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Abstract

At eBay, we are automatically generating
a large amount of natural language titles
for eCommerce browse pages using machine
translation (MT) technology. While automatic
approaches can generate millions of titles very
fast, they are prone to errors. We therefore de-
velop quality estimation (QE) methods which
can automatically detect titles with low quality
in order to prevent them from going live. In
this paper, we present different approaches:
The first one is a Random Forest (RF) model
that explores hand-crafted, robust features,
which are a mix of established features com-
monly used in Machine Translation Quality
Estimation (MTQE) and new features devel-
oped specifically for our task. The second
model is based on Siamese Networks (SNs)
which embed the metadata input sequence and
the generated title in the same space and do
not require hand-crafted features at all. We
thoroughly evaluate and compare those ap-
proaches on in-house data. While the RF mod-
els are competitive for scenarios with smaller
amounts of training data and somewhat more
robust, they are clearly outperformed by the
SN models when the amount of training data
is larger.

1 Introduction

On eCommerce sites, multiple items can be
grouped on a common page called browse page
(BP). Each browse page contains an overview of
various items which share some, but not nec-
essarily all characteristics. The characteristics
can be expressed as slot/value pairs. Figure 1
shows an example of a browse page with a title,
with navigation elements leading to related browse
pages as well as the individual items listed on this
page.

The browse pages are linked among each other
and can be organized in a hierarchy. This structure
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Model New In Box $111.11

Figure 1: Example of a browse page.

allows users to navigate laterally between different
browse pages, or to dive deeper and refine their
search. The example browse page in Figure 1
shows different white ACME smartphones with
capacity 32GB. This page is linked from various
browse pages, e.g. those for white ACME Smart-
phones, for ACME smartphones with 32GB, or
for white smartphones with 32GB. It also links
to browse pages with a higher number of slots,
i.e. refining the set of listed items by additional
features like network provider.

Different combinations of characteristics bijec-
tively correspond to different browse pages, and
consequently to different browse page titles. To
show customers which items are grouped on a
browse page, we need a human-readable descrip-
tion of the content of that particular page.

Large eCommerce sites can easily have tens of
millions of such browse pages in many different
languages. Each browse page has one to six slots
to be realized. The number of unique slot-value
pairs are in the order of hundreds of thousands.
All these factors render the task of human cre-
ation of browse page titles infeasible. We have
therefore developed several strategies to gener-
ate these human-readable titles automatically for
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any possible browse page (Mathur, Ueffing, and
Leusch, 2017). These strategies are based on MT
technology and take the slot/value pairs mentioned
in Section 1 as input. Examples of such slot/value
pairs are the category to which the products be-
long, and characteristics like brand, color, size,
storage capacity, which are dependant on the cat-
egory. The slot/value pairs for the browse page
from Figure 1 are shown in Table 1.

Slot Name Value
Category Cell Phones & Smart Phones
Brand ACME
Color white
Storage Capacity 32GB

Table 1: The underlying metadata for Figure 1.

These metadata are fed into an MT system and
translated into natural language. We have devel-
oped three different MT-based systems, which are
tailored towards different amounts of training data
available across languages. These systems are
shortly described in Section 4. In this paper, we
compare our QE methods on output from different
MT systems on English titles.

2 Approach

The automatically generated BP titles are regu-
larly monitored, and quality is assessed by human
experts, who label each title with one out of four
error severity classes:

• Good: good quality, no issues,

• P3: minor issues, acceptable quality,

• P2: issues which impact the understandabil-
ity of the title,

• P1: severe issues, like incorrect brand names.

We map these error classes to the two quality
classes ‘OK’ and ‘Bad’: ‘Good’ and ‘P3’ repre-
sent acceptable title quality (‘OK’), while ‘P2’ and
‘P1’ constitute ‘Bad’ titles. For English browse
page titles, we have a large amount of these
manually assigned labels available (see Section 3).
For automatically predicting the quality of a BP
title, we train different machine learning models
on these annotated data. In MT(QE) terms, the
metadata for a browse page is considered the
source language, and the target language is the
natural language, English, in our experiments.

2.1 Random Forests

Random Forests are ensemble classifiers that in-
duce several decision trees using some source
of randomness to form a diverse set of estima-
tors (Breiman, 2001). There are two sources of
randomness: (i) each individual decision tree is
trained over a sub-sample of the training data and
(ii) when building the tree, the node splitting step
is modified to use the best split among splits using
random subsets of features. In our experiments,
we used the Random Forest (RF) implementation
from the Scikit-learn toolkit (Pedregosa et al.,
2011).

2.1.1 Features
We trained various RF classifiers, using several
different feature types. Some of those features
are commonly used in MTQE (Blatz et al., 2004;
Specia et al., 2015). Additionally, we developed
specific features which are well-suited for browse
page title generation. Our features can be grouped
into several different classes:

• MTQE: These are common features from
quality estimation for MT, such as title
length, language model score, or number of
unique words in the title;

• Browse-page-specific: These are new fea-
tures we developed specifically for BP titles,
based on the browse page’s metadata, such
as the number of slots in the BP, binary
indicators for the most frequent slot names,
and indicators of incorrect brand names;

• Redundancy: These are features capturing re-
dundancy, e.g. word repetitions, and within-
title cosine distance based on word embed-
dings (Mikolov et al., 2013). We developed
those because redundancy emerged as error
pattern in the regular monitoring of the titles.

These features explore different sources of infor-
mation. Some of them are based only on the title
itself (e.g. title length and cosine distance between
words) and capture the fluency of the title. Other
features are based only on the browse page’s
metadata (e.g. number of slots in the browse page)
and capture the complexity of the input for title
generation. Some features explore both metadata
and generated title (e.g. checking for brand names
that are not reproduced exactly in the title) and
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capture the adequacy of the generated title given
the input data.

Note that all features are black-box features
independent of the underlying system which gen-
erated the BP titles. This is important for our
application because we have different algorithms
in production which generate the BP titles. All
of them are described in (Mathur, Ueffing, and
Leusch, 2017). As we will see in Section 4, the
QE model works well for all of them. Another
important aspect is that the features can be easily
applied to different languages without requiring
complex resources.

Hyper-parameter optimization We performed
hyper-parameter search of the RF models with
random search for 100 iterations and 5-fold cross-
validation in each iteration.

2.2 Siamese Networks

As in other areas in machine learning, neural
networks have recently gained much attention in
MTQE and have contributed to pushing the state
of the art of the task (Kim et al., 2017; Martins
et al., 2017). One type of neural network that can
be used to predict similarity between paired inputs
is called Siamese networks. These networks were
originally defined by Bromley et al. (1994) as
a neural network composed by two symmetric
sub-networks that compare two input patterns and
outputs a similarity between these inputs. The
authors proposed this architecture in the context of
signature verification, i.e., estimating how similar
two signatures are to each other. SN models
have also been applied to face verification (Chopra
et al., 2005), metric learning in speech recognition,
to extract speaker-specific information (Chen and
Salman, 2011) and text similarity (Yih et al.,
2011). Grégoire and Langlais (2017) proposes
a siamese network architecture to extract parallel
sentences out of parallel corpora. This is a pre-
print publication found upon completion of the
work described here and we plan to have a detailed
comparison in future work.

In this work, we build a QE model inspired by
work on sentence similarity (Mueller and Thya-
garajan, 2016), which uses SN models to learn
a similarity metric between paired inputs. The
motivation to apply such architecture to QE is that
the problem can be seen as a sentence similarity
problem but across two “languages”: given a sen-
tence in English and its corresponding translation

in French, we want to know if the translation is
adequate and fluent with respect to the original
sentence. In the problem described in this paper,
we can reformulate the scenario as follows: given
a segment of slot/value pairs representing the
metadata and its corresponding title in English, we
want to know if the title is adequate and fluent with
respect to the metadata input.

2.2.1 Architecture
The SN architecture we are evaluating was built
using a specific type of recurrent neural networks
(RNNs) to model each segment input. RNNs are
models well-suited to deal with variable-length
input like natural language sentences. In RNNs,
the standard feed-forward neural networks are
adapted for sequence data (x1, . . . , xT ), where at
each time step t ∈ 1, ..., T , a hidden-state vector
ht is updated as ht = σ(Wxt + Uht−1), where
xt is the input at time t, W is the weight matrix
from inputs to the hidden-state vector and U is
the weight matrix on the hidden-state vector from
the previous time step ht−1 and σ is the logistic
function defined as σ = (1 + e−x)−1.

Though RNNs can cope with variable-length
sequences, the optimization of the weight matrices
in RNNs is hard: when the gradients are back-
propagated, they decrease to the point of becom-
ing so small that the weights cannot be updated,
specially over long input sequences. In order to
alleviate this problem, Hochreiter and Schmidhu-
ber (1997) proposed Long Short-Term Memory
models (LSTMs), which are able to overcome the
vanishing gradients problem by capturing long-
range dependencies through its use of memory cell
units that can store/access information across long
input sequences. For more details on LSTMs we
refer the interested reader to Greff et al. (2015).

Figure 2: Example of an SN for title quality estimation.
The left sequence represents the BP’s metadata, the
right sequence is the BP title.

The SN architecture we employ in this work is
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depicted in Figure 21. The architecture consists
of two networks, LSTMa and LSTMb, one for
each input sentence (the browse page’s metadata
on the left and the title on the right). Both LSTMs
have tied weights, meaning that both networks
have identical transformations in their paths in the
experiments presented in this paper.

The architecture is defined in a supervised
learning setting, in which each instance is a pair
of sentences represented as a sequence of word
vectors, xa1, . . . , x

a
Ta

and xb1, . . . , x
b
Tb

, where Ta 6=
Tb, and a binary label y that indicates whether the
pair is similar or not. The two sequences of word
embeddings are the input to their corresponding
LSTM, which updates its hidden state at each
sequence-index. The sentence is represented by
the last hidden state hT of the LSTM (ha7 and hb4
in Figure 2).

The similarity function is pre-defined and is
used to compare the LSTM representations and
infer their semantic similarity. In this paper, we
use the cosine similarity between the final repre-
sentations of each LSTM, haTa

and hbTb
:

s(haT , h
b
T ) =

haT · hbT
||haT || · ||hbT ||

(1)

The cumulative loss function for a training set
X = {(xai , xbi , yi)}Ni=1 is defined following (Necu-
loiu et al., 2016):

L(X) =
N∑

i=1

L(xai , x
b
i , yi) (2)

In Equation 2, N is the number of instances
in the training set X and L is the instance loss
composed of two terms: one for similar pairs
(L+), and one for dissimilar pairs (L−):

L(xai , x
b
i , yi) = yi · L+(x

a
i , x

b
i)

+ (1− yi) · L−(xai , x
b
i),

(3)

where the loss functions for the similar and dis-
similar cases are given by:

L+(x
a
i , x

b
i) = (1− s)2

L−(xai , x
b
i) =

{
s2 if s < 0

0 otherwise

(4)

where s stands for the cosine similarity, as defined
in Equation 1.

1Inspired by the figure in (Mueller and Thyagarajan,
2016), and adapted to our use case.

3 Data

3.1 Training Data

For English, we have a large amount of training
data, consisting of the browse page’s metadata
(slot/value pairs and category name), a title gen-
erated by the rule-based system (see section 3.2),
and manually assigned error severity (see sec-
tion 2) for this title. Table 2 shows some examples
of training data instances.

Category MP3 Player Headphones & Earbuds
Brand Sony
Connector 3.5mm (1/8in.)
Features Volume Control
Title Sony 3.5mm (1/8in.) MP3 Player Headphones &

Earbuds with Volume Control
Quality OK
Category Nursery Bedding Sets
To Fit Crib
Brand My Baby Sam
Title My Nursery Bedding Sets Sam Baby Crib Shoes
Quality Bad

Table 2: Examples of metadata, automatically gener-
ated title, manually assigned quality class.

Table 3 shows statistics on the training data.
When we started working on quality estimation
for these titles, we only had the first set of data,
labeled train1. The other set, train2, is much
larger and became available later on. We use
these two training sets for evaluating the impact
of adding more data to model training.

Data set # Browse Pages Quality (%)
OK Bad

train1 81,251 65 35
train2 269,409 66 34
artificial P1 29,150 0 100

Table 3: Training data statistics.

The distribution of quality classes is similar
across both training sets. The majority of titles
is labeled as ‘OK’, and about one third are labeled
as ‘Bad’. Since the number of P1 samples in the
training data is very low (approx. 1%), we gener-
ated 29k additional training samples with P1 is-
sues semi-automatically, in order to increase their
representation in the training data, and improve
the models’ prediction capabilities on this type of
errors: We extracted BPs from the training data
which contain “brand” slots, modified the curated
reference title by misspelling the brand name, and
added these modified titles to the training data
with label ‘Bad’.
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Test Set # BPs Rule-based Hybrid APE
1 508 60 / 40 – 54 / 46
2 509 62 / 38 63 / 36 71 / 29

1+2 2,543 all combined : 63% OK 37% Bad

Table 4: Evaluation data statistics. Numbers are %
Good / % Bad in the three rightmost columns.

3.2 Evaluation Data
We constantly carry out human evaluation of title
quality. From these evaluations, we have two test
sets with approximately 500 browse pages each,
called test1 and test2. For those browse pages,
we have automatically generated titles from three
different systems along with manual assessment of
title quality. The three different title generation
systems are described in detail in (Mathur, Ueff-
ing, and Leusch, 2017). In short, they are:

• a strictly rule-based approach with a man-
ually created grammar. This is especially
useful when the amount of human-curated
training data is limited.

• a hybrid generation approach which com-
bines rule-based language generation and sta-
tistical MT techniques for situations in which
monolingual data for the language is avail-
able, but human-curated titles are not.

• an Automatic Post-Editing (APE) system
which first generates titles with the rule-
based approach, and then uses statistical MT
techniques for automatically correcting the
errors made by the rule-based approach.

See Table 4 for the amount of data and title
quality across these different test sets and system
outputs. Apart from the APE system, the class
distribution is similar for all sets, and also similar
to the distribution on the training data. The APE
system was significantly improved between these
two evaluation rounds, leading to a much higher
percentage of ‘OK’ labels on test2. The hybrid
system was manually evaluated only on test2.

4 Results

We evaluated our QE models in the following
scenario: given a browse page’s metadata and an
automatically generated title, we want to decide
whether the title meets the quality standards and
should be presented on our website. Evaluation
metrics are F1-score per class and total (weighted)
F1-score, and Matthew’s correlation.

4.1 Model comparison
We first compared QE models obtained using
different learning algorithms and trained only on
train1 because model training is faster and we
expect the observed trends to be independent of
the amount of training data. Table 5 shows the
results. The majority baseline (accepting all titles
as ‘OK’) yields fairly low F1-score, because all
bad titles are labeled incorrectly. For the RF

Model F1(OK) F1(Bad) F1 MC
Majority (‘OK’) 0.77 0.00 0.48 0.00
Random Forest
MTQE features 0.61 0.58 0.60 0.24
BP features 0.68 0.59 0.65 0.29
MTQE + BP 0.66 0.64 0.65 0.36
MTQE + BP + redun. 0.66 0.64 0.65 0.37
Siamese Network
fastText, dim50 0.80 0.54 0.70 0.37
word2vec, dim50 0.79 0.55 0.70 0.37

Table 5: F1-scores and Matthew’s correlation (MC)
for different QE models. Training on train1, evaluation
on test1+2. Best results in bold.

classifiers, we can see how adding information
improves the model. The model based only on
MTQE features achieves the worst performance
(60 points F1 and correlation 0.24). Our newly
developed browse-page-specific features in isola-
tion perform 5 points better both in F1 and in
correlation. Combining those two feature groups
yields a significant improvement in correlation,
though not in total F1. It significantly increases
the F1-score for ‘Bad’ titles, but hurts a bit on
the ‘OK’ titles, which are more frequent in the
test data. The redundancy features additionally
increase correlation by 1 point absolute.

Training data F1(OK) F1(Bad) F1 MC
Random Forest
train1 0.66 0.64 0.65 0.37
train1+2 0.76 0.64 0.72 0.41
train1+2 + artif. 0.78 0.64 0.73 0.43
Siamese Network
train1 0.79 0.55 0.70 0.37
train1+2 + artif. 0.82 0.64 0.75 0.48

Table 6: QE performance for different amounts of
training data. Evaluation on test1+2. RF with all
features. SN with word2vec embeddings. Best results
in bold.

We compared SN models with two differ-
ent pre-trained word embeddings, using either
word2vec (Mikolov et al., 2013) or fastText (Bo-
janowski et al., 2016). As we see in Table 5,
their QE performance is almost identical, and we
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Model F1-score / Matthew’s correlation
test1 RB test2 RB test1 APE test2 APE test2 hybrid

RF trained on train1 0.68 / 0.44 0.64 / 0.35 0.62 / 0.29 0.65 / 0.30 0.68 / 0.40
RF trained on all data 0.75 / 0.47 0.74 / 0.46 0.70 / 0.39 0.71 / 0.31 0.75 / 0.46
SN trained on train1 0.74 / 0.46 0.74 / 0.47 0.60 / 0.24 0.71 / 0.28 0.73 / 0.41
SN trained on all data 0.79 / 0.57 0.81 / 0.59 0.66 / 0.36 0.72 / 0.32 0.79 / 0.54

Table 7: QE performance per title generation system. RF with all features. SN with word2vec embeddings. Best
results marked in bold. RB is rule-based.

will use the word2vec embeddings going forward.
Both SN models significantly outperform the RF
models in total F1-score, which increases by 5
points. This stems from much better classification
of ‘OK’ titles, while ‘Bad’ titles are better recog-
nized by the RF models. Matthew’s correlation is
at 0.37 both for the best RF and the SN models.

4.2 Impact of training data

After the original experiments described in sec-
tion 4.1, we obtained a much larger amount of
training data. We then trained RF models on
the combined sets train1 and train2, with 349k
titles. As Table 6 shows, this yields a gain of
7 points in F1-score and 4 points in correlation,
caused by improved classification on ‘OK’ titles.
Manual analysis of QE performance showed that
it was particularly low on titles with P1 issues. As
described in section 3.1, we therefore generated
artificial training data for better representing P1
errors in training. Adding these in training further
improves the RF model, yielding total F1 of 73
points and correlation of 0.43. The effect of an
increased amount of training data is even stronger
for the SN models. QE performance increases by
5 points in F1 and 11 points in correlation. This
SN trained on all 376k titles is the best QE model
according to all metrics.

4.3 System-specific evaluation

We are constantly improving the system for BP
title generation and have implemented different
approaches. It is therefore important that the
QE models work equally well for output from
different title generation systems, i.e. they should
not be heavily tailored to one specific system.

We evaluated the QE models per evaluation set
(test1 and test2) and per title generation system.
The QE performance per system output is shown
in Table 7, with notable difference in F1-score
and Matthew’s correlation across the five different
sets. The SN models perform best on the titles
from the rule-based generation system, i.e. when

training and test titles are similar – with F1-
scores around 0.8 and Matthew’s correlation in the
high 50s. The worst classification performance
is achieved for the APE titles on test1, which is
the set with the lowest title quality (see Table 4).
This is also the only set on which the RF models
outperform the SN models. The RF models were
trained with class weights adjusted inversely pro-
portional to class frequencies in the training data,
making them more robust w.r.t. the differences
between training and test data. The neural network
model does not have the same class imbalance
treatment, which makes the model biased towards
most frequent classes in training data sets in which
the imbalance is high (e.g. the rule-based system).
In future work, we plan to apply the same balanc-
ing to SN training. This setting could potentially
improve the SN performance.

5 Conclusion

We developed different methods for automatically
assessing the quality of browse page titles. One is
a Random Forest classifier which combines well-
studied QE features with new features which are
specific to the task and explore information from
the browse page’s metadata. The second approach
is a neural network model using a Siamese ar-
chitecture. The classification performance of the
methods was evaluated on in-house data, showing
that: (i) Random Forest models are significantly
improved by using new task-specific features; (ii)
Siamese networks significantly outperform Ran-
dom Forest models in most settings; (iii) Random
Forest models show more robust quality estima-
tion performance on titles where error distribution
diverges from what was observed in training; (iv)
unsurprisingly, a drastic increase in the amount
of training data significantly improves QE perfor-
mance for both model types; (v) adding artificial
training data, which alleviates the imbalanced
distribution of error types, improves both types
of models. The Siamese architecture presented in
this paper could also be employed in the context of
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machine translation or other language generation
tasks in which one needs to estimate the output
quality.

As future work, we plan to bring those research
and pilot systems into production and gather ex-
perience on their use; as well as extending them
to multi-class prediction for finer-grained QE, di-
rectly predicting the error severity classes (Good,
P3, P2, P1). Furthermore, we plan to develop QE
methods for languages other than English, where
the amount of training data is much smaller.
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Appendix: Examples

Table 8 shows examples of quality predictions
from different QE models. The first block contains
titles where both model types correctly predict
quality, such as bad titles which have issues with
fluency or repetition, or well-formed titles which
contain all relevant aspects.

The second block shows examples where none
of the models correctly predicts title quality. In
the first two examples, the bad quality is caused
by omissions of words (“Water” and “Row”),
and none of the QE models detects this. This
is probably due to the structure of the metadata
input, with aspect slot/value pairs like {“Water
Type”: “Pond”}, which needs to be realized as
“Pond Water” and not just “Pond” in the title –
this type of omission is hard to capture for the
QE models. Similar observations hold for the
slot/value pair {“Row”: “5”} in the next example.
In the third and fourth example in the second
block, there is a mismatch between the category
name in the metadata input and the realization in
the title, which might be the cause for the “Bad”
QE predictions. Category names are “Sculptures
& Carvings Direct from the Artist” and “Barware
Glasses & Cups”, respectively, and significant
portions of the category names are dropped in both
cases.

The third block of the table shows examples
where the RF models perform better. The first ex-
ample is an incorrect brand name (“aden anais”),
for which we explicitly designed features in the
RF models.

The last block of Table 8 contains titles which
the SN models classified correctly, but the RF

model did not. The first one is again a case of
missing information and resulting disfluency in
the title, which seems to be harder to capture for
the RF models.

References
John Blatz, Erin Fitzgerald, George Foster, Simona

Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence es-
timation for machine translation. In Proceedings of
the 20th International Conference on Computational
Linguistics, COLING ’04, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1):5–32.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
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