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Abstract

We investigate the effect of various
dependency-based word embeddings on
distinguishing between functional and domain
similarity, word similarity rankings, and two
downstream tasks in English. Variations
include word embeddings trained using
context windows from Stanford and Universal
dependencies at several levels of enhancement
(ranging from unlabeled, to Enhanced++
dependencies). Results are compared to
basic linear contexts and evaluated on sev-
eral datasets. We found that embeddings
trained with Universal and Stanford depen-
dency contexts excel at different tasks, and
that enhanced dependencies often improve
performance.

1 Introduction

For many natural language processing applica-
tions, it is important to understand word-level se-
mantics. Recently, word embeddings trained with
neural networks have gained popularity (Mikolov
et al., 2013; Pennington et al., 2014), and have
been successfully used for various tasks, such as
machine translation (Zou et al., 2013) and infor-
mation retrieval (Hui et al., 2017).

Word embeddings are usually trained using lin-
ear bag-of-words contexts, i.e. tokens positioned
around a word are used to learn a dense representa-
tion of that word. Levy and Goldberg (2014) chal-
lenged the use of linear contexts, proposing in-
stead to use contexts based on dependency parses.
(This is akin to prior work that found that depen-
dency contexts are useful for vector models (Pado
and Lapata, 2007; Baroni and Lenci, 2010).) They
found that embeddings trained this way are bet-
ter at capturing semantic similarity, rather than re-
latedness. For instance, embeddings trained us-
ing linear contexts place Hogwarts (the fictional

setting of the Harry Potter series) near Dumble-
dore (a character from the series), whereas em-
beddings trained with dependency contexts place
Hogwarts near Sunnydale (fictional setting of the
series Buffy the Vampire Slayer). The former is
relatedness, whereas the latter is similarity.

Work since Levy and Goldberg (2014) exam-
ined the use of dependency contexts and sen-
tence feature representations for sentence classifi-
cation (Komninos and Manandhar, 2016). Li et al.
(2017) filled in research gaps relating to model
type (e.g., CBOW, Skip-Gram, GloVe) and depen-
dency labeling. Interestingly, Abnar et al. (2018)
recently found that dependency-based word em-
beddings excel at predicting brain activation pat-
terns. The best model to date for distinguishing
between similarity and relatedness combines word
embeddings, WordNet, and dictionaries (Recski
et al., 2016).

One limitation of existing work is that it
has only explored one dependency scheme:
the English-tailored Stanford Dependen-
cies (De Marneffe and Manning, 2008b). We
provide further analysis using the cross-lingual
Universal Dependencies (Nivre et al., 2016). Al-
though we do not compare cross-lingual embed-
dings in our study, we will address one important
question for English: are Universal Dependencies,
which are less tailored to English, actually better
or worse than the English-specific labels and
graphs? Furthermore, we investigate approaches
to simplifying and extending dependencies, in-
cluding Enhanced dependencies and Enhanced++
dependencies (Schuster and Manning, 2016), as
well as two levels of relation simplification. We
hypothesize that the cross-lingual generalizations
from universal dependencies and the additional
context from enhanced dependencies should
improve the performance of word embeddings
at distinguishing between functional and domain
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Figure 1: Visual relationship between types of embed-
ding contexts. Each layer of enhancement adds more
information to the dependency context (e.g., simpli-
fied adds dependency labels to the unlabeled context).
We investigate CBOW using both a context window of
k = 2 and k = 5, and we use the SkipGram model both
with and without subword information.

similarity. We also investigate how these differ-
ences impact word embedding performance at
word similarity rankings and two downstream
tasks: question-type classification and named
entity recognition.

2 Method

In this work, we explore the effect of two depen-
dency annotation schemes on the resulting embed-
dings. Each scheme is evaluated in five levels of
enhancement. These embeddings are compared to
embeddings trained with linear contexts using the
continuous bag of words (CBOW) with a context
window of k = 2 and k = 5, and Skip-Gram
contexts with and without subword information.
These configurations are summarized in Figure 1.

Two dependency annotation schemes for En-
glish are Stanford dependencies (De Marneffe
and Manning, 2008b) and Universal dependen-
cies (Nivre et al., 2016). Stanford dependen-
cies are tailored to English text, including de-
pendencies that are not necessarily relevant cross-
lingually (e.g. a label prt for particles like up in
pick up). Universal dependencies are more gener-
alized and designed to work cross-lingually. Many
structures are similar between the two schemes,
but important differences exist. For instance,
in Stanford dependencies, prepositions head their
phrase and depend on the modified word (in is the

Simp. Basic

Stanford dependencies
mod poss, prt, predet, det, amod, tmod, npadvmod,

possessive, advmod, quantmod, preconj, mark,
vmod, nn, num, prep, appos, mwe, mod, num-
ber, neg, advcl, rcmod

arg agent, iobj, dobj, acomp, pcomp, pobj, ccomp,
arg, subj, csubj, obj, xcomp, nsubj

aux aux, cop
sdep xsubj, sdep

Universal dependencies
core iobj, dobj, ccomp, csubj, obj, xcomp, nsubj
ncore discourse, cop, advmod, dislocated, vocative,

aux, advcl, mark, obl, expl
nom case, nmod, acl, neg, appos, det, amod, num-

mod
coord cc, conj
special goeswith, reparandum, orphan
loose parataxis, list
mwe compound, mwe, flat
other punct, dep, root

Table 1: Simplified Stanford and Universal dependency
labels. For simplified dependencies, basic labels are
collapsed into the simplified label shown in this table.
(Relations not found in this table were left as is.)

head of in Kansas), whereas in universal depen-
dencies, prepositions depend on the prepositional
object (Kansas dominates in). Intuitively, these
differences should have a moderate effect on the
resulting embeddings because different words will
be in a given word’s context.

We also investigate five levels of enhancement
for each dependency scheme. Basic dependencies
are the core dependency structure provided by the
scheme. Simplified dependencies are more coarse
basic dependencies, collapsing similar labels into
rough classes. The categories are based off of the
Stanford Typed Dependencies Manual (De Marn-
effe and Manning, 2008a) and the Universal De-
pendency Typology (De Marneffe et al., 2014),
and are listed in Table 1. Note that the two depen-
dency schemes organize the relations in different
ways, and thus the two types of simplified depen-
dencies represent slightly different structures. The
unlabeled dependency context removes all labels,
and just captures syntactically adjacent tokens.

Enhanced and Enhanced++ dependen-
cies (Schuster and Manning, 2016) address
some practical dependency distance issues by
extending basic dependency edges. Enhanced
dependencies augment modifiers and conjuncts
with their parents’ labels, propagate governors
and dependents for indirectly governed argu-
ments, and add subjects to controlled verbs.
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Enhanced++ dependencies allow for the deletion
of edges to better capture English phenomena,
including partitives and light noun constructions,
multi-word prepositions, conjoined prepositions,
and relative pronouns.

3 Experimental Setup

We use the Stanford CoreNLP parser1 to parse
basic, Enhanced, and Enhanced++ dependencies.
We use the Stanford english SD model to parse
Stanford dependencies (trained on the Penn Tree-
bank) and english UD model to parse Universal
dependencies (trained on the Universal Dependen-
cies Corpus for English). We acknowledge that
differences in both the size of the training data
(Penn Treebank is larger than the Universal De-
pendency Corpus for English), and the accuracy
of the parse can have an effect on our overall per-
formance. We used our own converter to generate
simple dependencies based on the rules shown in
Table 1. We use the modified word2vecf soft-
ware2 Levy and Goldberg (2014) that works with
arbitrary embedding contexts to train dependency-
based word embeddings.

As baselines, we train the following
linear-context embeddings using the original
word2vec software:3 CBOW with k = 2,
CBOW with k = 5, and Skip-Gram. We also
train enriched Skip-Gram embeddings including
subword information (Bojanowski et al., 2016)
using fastText.4

For all embeddings, we use a cleaned recent
dump of English Wikipedia (November 2017,
4.3B tokens) as training data. We evaluate each
on the following tasks:

Similarity over Relatedness Akin to the quanti-
tative analysis done by Levy and Goldberg (2014),
we test to see how well each approach ranks sim-
ilar items above related items. Given pairs of
similar and related words, we rank each word
pair by the cosine similarity of the corresponding
word embeddings, and report the area-under-curve
(AUC) of the resulting precision-recall curve.
We use the labeled WordSim-353 (Agirre et al.,
2009; Finkelstein et al., 2001) and the Chiarello
dataset (Chiarello et al., 1990) as a source of sim-
ilar and related word pairs. For WordSim-353,
1stanfordnlp.github.io/CoreNLP/
2bitbucket.org/yoavgo/word2vecf
3code.google.com/p/word2vec/
4github.com/facebookresearch/fastText

we only consider pairs with similarity/relatedness
scores of at least 5/10, yielding 90 similar pairs
and 147 related pairs. For Chiarello, we disregard
pairs that are marked as both similar and related,
yielding 48 similar pairs and 48 related pairs.

Ranked Similarity This evaluation uses a list of
word pairs that are ranked by degree of functional
similarity. For each word pair, we calculate the co-
sine similarity, and compare the ranking to that of
the human-annotated list using the Spearman cor-
relation. We use SimLex-999 (Hill et al., 2016)
as a ranking of functional similarity. Since this
dataset distinguishes between nouns, adjectives,
and verbs, we report individual correlations in ad-
dition to the overall correlation.

Question-type Classification (QC) We use an
existing QC implementation5 that uses a bidirec-
tional LSTM. We train the model with 20 epochs,
and report the average accuracy over 10 runs for
each set of embeddings. We train and evaluate us-
ing the TREC QC dataset (Li and Roth, 2002). We
modified the approach to use fixed (non-trainable)
embeddings, allowing us to compare the impact of
each embedding type.

Named Entity Recognition (NER) We use the
Dernoncourt et al. (2017) NER implementation6

that uses a bidirectional LSTM. Training con-
sists of a maximum of 100 epochs, with early
stopping after 10 consecutive epochs with no im-
provement to validation performance. We evalu-
ate NER using the F1 score on the CoNLL NER
dataset (Tjong Kim Sang and De Meulder, 2003).
Like the QC task, we use a non-trainable embed-
ding layer.

4 Results

4.1 Similarity over Relatedness

The results for the WordSim-353 (WS353) and
Chiarello datasets are given in Table 2a. For the
WS353 evaluation, notice that the Enhanced de-
pendencies for both Universal and Stanford de-
pendencies outperform the others in each scheme.
Even the poorest-performing level of enhancement
(unlabeled), however, yields a considerable gain
over the linear contexts. Both Skip-Gram variants
yield the worst performance, indicating that they

5github.com/zhegan27/sentence_
classification

6github.com/Franck-Dernoncourt/NeuroNER
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(a) Sim/rel (AUC) (b) Ranked sim (Spearman) (c) Downstream

Embeddings WS353 Chiarello Overall Noun Adj. Verb QC (Acc) NER (F1)

Universal embeddings
Unlabeled 0.786 0.711 0.370 0.408 0.484 0.252 0.915 0.877
Simplified 0.805 0.774 0.394 0.420 0.475 0.309 0.913 0.870
Basic 0.801 0.761 0.391 0.421 0.451 0.331 0.920 0.876
Enhanced 0.823 0.792 0.398 0.416 0.473 0.350 0.915 0.875
Enhanced++ 0.820 0.791 0.396 0.416 0.461 0.348 0.917 0.882

Stanford embeddings
Unlabeled 0.790 0.741 0.382 0.414 0.507 0.256 0.911 0.870
Simplified 0.793 0.748 0.393 0.416 0.501 0.297 0.923 0.873
Basic 0.808 0.769 0.402 0.422 0.494 0.341 0.910 0.865
Enhanced 0.817 0.755 0.399 0.420 0.482 0.338 0.911 0.871
Enhanced++ 0.810 0.764 0.398 0.417 0.496 0.346 0.918 0.878

Baselines (linear contexts)
CBOW, k=2 0.696 0.537 0.311 0.355 0.338 0.252 0.913 0.885
CBOW, k=5 0.701 0.524 0.309 0.353 0.358 0.258 0.899 0.893
Skip-Gram 0.617 0.543 0.264 0.304 0.368 0.135 0.898 0.881
SG + Subword 0.615 0.456 0.324 0.358 0.451 0.166 0.897 0.887

Table 2: Results of various dependency-based word embeddings, and baseline linear contexts at (a) similarity over
relatedness, (b) ranked similarity, and (c) downstream tasks of question classification and named entity recognition.

capture relatedness better than similarity. For the
Chiarello evaluation, the linear contexts perform
even worse, while the Enhanced Universal embed-
dings again outperform the other approaches.

These results reinforce the Levy and Goldberg
(2014) findings that dependency-based word em-
beddings do a better job at distinguishing simi-
larity rather than relatedness because it holds for
multiple dependency schemes and levels of en-
hancement. The Enhanced universal embeddings
outperformed the other settings for both datasets.
For Chiarello, the margin between the two is sta-
tistically significant, whereas for WS353 it is not.
This might be due to the fact that the the Chiarello
dataset consists of manually-selected pairs that ex-
hibit similarity or relatedness, whereas the set-
tings for WS353 allow for some marginally re-
lated or similar terms through (e.g., size is related
to prominence, and monk is similar to oracle).

4.2 Ranked Similarity
Spearman correlation results for ranked similar-
ity on the SimLex-999 dataset are reported in Ta-
ble 2b. Overall results indicate the performance
on the entire collection. In this environment, ba-
sic Stanford embeddings outperform all other em-
beddings explored. This is an interesting result

because it shows that the additional dependency
labels added for Enhanced embeddings (e.g. for
conjunction) do not improve the ranking perfor-
mance. This trend does not hold for Universal em-
beddings, with the enhanced versions outperform-
ing the basic embeddings.

All dependency-based word embeddings signif-
icantly outperform the baseline methods (10 folds,
paired t-test, p < 0.05). Furthermore, the un-
labeled Universal embeddings performed signif-
icantly worse than the simplified Universal, and
the simplified, basic, and Enhanced Stanford de-
pendencies, indicating that dependency labels are
important for ranking.

Table 2b also includes results for word pairs by
part of speech individually. As the majority cat-
egory, Noun-Noun scores (n = 666) mimic the
behavior of the overall scores, with basic Stanford
embeddings outperforming other approaches. In-
terestingly, Adjective-Adjective pairs (n = 111)
performed best with unlabeled Stanford dependen-
cies. Since unlabeled also performs best among
universal embeddings, this indicates that depen-
dency labels are not useful for adjective simi-
larity, possibly because adjectives have compara-
tively few ambiguous functions. Verb-Verb pairs
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Embeddings QC (Acc) NER (F1)

Universal embeddings
Unbound 0.921 (+0.007) 0.887 (+0.000)
Simplified 0.929 (+0.016) 0.883 (+0.013)
Basic 0.920 (+0.000) 0.891 (+0.015)
Enhanced 0.923 (+0.008) 0.886 (+0.010)
Enhanced++ 0.927 (+0.010) 0.890 (+0.008)

Stanford embeddings
Unbound 0.926 (+0.015) 0.879 (+0.009)
Simplified 0.933 (+0.010) 0.877 (+0.004)
Basic 0.927 (+0.017) 0.885 (+0.020)
Enhanced 0.923 (+0.013) 0.885 (+0.014)
Enhanced++ 0.929 (+0.011) 0.884 (+0.006)

Baselines (linear contexts)
CBOW, k=2 0.921 (+0.008) 0.892 (+0.007)
CBOW, k=5 0.925 (+0.026) 0.892 (+0.001)
Skip-Gram 0.914 (+0.016) 0.887 (+0.006)
SG + Subword 0.919 (+0.022) 0.896 (+0.009)

Table 3: Performance results when embeddings are
further trained for the particular task. The number in
parentheses gives the performance improvement com-
pared to when embeddings are not trainable (Table 2c).

(n = 222) performed best with Enhanced uni-
versal embeddings. This indicates that the aug-
mentation of governors, dependents, and subjects
of controlled verbs is particularly useful given
the universal dependency scheme, and less so for
the English-specific Stanford dependency scheme.
Both Stanford and universal unlabeled dependen-
cies performed significantly worse compared to all
basic, Enhanced, and Enhanced++ dependencies
(5 folds, paired t-test, p < 0.05). This indicates
that dependency labels are particularly important
for verb similarity.

4.3 Downstream Tasks

We present results for question-type classifica-
tion and named entity recognition in Table 2c.
Neither task appears to greatly benefit from em-
beddings that favor similarity over relatedness or
that can rank based on functional similarity ef-
fectively without the enhanced sentence feature
representations explored by Komninos and Man-
andhar (2016). We compare the results using to
the performance of models with embedding train-
ing enabled in Table 3. As expected, this im-
proves the results because the training captures
task-specific information in the embeddings. Gen-
erally, the worst-performing embeddings gained
the most (e.g., CBOW k = 5 for QC, and basic
Stanford for NER). However, the simplified Stan-
ford embeddings and the embeddings with sub-
word information still outperform the other ap-

proaches for QC and NER, respectively. This in-
dicates that the initial state of the embeddings is
still important to an extent, and cannot be learned
fully for a given task.

5 Conclusion

In this work, we expanded previous work by Levy
and Goldberg (2014) by looking into variations of
dependency-based word embeddings. We inves-
tigated two dependency schemes: Stanford and
Universal embeddings. Each scheme was ex-
plored at various levels of enhancement, rang-
ing from unlabeled contexts to Enhanced++ de-
pendencies. All variations yielded significant im-
provements over linear contexts in most circum-
stances. For certain subtasks (e.g. Verb-Verb
similarity), enhanced dependencies improved re-
sults more strongly, supporting current trends in
the universal dependency community to promote
enhanced representations. Given the disparate re-
sults across POS tags, future work could also eval-
uate ways of using a hybrid approach with differ-
ent contexts for different parts of speech, or using
concatenated embeddings.
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