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Abstract 

In recent years the use of electronic medical 

records has accelerated resulting in large 

volumes of medical data when a patient vis-

its a healthcare facility.  As a first step to-

wards reimbursement healthcare institu-

tions need to associate ICD-10 billing 

codes to these documents. This is done by 

trained clinical coders who may use a com-

puter assisted solution for shortlisting of 

codes.  In this work, we present our work to 

build a machine learning based scalable 

system for predicting ICD-10 codes from 

electronic medical records. We address data 

imbalance issues by implementing two sys-

tem architectures using convolutional neu-

ral networks and logistic regression mod-

els.  We illustrate the pros and cons of those 

system designs and show that the best per-

formance can be achieved by leveraging the 

advantages of both using a system combi-

nation approach. 

1 Introduction 

Medical classification, also called medical coding, 

plays a vital role for healthcare providers. Medical 

coding is the process of assigning ICD-10 codes 

(2018) to a patient’s visit in a healthcare facility. In 

the inpatient case these ICD-10 codes are further 

combined into Diagnosis-Related Groups (DRG) 

which classify inpatient stays into billing groups 

for the purposes of reimbursement. 

Traditionally, medical coding is a manual pro-

cess which involves a medical coder. The medical 

coder examines the complete encounter of a patient 

– the set of all associated Electronic Medical Rec-

ords (EMRs) – and assigns the relevant ICD-10 

                                                      
1 Authors are listed in alphabetic order with respect to  

their family names. 

codes. Medical classification is a complex task in 

many dimensions though. In the inpatient case the 

ICD-10 codes split into the Clinical Modification 

Coding System ICD-10-CM for diagnosis coding 

and the Procedure Coding System ICD-10-PCS for 

procedure coding. As of January 2018, there are 

71704 ICD-10-CM codes and 78705 ICD-10-PCS 

codes (ICD-10, 2018).  

Besides the sheer amount of possible codes, the 

coding process is further hampered by the unstruc-

tured nature of EMRs. Dependent on the individual 

encounter the set of associated EMRs can be very 

diverse (Scheurwegs et al., 2015). The EMRs may 

be composed out of discharge summaries, emer-

gency room notes, imaging diagnoses, anesthesia 

process notes, laboratory reports, etcetera. In addi-

tion, EMRs typically stem from different physi-

cians and laboratories. This results in large 

amounts of redundant information yet presented in 

different writing styles but without guarantee to be 

complete (Weiskopf et al., 2013; Cohen et al., 

2013). Some of the EMRs may be composed out of 

free form written text whereas others contain dic-

tated text, tables or a mixture of tables and text. 

Overall, when working with EMRs one is faced 

with severe data quality issues (Miotto et al., 2016).  

To reduce the complexity of the medical coding 

task Computer Assisted Coding (CAC) was intro-

duced. CAC is meant to automatically predict the 

relevant ICD-10 codes from the EMRs (Perotte et 

al., 2014; Scheurwegs et al., 2017; Shi et al., 2018; 

Pakhomov et al., 2006). Ideally CAC comes up 

with the exact set of codes which describe an en-

counter. However, due to the complexity of the task 

this is hardly possible. Instead CAC is typically de-

signed to assist the medical coder by providing a 

list of most probable codes. 
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 In the paper on hand we present our work to de-

sign such a CAC system. The emphasis lies on in-

dustrial aspects as the scale and the scaling of the 

system. We describe the design of a system which 

models 3000 ICD-10-CM codes and applies up to 

234k encounters to build the model. To address 

data imbalance issues a system combination ap-

proach was followed combining a wide and a deep 

modeling strategy (Heng et al., 2016). Finally, scal-

ing aspects were examined by increasing the num-

ber of encounters used for training and develop-

ment from 81k to 234k.  

This paper is organized as follows. In Section 2 

we state the problem under investigation. Section 3 

gives a detailed description of the data, and Section 

4 describes the methods we apply to approach the 

problem. Section 5 provides experiments and re-

sults, and Section 6 closes with the conclusions. 

 

2 Problem description 

The presented work studies the case of diagnosis 

code prediction for the inpatient case which corre-

sponds to the prediction of ICD-10-CM codes. 

Typically, there are several ICD-10-CM codes 

which apply to an encounter making ICD-10-CM 

code prediction a multi-label classification task 

(Zhang and Zhou, 2014). Ultimately, the task con-

sists in mapping a patient’s encounter to all or a 

subset of the 71704 possible ICD-10-CM codes. 

Traditionally, rule-based approaches which lev-

erage linguistic expertise were used to address this 

problem (Farkas and Szarvas, 2008; Goldstein et 

al., 2007). Rule based methods don’t rely on train-

ing data. Yet, this advantage is dearly bought by a 

lack of scalability and the need for linguistic expert 

knowledge which results in an expensive develop-

ment phase and high maintenance costs. 

The work on hand investigates the use of statis-

tical methods for the CAC task. Statistical ap-

proaches have the advantage that they offer ways 

of continued learning. This can be leveraged to 

scale and improve the system over time which are 

important features in the dynamic environment 

healthcare providers are faced with. 

  

3 Data and data preparation 

The data used for this work stems from ten 

healthcare providers and covers 17 months of data. 

For the analysis of scalability aspects, the data was 

split into two partitions. Partition A covers 6 

months of data and partition B covers additional 10 

months of data. The remaining one month of data 

served as test set. For both partitions, 5% of the 

data was segregated and used as development (dev) 

set. The dev set is meant for threshold tuning, the 

generation of early stopping metrics and the esti-

mation of interpolation weights. Table 1 provides 

some key statistics of the data. 

One peculiarity of the data are encounters which 

are quite long, see Figure 1. The average and the 

median encounter length was found to be 11676 

and 7238 tokens, respectively. In addition, the en-

counter length distribution exhibits a long tail. At 

the upper end there are 1422 encounters (0.63%) 

with more than 100k tokens and the maximum en-

counter length reaches 857k tokens. 

Figure 2 shows the ranked frequency distribu-

tion over the target codes. From Figure 2 it is ap-

parent that out of the 18846 codes seen in the data 

about two-thirds appear less than ten times. This 

code sparsity issue had a direct impact on the sys-

tem design as many of the codes can hardly be 

modeled. 

Data preprocessing was kept at a minimum. Af-

ter concatenating all EHRs of one encounter into 

one document lowercasing was applied. Date and 

time expressions as well as URLs, phone numbers 

and other numerical expressions were 

 Partition-A 

Train/Dev 

Partition-B 

Train/Dev 

Test 

#months of data 6 16 1 

#encounters 81k 234k 14.1k 

#tokens 0.9G 2.6G 160M 

#running codes 870k 2.5M 143k 

#codes types 13094 18846 6863 

Table 1:  Data statistics. 

 

 

 

Figure 1:  Encounter length distribution. 
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canonicalized. Finally, after applying some shallow 

normalization (hyphens, underscores) tokenization 

was done using whitespace as token separators. 

 

4 Models and methods 

As mentioned in Section 3 we had to operate over 

a set of codes with a wide range of occurrence 

probabilities. For some of the target codes training 

material was abundant whereas for others we were 

faced by severe data sparsity. To address this issue, 

we followed a system combination strategy com-

bining a set of Logistic Regression (LR) classifiers, 

with a Convolutional Neural Network (CNN). 

To cope with the multi-label nature of the classi-

fication problem we applied a first-order modeling 

strategy tackling the task in a code-by-code manner 

thus ignoring the coexistence of other codes 

(Zhang and Zhou, 2014). In case of LR this model-

ing strategy was strict, meaning that one LR model 

was built per target code. In the CNN case a relaxed 

version of this strategy was applied. One common 

CNN was built, with the target codes modeled con-

ditionally independent by the loss function.  

Regularized binary cross-entropy was applied 

for both the LR and the CNN objective function. In 

all cases model training was followed by a thresh-

old tuning step to determine optimal decision 

thresholds. Finally, all test results are presented in 

terms of micro-F1 (Wu and Zhou, 2017). 

 

4.1 Logistic regression  

LR is a well understood and robust classification 

method. It is expected to perform well even for low 

frequency classes. The problem is convex and typ-

ically applied in conjunction with a L1 or a L2 

regularization, the ‖𝑤‖ term in the LR objective 

function (1).  

 min 
𝑤

𝐶‖𝑤‖ + ∑ log(1 + 𝑒−𝑦𝑖𝑤𝑇𝑥𝑖)𝑙
𝑖=1   (1) 

For solving the LR problem we used LibLinear 

(Fan et al., 2008) which is a large-scale linear clas-

sification library. The LibLinear solver exhibits the 

advantage that there is only one free hyperparame-

ter to tune, namely the regularization weight 𝐶. 

 

4.2 Convolutional neural networks 

Compared to LR a CNN features an increased com-

plexity. This higher modeling capability comes 

though with the need for more training data which 

makes it more suited for high frequency classes. 

The CNN design we applied for this work fol-

lows the work described in Kalchbrenner et al.  

(2014) and Conneau et al. (2016). The basic archi-

tecture consists of one convolutional layer which is 

followed by max-pooling resulting in one feature 

per convolutional filter and document. As input to 

the convolutional layer word embeddings apply 

which were pre-trained using word2vec (Mikolov 

et al., 2013). The feature extraction layer is suc-

ceeded by the classification part of the network 

consisting of a feed-forward network of one fully-

connected hidden layer and the final output layer. 

The output layer is formed by one node with sig-

moid activation for each ICD-10 code, effectively 

modeling the code’s probability. 

Additional convolutional layers are added in 

conjunction with highway layers connecting each 

convolutional layer directly with the classification 

part of the network. The highway connections and 

the output of the last convolutional layer are fol-

lowed by the same max-pooling operation de-

scribed above. The convolutional layers are con-

nected by a sliding-window max-pooling opera-

tion. For each filter of the lower convolutional layer 

a max-pooling operator of kernel-width 3 is applied 

to the stream of filter output values. With a stride 

of one the layer’s output consists of a vector-fea-

ture stream which is of the same length as the input 

token sequence and a vector-dimension equal to the 

number of filters of the lower convolutional layer.  

For our CNN implementation Theano (2017) 

was used. All CNNs were built using a NVIDIA 

P6000 GPU with 22GByte GPU-memory. 

 

 

Figure 2:  Code frequency over code-IDs. 
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4.3 System combination 

System combination was implemented by linearly 

interpolating the hypothesized predictions from the 

LR system and the CNN system. The interpolation 

weights were optimized maximizing dev set micro-

F1. In case of codes which were not modeled by the 

CNN the LR predictions were directly used.  

5 Experiments and results 

For practical reasons it was not possible to model 

all ICD-10-CM codes. Most of the 71704 ICD-10-

CM codes are never seen in the available data and 

even many of the seen codes are too rare to be mod-

eled, see Figure 2. We therefore restricted our mod-

els to the most frequent codes seen within the first 

seven month of data. For the LR systems we used 

the most frequent 3000 codes. The CNN was re-

stricted to model only the most frequent 1000 codes 

which reflects the data sparsity issues discussed in 

Section 3. With these settings a code coverage of 

>95% for the LR systems and >87 % for the CNN 

systems was obtained. Table 2 gives detailed code 

coverage statistics of the training data. 

Model testing was directly affected by the target 

code restrictions. Out of the 143k running codes of 

the test set 6189 instances are not covered by the 

3000 modeled codes and 71 of the 3000 modeled 

codes do even not appear in the test set. 

The following experiments give results for the 

most frequent (top) 200, 1000, and 3000 codes and 

all codes seen in the test set. Note that for the case 

of 1000 codes and the case of 3000 codes there are 

17653 and 6189 code instances, respectively, 

which are not modeled. These instances always en-

tered the F1 calculation as false negatives when 

scored on all seen codes.  

5.1 Basic system development 

This phase of the project focused on basic system 

design question. All experiments were carried out 

using data-partition A. 

In case of the LR system we model a document 

as a ‘bag-of-ngrams’ up to an ngram-length of 

three. With a frequency cutoff of 20 this gave 4.1M 

features. Using higher order ngram-features or a 

smaller cutoff value didn’t provide any improve-

ments. For all LR experiments described in this 

work indicator features apply.  

Table 3 lists the results of two LR systems. Both 

systems apply the same feature file which is used 

for all 3000 code specific classifiers. The basic LRa 

system applies a common regularization weight 𝐶 

for all codes. In case of system LRa2 the regulari-

zation weight 𝐶 was tuned individually for each 

code using 4-fold cross-validation over the training 

set. Tuning the regularization weights resulted in 

micro-F1 gains of ~0.8% absolute. Using an in-

creased fold number didn’t provide any improve-

ments. 

For the CNN experiments we first used the CNN 

design with one convolutional layer described in 

Section 4. After some initial experiments the con-

volutional layer of the network was fixed to 900 fil-

ters with a filter width of five tokens. The hidden 

layer was fixed to 1024 nodes and the output layer 

models the most frequent 1000 ICD-10-CM codes. 

Max-pooling was followed by Relu-activations. 

All models were trained with RMSPROB. The 

convolutional layer used L2-regularization and L1-

regularization was used for the hidden layer and the 

output layer. Dropout was applied to the output of 

the max-pool operation. Best results were achieved 

with a batch size (encounter level) of 32. 

The result named CNa1 in Table 3 follows the 

  Top 200/1k/3k and All seen codes 

Parti-

tion 

Data statistics 200 1000 3000 All 

A #running codes  560k 768k 836k 870k 

A #code coverage 64.4% 88.3% 96.2% 100% 

B #running codes 1.6M 2.1M 2.3M 2.5M 

B #code coverage 63.3% 87.3% 95.2% 100% 

Table 2: Code coverage statistics. 

 

 

 Micro-F1 for the top 200/1k/3k 

codes and All seen codes 

System 200 1000 3000 All 

LRa1 70.37 64.03 61.59 60.19 

LRa2 71.48 64.81 62.38 60.96 

CNa1 73.96 66.31 63.31 61.79 

CNa2 74.82 67.25 64.24 62.71 

LRa2 & CNa2 75.38 68.61 65.65 64.14 

Table 3:  Partition-A test results. LRa1: LR no 

c-tuning; LRa2: LR with c-tuning, CNa1: 

CNN 1 convolutional layer; CNa2: CNN 2 

convolutional layers; LRa2 & CNa2: interpo-

lated system. 
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design with one convolutional layer. The CNa1 

system was initialized with 50-dimensional word 

embeddings which were pre-trained on the training 

data with word2vec (Mikolov et al., 2013). These 

embeddings were further refined during network 

training. This gave a final micro-F1 of 66.31% ab-

solute when scored over the 1000 modeled codes. 

Best results were obtained with 50-dimensional 

embeddings and without batch normalization 

within the convolutional layer.  

In a second step some initial experiments with 

the two convolutional layers CNN design were car-

ried out. This network featured 300 filters and 900 

filters in the first and second convolutional layer, 

respectively. The filter width was set to five and 

Relu-activations were used for the first layer.  

Table 3 shows that the two convolutional layers 

system CNa2 achieves the best performance of a 

single system with an absolute increase in micro-

F1 of ~0.9% over the CNa1 system with its one 

convolutional layer. In contrast to the setup with 

one convolutional layer the use of batch normaliza-

tion turned out to be essential in the two-convolu-

tional layer setup. Dropping it gave worse results 

compared to the one-convolutional layer design. 

 Finally, we explored the combination of the LR 

approach with the CNN approach. Linearly inter-

polating the LRa2 system with the CNa2 system 

gave the best results with 64.44% micro-F1 

(65.37% precision, 63.53% recall) clearly outper-

forming the underlying individual systems. We 

also examined other system combination strategies 

following the work from Heng et al. (2016). How-

ever, the linear interpolation approach described in 

this work turned out to work best.  

Investigating the performance of the LRa2 sys-

tem and the CNa2 system on code level, we found 

our assumption confirmed that the CNN is more 

suited to model high frequency codes whereas the 

LR system does better for low frequency codes. 

Figure 3 shows that the CNN does better for the 

most frequent 200 codes. However, after a transi-

tion region covering roughly the next 300 codes, 

the LR system starts to outperform the CNN sys-

tem consistently, starting approximately from code 

position 500 on, see Figure 4. 

These finding were reconfirmed when checking 

for the relative improvements of the combined 

LRa2 & CNa2 system over the CNa2 system. 

Comparing the scores for the most frequent 200 

codes and the most frequent 1000 codes one finds 

0.75% and 2.02% relative improvements, respec-

tively. The LR system also fills up the 2000 codes 

not modeled by the CNN giving in a relative micro-

F1 win of 2.19% when scoring over 3000 codes.   

An integral part of the model building process 

was the tuning of the decision thresholds. Though 

individual thresholds per code are possible best mi-

cro-F1 results were always achieved with a com-

mon decision threshold over all codes. This behav-

ior reflects again the data sparsity issues as not all 

modeled codes appear in the dev set and many 

other codes are so sparse that no robust threshold 

estimation was possible. 

5.2 System refinements 

In this phase of the project we focused on improved 

training recipes and the use of more training data 

given by data-partition B. We kept on modeling the 

same set of codes as used in Section 5.2. This lead 

 

Figure 3:  F1-scores, top 200 codes, CNN 

(dashed line) versus LR (dotted line).  
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Figure 4:  F1-scores, top 201-1000 codes, CNN 

(dashed line) versus LR (dotted line) 
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to a slight reduction in code coverage, see Table 2, 

but guaranteed the comparability of the results. 

For LR a bootstrapping approach was followed 

aiming to refine the system step-by-step from one 

model to the next model. We built up on the train-

ing recipe used to build system LRa2, see Section 

5.1, i.e. L1 regularized LR with per-code tuned reg-

ularization constants 𝐶. First, we switched to the 

larger data-partition B which added additional 10 

months of data to the original 6 months of data. 

Comparing the resulting LRb1 system with the 

LRa2 system, see Table 4, we found that the addi-

tional data improved micro-F1 by ~1.2% absolute. 

The use of more data increased the features 

space from 4.1M features to 9.2M features. To ease 

subsequent development work, we applied a fea-

ture reduction approach taking advantage of the 

feature selection property of the L1 regularization 

(Andrew Ng, 2004). Reducing the feature space of 

the LRb1 system to all features with none-zero 

model weights reduced the features space by a fac-

tor of 62 giving 149k features. This feature selec-

tion step also improved system performance by 

~0.2% absolute micro-F1, see LRb2 in Table 4. 

LR is a linear classification method fitting a hy-

perplane as decision boundary into feature space. 

To leverage the increased modeling capabilities of 

a none-linear modeling regime, we applied a quad-

ratic kernel to the feature space. With a features di-

mension of 149k this is yet a prohibitive endeavor. 

Instead we used code specific reduced features 

spaces. Based on the most prominent 400 features 

per code the quadratic kernel was applied which 

gave up to 80.2k squared features per code. After 

model building these features spaces were reduced 

again to all features with none-zero model weights. 

                                                      
2 At the time of writing this paper the results for the 2-con-

volutional layer CNN which was built on the partition B 

data was still not available. 

Table 4 lists the corresponding results as LRb3. For 

the most frequent 200 codes absolute micro-F1 im-

provements of ~0.7% are observed with respect to 

the LRb2 system. For the less frequent codes this 

effect is nearly washed out though. 

The partition B data was also applied to the 

CNN. Table 5 compares the corresponding 1-con-

volutional layer system built on the partition B data 

with the CNNs built on the partition A data2. We 

found that the additional 10 month of training data 

provide a ~0.2% - ~1% improvement in absolute 

micro-F1. Note that system CNb1 outperforms sys-

tem CNa2 when soring over all 1000 modeled 

codes but that system CNa2 is better when scoring 

only over the top 200 codes, see Table 5. We attrib-

ute this behavior to the change in the code distribu-

tion when switching from partition A to partition B. 

Finally, the best LR system, LRb3, was com-

bined with the CNa2 system giving the best overall 

results with a micro-F1 of 64.60% (68.10% preci-

sion, 61.60% recall). Compared to the best single 

systems, CNa2 and CNb1, absolute micro-F1 im-

provements of ~1.8% - ~1.9% are observed.  

6 Conclusions 

In this work we have presented our work on build-

ing a machine learnable CAC system. The focus 

lies on aspects developers are faced with in prac-

tice. Data peculiarities like data amount, imbal-

ances in code frequencies or sample length were 

discussed. We provide evidence that the imbal-

ance issues are best addressed by a dedicated 

modeling approach for each datatype. Finally, 

with our combined LR-CNN system which mod-

els 3000 ICD-10-CM codes we achieved a micro-

  Micro-F1 for the top 200/1k/3k 

codes and All seen codes 

System #features 200 1000 3000 All 

LRa2 4.1M 71.48 64.81 62.38 60.96 

LRb1 9.2M 72.62 66.18 63.83 62.39 

LRb2 149k 72.78 66.41 64.05 62.59 

LRb3 7 - 5113 73.45 66.70 64.18 62.72 

Table 4:  Partition-B LR test results. LRa2: 

Partition-A reference system; LRb1: Same as 

LRa2 but with Phase-B data; LRb2: Same as 

LRb1 but with feature reduction; LRb3: sys-

tem with per-code quadratic-kernel features. 

 Micro-F1 for the top 200/1k/3k 

codes and All seen codes 

System 200 1000 3000 All 

CNa1 73.96 66.31 63.31 61.79 

CNb1 74.19 67.34 64.36 62.85 

CNa2 74.82 67.25 64.24 62.71 

LRb3 & CNa2 75.71 69.07 66.11 64.60 

Table 5:  Partition-B CNN and combined test 

results. CNa1: Partition-A 1-convolutional 

layer reference system; CNb1: Same as CNa1 

but with Partition-B data; CNa2: Partition-A 2-

convolutional layer reference system; LRb3 & 

CNa2: interpolated system.  
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F1 score of 64.60% when scored over all codes 

seen in the test set. 
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