machine learn-
ing (Lipton, 2016), visualizations can help us un-
derstand how various network components con-
tribute to producing the final predictions.

Although there are many examples of neural
network visualizations (Smilkov et al., 2016a; Bau
et al., 2017; Olah et al., 2018), they mostly focus
on vision applications, where inputs and feature
maps are much easier to interpret visually. The
fundamental challenge with NLP applications is
that word embeddings (and by extension, feature
maps) exist in an abstract semantic space that has
no inherent visual meaning. How to best visualize
embeddings remains an open question (Smilkov
et al., 2016b; Rong and Adar, 2016).

Nevertheless, feature maps in CNNs can be
thought of as n-gram feature detectors. For our
sentiment analysis application (and more gener-
ally, sentence classification), we designed visu-
alizations to answer two related questions: First,
given a sentence, what feature maps are highly ac-
tivated and where? Second, given a particular fea-
ture map, what token sequence activates it in a cor-
pus of sentences?

63

4/12/2018 word2vec Demo

file:///Users/isa/Documents/University_of_Waterloo/URA/3A-Jimmy%20Lin/kim-cnn-vis/kimcnn-demo.html 1/1

anchored
by

friel
and

williams
's

exceptional
performances

,
the
film
's

power
lies
in
its

complexity
.

word2vec Filter Demo
The following demo searches word2vecs. Be sure to build the index (indexing-
demo.html) first!

Finished processing sentence in: 491.5000000000873ms.

anchored by friel and williams 's e Run

width=3 width=4 width=5

×

Figure 1: Visualization of feature map activations.

The visualization in Figure 1 is designed to an-
swer the first question. Running down the left
edge is the sentence that we are examining; ex-
amples in this section are taken from the devel-
opment set of the Stanford Sentiment Treebank.
Each column represents feature maps of a particu-
lar width; each cell is aligned with the first token
from the corresponding n-gram of the sentence
over which the feature map applies. The heatmap
(i.e., blue saturation) corresponds to maximum ac-
tivation across all feature maps on that particu-
lar n-gram in the sentence. In our interactive vi-
sualization, when we mouse over a cell, it be-
comes enlarged and slightly offset to indicate fo-
cus, and the corresponding n-gram in the sentence
is highlighted in bold. For this sentence, we see
that filters of width three are most highly acti-
vated by the n-gram sequence [’s exceptional per-
formance]. There are multiple ways to use color
to summarize the activation of the feature maps,
but we have found MAX to be the most insight-
ful. From this visualization, we can see that fea-
ture maps of widths four and five activate on dif-
ferent parts of the sentence.

From the visualization in Figure 1, we see that
some feature map activates highly on the n-gram
[’s exceptional performance]. But which one? To
answer this question, we can pivot over to the vi-
sualization shown in Figure 2, where we see that
the answer is Filter 12: we show the n-grams that
trigger the highest activation from sentences in the

Filter 12 (width = 3, bias = 0.01)
4/4 ... this chamber drama is superbly acted by the deeply appealing ...

3/4 a superbly acted and funny gritty fable of ...

3/4 a rigorously structured and exquisitely filmed drama about a father ...

4/4 uses sharp humor and insight into human ...

4/4 ... friel and williams 's exceptional performances , the film 's ...

4/4 ... of elling , and gets fine performances from his two leads ...

4/4 an exquisitely crafted and acted tale .

4/4 ... mueller , the film gets great laughs , but never at the ...

3/4 ... glides through on some solid performances and witty dialogue .

3/4 ... and buoyed by three terrific performances , far from ...

Figure 2: Visualization of the n-grams that a particular
feature map most highly activates on.

development set. The n-grams are aligned in a
keyword-in-context format for easy browsing. To
the left of each sentence we show x/y, where x is
the ground truth label and y is the predicted label.
Here, we clearly see that all the n-grams are re-
lated to positive aspects of performances, and this
gives us some insight into the semantics captured
by this feature map. From this visualization, we
can click on any sentence and pivot back to the
sentence-focused visualization in Figure 1.

6 Future Work and Conclusions

We describe a JavaScript implementation of a con-
volutional neural network that runs completely in
the browser. Unsurprisingly, in-browser inference
is significantly slower. However, for many ap-
plications, such a performance tradeoff may be
worthwhile given the advantages of a JavaScript
implementation—the ability to embed a neural
network in any web page, the ability to run on a
wide variety of devices and without internet con-
nectivity, and opportunities for visualizations that
help us interpret the model.

Ongoing work focuses on better integration of
model training and browser deployment. Cur-
rently, porting a PyTorch model into JavaScript
requires tediously rewriting the model into Ten-
sorFlow.js by hand. Although the library sup-
ports reading TensorFlow models, importers for
PyTorch do not exist yet, as far as we are aware.
Provided that the right adaptors are built, the
ONNX model interchange format could provide
an interlingua to support seamless integration, en-
abling a future where running neural networks in
JavaScript becomes routine.

Acknowledgments. This research was supported
by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

64

References
David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva,

and Antonio Torralba. 2017. Network dissection:
Quantifying interpretability of deep visual represen-
tations. In Proceedings of the 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR 2017), pages 6541–6549, Honolulu, Hawaii.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Michael Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert
Gruber. 2006. Bigtable: A distributed storage sys-
tem for structured data. In Proceedings of the 7th
USENIX Symposium on Operating System Design
and Implementation (OSDI 2006), pages 205–218,
Seattle, Washington.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1746–
1751, Doha, Qatar.

Jimmy Lin. 2015. Building a self-contained search en-
gine in the browser. In Proceedings of the ACM In-
ternational Conference on the Theory of Information
Retrieval (ICTIR 2015), pages 309–312, Northamp-
ton, Massachusetts.

Zachary C. Lipton. 2016. The mythos of model inter-
pretability. arXiv:1606.03490.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan
Carter, Ludwig Schubert, Katherine Ye, and Alexan-
der Mordvintsev. 2018. The building blocks of inter-
pretability. Distill.

Xin Rong and Eytan Adar. 2016. Visual tools for de-
bugging neural language models. In Proceedings of
the ICML 2016 Workshop on Visualization for Deep
Learning, New York, New York.

Daniel Smilkov, Shan Carter, D. Sculley, Fernanda B.
Viégas, and Martin Wattenberg. 2016a. Direct-
manipulation visualization of deep networks. In
Proceedings of the ICML 2016 Workshop on Visu-
alization for Deep Learning, New York, New York.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, Fernanda B. Viégas, and Martin Wat-
tenberg. 2016b. Embedding projector: Interac-
tive visualization and interpretation of embeddings.
arXiv:1611.05469.

65

