
Proceedings of NAACL-HLT 2018, pages 575–581
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Robust Machine Comprehension Models via Adversarial Training

Yicheng Wang and Mohit Bansal
University of North Carolina at Chapel Hill
{yicheng, mbansal}@cs.unc.edu

Abstract

It is shown that many published models for
the Stanford Question Answering Dataset (Ra-
jpurkar et al., 2016) lack robustness, suf-
fering an over 50% decrease in F1 score
during adversarial evaluation based on the
AddSent (Jia and Liang, 2017) algorithm. It
has also been shown that retraining models
on data generated by AddSent has limited ef-
fect on their robustness. We propose a novel
alternative adversary-generation algorithm,
AddSentDiverse, that significantly increases
the variance within the adversarial training
data by providing effective examples that pun-
ish the model for making certain superficial
assumptions. Further, in order to improve
robustness to AddSent’s semantic perturba-
tions (e.g., antonyms), we jointly improve the
model’s semantic-relationship learning capa-
bilities in addition to our AddSentDiverse-
based adversarial training data augmentation.
With these additions, we show that we can
make a state-of-the-art model significantly
more robust, achieving a 36.5% increase in F1
score under many different types of adversar-
ial evaluation while maintaining performance
on the regular SQuAD task.

1 Introduction

We explore the task of reading comprehension
based question answering (Q&A), where we fo-
cus on the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016), in which mod-
els answer questions about paragraphs taken from
Wikipedia. Significant progress has been made
with deep end to end neural-attention models, with
some achieving above human level performance
on the test set (Wang and Jiang, 2017; Seo et al.,
2017; Wang et al., 2017; Huang et al., 2018; Pe-
ters et al., 2018). However, as shown recently
by Jia and Liang (2017), these models are very
fragile when presented with adversarially gener-

ated data. They proposed AddSent, which cre-
ates a semantically-irrelevant sentence containing
a fake answer that resembles the question syntacti-
cally, and appends it to the context. Many state-of-
the-art models exhibit a nearly 50% reduction in
F1 score on AddSent, showing their over-reliance
on syntactic similarity and limited semantic under-
standing.

Importantly, this is in part due to the nature of
the SQuAD dataset. Most questions in the dataset
have answer spans embedded in sentences that are
syntactically similar to the question. Thus during
training, the model is rarely punished for answer-
ing questions based on syntactic similarity, and
learns it as a reliable approach to Q&A. This cor-
relation between syntactic similarity and correct-
ness is of course not true in general: the adver-
saries generated by AddSent (Jia and Liang, 2017)
are syntactically similar to the question but do not
answer them. The models’ failures on AddSent
demonstrates their ignorance of this aspect of the
task. Jia and Liang (2017) presented some ini-
tial attempts to fix this problem by retraining the
BiDAF model (Seo et al., 2017) with adversaries
generated with AddSent. But they showed that the
method is not very effective, as slight modifica-
tions (e.g., different positioning of the distractor
sentence in the paragraph and different fake an-
swer set) to the adversary generation algorithm
at test time have drastic impact on the retrained
model’s performance.

In this paper, we show that their method of
adversarial training failed because the specificity
of the AddSent algorithm along with the lack of
naturally-occurring counterexamples allow mod-
els to learn superficial clues regarding what is a
‘distractor’ and subsequently ignore it; thus sig-
nificantly limiting their robustness. Instead, we
first introduce a novel algorithm, AddSentDiverse,
for generating adversarial examples with signifi-

575



cantly higher variance (by varying the locations
where the distractors are placed and expanding the
set of fake answers), so that the model is pun-
ished during training time for making these su-
perficial assumptions about the distractor. We
show that an AddSentDiverse-based adversarially-
trained model beats an AddSent-trained model
across 3 different adversarial test sets, showing
an average improvement of 24.22% in F1 score,
demonstrating a general increase in robustness.

However, even with our diversified adversarial
training data, the model is still not fully resilient
to AddSent-style attacks, e.g., its antonymy-style
semantic perturbations. Hence, we next add se-
mantic relationship features to the model to let
it directly identify such relationships between the
context and question. Interestingly, we see that
these additions only increase model robustness
when trained adversarially, because intuitively in
the non-adversarially-trained setup, there are not
enough negative (adversarial) examples for the
model to learn how to use its semantic features.

Overall, we demonstrate that with our adver-
sarial training method and model improvement,
we can increase the performance of a state-of-the-
art model by 36.46% on the AddSent evaluation
set. Although we focused on the AddSent adver-
sary (Jia and Liang, 2017), our method of effec-
tive adversarial training by eliminating superficial
statistical correlations (with joint model capability
improvements) are generalizable to other similar
insertion-based adversaries for Q&A tasks.1

2 Related Work

Adversarial Evaluation In computer vision,
adversarial examples are frequently used to punish
model oversensitivity, where semantic-preserving
perturbations (usually in the form of small noise
vectors) are added to an image to fool the classi-
fier into giving it a different label (Szegedy et al.,
2014; Goodfellow et al., 2015).

In the field of Q&A, Jia and Liang (2017) in-
troduced the AddSent algorithm, which generates
adversaries that punish model failure in the other
direction: overstability, or the inability to detect
semantic-altering noise. It does so by generating
distractor sentences that only resemble the ques-
tions syntactically and appending them to the con-
text paragraphs (detailed description included in

1We release our AddSentDiverse-based adversarial train-
ing dataset for SQuAD at https://goo.gl/qdSNDr.

Sec. 3). When tested on these adversarial ex-
amples, Jia and Liang (2017) showed that even
the most ‘robust’ amongst published models (the
Mnemonic Reader (Hu et al., 2017)) only achieved
46.6% F1 (compared to 79.6% F1 on the regular
task). Since then, the FusionNet model (Huang
et al., 2018) used history-of-word representations
and multi-level attention mechanism to obtain an
improved 51.4% F1 score under adversarial eval-
uation, but that is still a 30% decrease from the
model’s performance on the regular task. We
show, however, that one can make a pre-existing
model significantly more robust by simply retrain-
ing it with better, higher variance adversarial train-
ing data, and improve it further with minor seman-
tic feature additions to its inputs.

Adversarial Training It has been shown in the
field of image classification that training with
adversarial examples produces more robust and
error-resistant models (Goodfellow et al., 2015;
Kurakin et al., 2017). In the field of Q&A, Jia
and Liang (2017) attempted to retrain the BiDAF
(Seo et al., 2017) model with data generated
with AddSent algorithm. Despite performing well
when evaluated on AddSent, the retrained model
suffers a more than 30% decrease in F1 perfor-
mance when tested on a slightly different adver-
sarial dataset generated by AddSentMod (which
differs from AddSent in two superficial ways: us-
ing a different set of fake answers and prepending
instead of appending the distractor sentence to the
context). We show that using AddSent to generate
adversarial training data introduces new superfi-
cial trends for a model to exploit; and instead we
propose the AddSentDiverse algorithm that gen-
erates highly varied data for adversarial training,
resulting in more robust models.

3 Methods

Our ‘AddSentDiverse’ algorithm is a modified
version of AddSent (Jia and Liang, 2017), aimed
at producing good adversarial examples for ro-
bust training purposes. For each {context, ques-
tion, answer} triple, AddSent does the following:
(1) Several antonym and named-entity based se-
mantic altering perturbations (swapping) are ap-
plied to the question; (2) A fake answer is gener-
ated that matches the ‘type’ of the original answer
(e.g., Prague → Chicago, etc.); (3) The fake an-
swer and the altered question are combined into
a distractor statement based on a set of manually

576



defined rules; (4) Errors in grammar are fixed by
crowd-workers; (5) The finalized distractor is ap-
pended to the end of the context. The specificity
of the algorithm creates new superficial cues that
a model can learn and use during training and
never get punished for: (1) a model can learn that
it is unlikely for the last sentence to contain the
real answer; (2) a model can learn that the fixed
set of fake answers should not be picked. These
nullify the effectiveness of the distractors as the
model will learn to simply ignore them. We thus
introduce the AddSentDiverse algorithm, which
adds two modifications to AddSent that allows for
generating higher-variance adversarial examples.
Namely, we randomize the distractor placement
(Sec. 3.1) and we diversity the set of fake answers
used (Sec. 3.2). Lastly, to address the antonym-
style semantic perturbations used in AddSent, we
show that we need to improve model capabilities
by adding indicator features for semantic relation-
ships (but only when) in tandem with the addition
of diverse adversarial data (Sec. 3.3).

3.1 Random Distractor Placement
Given a paragraph P containing n sentences, let
X , Y be random variables representing the loca-
tion of the sentence containing the correct answer
counting from the front and back.2 Let P ′ rep-
resent the paragraph with the inserted distractor,
and X ′ and Y ′ represent the updated location of
the sentence with the correct answer. As shown
in Fig. 1, their distribution is highly dependent on
the strategy used to insert the distractor. During
training done by Jia and Liang (2017), the distrac-
tor is always added as the last sentence, creating a
very skewed distribution for Y ′. This resulted in
the model learning to ignore the last sentence, as
it was never punished for doing so. This, in turn,
caused the retrained model to fail on AddSent-
Mod, where the distractor is inserted to the front
instead of the back of the context paragraph (this
is shown by our experiments as well). However,
Fig. 1 shows that when the distractor is inserted
randomly, the distributions of X ′ and Y ′ are al-
most identical to that of X and Y , indicating that
no new correlation between the location of a sen-
tence and its likelihood to contain the correct an-
swer is introduced by the distractors, hence forc-
ing the model to learn to discern them from the

2Note that for any fixed n, Y = n − X , but for our pur-
poses it is easier to keep them separate since the length of the
paragraph is also a random variable.

Figure 1: Left: Distribution of X and Y for the orig-
inal SQuAD training set. Middle: Distribution of X ′

and Y ′ when the distractor is inserted at the end of the
context. Right: Distribution of X ′ and Y ′ when the
distractor is inserted randomly into the context.

real answers by other, deeper means.

3.2 Dynamic Fake Answer Generation
To prevent the model from superficially decid-
ing what is a distractor based on certain specific
words, we dynamically generate the fake answers
instead of using AddSent’s pre-defined set. Let
S be the set that contains all the answers in the
SQuAD training data, tagged by their type (e.g.,
person, location, etc.). For each answer a, we gen-
erate the fake answer dynamically by randomly se-
lecting another answer a′ 6= a from S that has
the same type as a, as opposed to AddSent (Jia
and Liang, 2017), which uses a pre-defined fake
answer for each type (e.g., “Chicago” for any lo-
cation). This creates a much larger set of fake an-
swers, thus decreasing the correlation between any
text and its likelihood of being a part of a distrac-
tor, forcing the model to become more robust.

3.3 Semantic Feature Enhanced Model
In previous sections, we prevented the model from
identifying distractors based on superficial clues
such as location and fake answer identity by elim-
inating these correlations within the training data.
But even if we force the model to learn some
deeper methods for identifying/discarding the dis-
tractors, it only has limited ability in recogniz-
ing semantic differences because its current inputs
do not capture crucial aspects of lexical semantics
such as antonymy (which were inserted by Jia and
Liang (2017) when generating the AddSent adver-
saries; see Sec. 3). Most current models use pre-
trained word embeddings (e.g., GloVE (Penning-
ton et al., 2014) and ELMo (Peters et al., 2018))
as input, which are usually calculated based on
the distributional hypothesis (Harris, 1954), and
do not capture lexical semantic relations such as
antonymy (Geffet and Dagan, 2005). These short-
comings are reflected by our results in Sec. 4.6,
where we see that we can’t resolve all AddSent-

577



Training Original-SQuAD-Dev AddSent AddSentPrepend AddSentRandom AddSentMod Average
Original-SQuAD 84.65 42.45 41.46 40.48 41.96 50.20

AddSent 83.76 79.55 51.96 59.03 46.85 64.23
AddSentDiverse 83.49 76.95 77.45 76.02 77.06 78.19

Table 1: F1 performance of the BSAE model trained and tested on different regular/adversarial datasets.

Training AddSent AddSentPrepend Average
InsFirst 60.22 79.81 70.02
InsLast 79.54 51.96 65.75
InsMid 74.74 74.33 74.54

InsRandom 76.33 77.38 76.85
Table 2: F1 performance of the BSAE model trained on
datasets with different distractor placement strategies.

style adversaries by diversifying the training data
alone. For the model to be robust to semantics-
based (e.g., antonym-style) attacks, it needs extra
knowledge of lexical semantic relations. Hence,
we augment the input of each word in the ques-
tion/context with two indicator features indicat-
ing the existence of its synonym and antonym
(using WordNet (Fellbaum, 1998)) in the con-
text/question, allowing the model to use lexical se-
mantics directly instead of learned statistical cor-
relations of the word embeddings.

4 Experiments And Results

4.1 Model and Training Details

We use the architecture and hyperparameters of
the strong BiDAF + Self-Attn + ELMo (BSAE)
model (Peters et al., 2018), currently (as of Jan-
uary 10, 2018) the third highest performing single-
model on the SQuAD leaderboard.3

4.2 Evaluation Details

Models are evaluated on the original SQuAD dev
set and 4 adversarial datasets: AddSent, the adver-
sarial evaluation set by Jia and Liang (2017), and
3 variations of AddSent: AddSentPrepend, where
the distractor is prepended to the context, AddSen-
tRandom, where the distractor is randomly in-
serted into the context,4 and AddSentMod (Jia and
Liang, 2017), where a different set of fake an-
swers is used and the distractor is prepended to the
context. Experiments measure the soft F1 score
and all of the adversarial evaluations are model-
dependent, following the style of AddSent, where
multiple adversaries are generated for each exam-

3
https://rajpurkar.github.io/SQuAD-explorer/

4Note that since the distractor was randomly inserted, the
model cannot identify/ignore the distractor reliably based on
location. Thus, high performance on AddSentRandom serves
as a better indicator for robustness to semantic-based attacks.

ple in the evaluation set and the model’s worst per-
formance among the variants is recorded.

4.3 Primary Experiment Results
In our main experiment, we compare the BSAE
model’s performance on different test sets when
trained with three different training sets: the origi-
nal SQuAD data (Original-SQuAD), SQuAD data
augmented with AddSent generated adversaries
(similar to adversarial training conducted by Jia
and Liang (2017)), and SQuAD data augmented
with our AddSentDiverse generated adversaries.
For the latter two, we run the respective adversar-
ial generation algorithms on the training set, and
add randomly selected adversarial examples such
that they make up 20% of the total training data.
The results are shown in Table 1. First, as shown,
the AddSent-trained model is not able to perform
well on test sets where the distractors are not in-
serted at the end, e.g., the AddSentRandom ad-
versarial test set.5 On the other hand, it can be
seen that retraining with AddSentDiverse boosts
performance of the model significantly across all
adversarial datasets, indicating a general increase
in robustness.

4.4 Distractor Placement Results
We also conducted experiments studying the ef-
fect of different distractor placement strategies on
the trained models’ robustness. The BSAE model
was trained on 4 variations of AddSentDiverse-
augmented training set, with the only difference
between them being the location of the distractor
within the context: InsFirst, where the distractor
is prepended, InsLast, where the distractor is ap-
pended, InsMid, where the distractor is inserted
in the middle and InsRandom, where the distrac-
tor is randomly placed. The retrained models are
tested on AddSent and AddSentPrepend, whose
only difference is where the distractor is located.
The result is shown in Table 2. It is clear that when
trained under InsFirst and InsLast, the model only

5For this 59.03% accuracy, i.e., in the remaining 40.96%
errors, we found that in 77.0% of these errors, the model still
predicted a span within the randomly inserted distractor; in-
dicating that it has not learned to fully recognize semantic-
altering perturbations.

578



Training AddSentPrepend AddSentMod
Fixed-FakeAns 77.37 73.65

Dynamic-FakeAns 77.45 77.06

Table 3: F1 performance of the BSAE model trained
on datasets with different answer generation strategies.

Model/Training Original-SQuAD-Dev AddSent
BSAE/Reg. 84.65 42.45
BSAE/Adv. 83.49 76.95

BSAE+SA/Reg. 84.62 44.60
BSAE+SA/Adv. 84.49 78.91

Table 4: Regular and adversarial training with BSAE
and BSAE+SA (with synonym/antonym features).

performs well on test sets created by a similar dis-
tractor placement strategy, indicating that they are
exploiting superficial trends instead of learning to
process the semantics. It is also shown that In-
sRandom gives optimal performance on both eval-
uation datasets. Further investigations regarding
distractor placement can be found in the appendix.

4.5 Fake Answer Generation Results
We also conducted experiments studying the ef-
fect of training on data containing distractors with
dynamically generated fake answers (Dynamic-
FakeAns) instead of chosen from a predefined set
(Fixed-FakeAns). The trained models are tested
on AddSentPrepend and AddSentMod, whose
only difference is that AddSentMod uses a differ-
ent set of fake answers. The results are displayed
in Table 3. It shows that the model trained on
Fixed-FakeAns suffers an approximate 3% drop in
performance when tested on a dataset with a dif-
ferent set of fake answers, but this gap does not ex-
ist for the model retrained on Dynamic-FakeAns.

4.6 Semantic Feature Enhancement Results
In Table 1, we see that despite improving perfor-
mance on adversarial test sets, adversarial train-
ing on the BSAE model leads to a 1% decrease
in its performance on the original SQuAD task
(from 84.65% to 83.49%). Furthermore, there
is still a 6.5% gap between its performance on
adversarial datasets and the original SQuAD dev
set (76.95% vs 83.49%). These point to the
limitations of adversarial training without any
model enhancements, especially for AddSent’s
antonymy style semantic perturbations (see de-
tails in Sec. 3.3). We thus conducted experi-
ments to test the effectiveness of adding WordNet
based synonymy/antonymy semantic-relation in-
dicators in helping the model to better deal with
semantics-based adversaries. We added the lexi-

cal semantic indicators to the BSAE model to cre-
ate the BSAE+SA model. We trained and tested
it in both the regular and adversarial setup. Its
results, compared to the original BSAE model
are shown in Table 4, where we see that un-
like the BSAE model, adversarial training of the
BSAE+SA model does not cause a decrease in its
performance on the original SQuAD dataset, as
the model can now learn lexical semantic relation-
ships instead of statistical correlations. We also
see that the BSAE+SA model, when trained in the
normal setup, shows very similar performance as
the BSAE model across all metrics. This is most
likely because despite having the ability to recog-
nize semantic relations, there are not enough neg-
ative examples in the regular SQuAD training set
to teach the model how to use these features cor-
rectly, but this issue is solved via the addition of
adversarial examples in adversarial training.

4.7 Error Analysis
Finally, we examined the errors of our final
adversarially-trained BSAE+SA model on the
AddSent dataset and found that out of the 21.09%
remaining errors (Table 4), 33.3% (46 cases) of
these erroneous predictions occurred within the in-
serted distractor, and 63.7% (88 cases) occurred
on questions that the model got wrong in the orig-
inal SQuAD dev set (without the inserted distrac-
tors). The former errors are mainly occurring
within distractors created with named-entity re-
placements (which we haven’t addressed directly
in the current paper) or malformed distractors (that
in fact do answer the question).

5 Conclusion

We demonstrate that we can overcome model
overstability and increase their robustness by
training on diverse adversarial data that elimi-
nates latent data correlations. We further show
that adversarial training is more effective when
we jointly add useful semantic-relations knowl-
edge to improve model capabilities. We hope
that these robustness methods are generalizable to
other insertion-based adversaries for Q&A tasks.

Acknowledgments
We thank the anonymous reviewers for their help-
ful comments. This work was supported by a
Google Faculty Research Award, a Bloomberg
Data Science Research Grant, an IBM Faculty
Award, and NVidia GPU awards.

579



References
C. Fellbaum. 1998. Wordnet: An electronic lexical

database. In MIT Press.

Maayan Geffet and Ido Dagan. 2005. The distribu-
tional inclusion hypotheses and lexical entailment.
In ACL.

I. Goodfellow, J. Shlens, and C. Szegedy. 2015. Ex-
plaining and harnessing adversarial examples. In
International Conference on Learning Representa-
tions (ICLR).

Zellig S Harris. 1954. Distributional structure. Word
10(2-3):146–162.

Minghao Hu, Yuxing Peng, and Xipeng Qiu. 2017. Re-
inforced mnemonic reader for machine comprehen-
sion. CoRR, abs/1705.02798 .

Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and
Weizhu Chen. 2018. Fusionnet: Fusing via fully-
aware attention with application to machine compre-
hension. In International Conference on Learning
Representations (ICLR).

R. Jia and P. Liang. 2017. Adversarial examples for
evaluating reading comprehension systems. In Em-
pirical Methods in Natural Language Processing
(EMNLP).

A. Kurakin, I. Goodfellow, and S. Bengio. 2017. Ad-
versarial machine learning at scale. In International
Conference on Learning Representations (ICLR).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. NAACL .

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016.
Squad: 100,000+ questions for machine comprehen-
sion of text. In Empirical Methods in Natural Lan-
guage Processing (EMNLP) 2016.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bi-directional attention
flow for machine comprehension. In International
Conference on Learning Representations (ICLR).

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. 2014. Intriguing
properties of neural networks. In International Con-
ference on Learning Representations (ICLR).

S. Wang and J. Jiang. 2017. Machine comprehen-
sion using match-lstm and answer pointer. In Inter-
national Conference on Learning Representations
(ICLR).

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In ACL.

A Appendix: Distractor Placement
Strategies

This section provides a theoretical framework to
predict a model’s performance on adversarial test
sets when trained on adversarial data generated by
a specific distractor-insertion strategy.

Given a paragraph composed of n sen-
tences (with the distractor inserted) P =
{s1, s2, . . . , sn}, where si is the ith sentence
counting from the front. Define random variables
X and Y to represent the location of the distrac-
tor counting from the front and back, respectively.
The distributions of X and Y are dependent upon
the insertion strategy used to add the distractors,
several examples of this are displayed in Fig. 2.

Figure 2: Distributions of X and Y in adversari-
ally augmented SQuAD training data under different
distractor-insertion strategies.

A bidirectional deep learning model, trained in
a supervised setting, should be able to jointly learn
X and Y . Thus, at test time, when given a para-
graph of n sentences, the model can obtain the
probability that the sentence sa is the distractor,
Psa , by computing P (X = a) + P (Y = n − a).
Ideally, we want the distribution of Psa to be uni-
form, as that means the model is not biased to-
wards discarding any sentence as the distractor
based on location. The actual distributions of Psa

under different distractor-insertion strategies are
displayed in Fig. 3 for n = 3, 5 and 7. We
pick these n as they are typical lengths of contexts
within the SQuAD dataset (the complete distribu-
tion of paragraph lengths in the SQuAD training
set is shown in Fig. 4). We see that under random

580



Figure 3: Learned distribution of Psa for different n.

Figure 4: Distribution of length of paragraphs in the
SQuAD training set.

insertion, the distribution is very close to uniform.
Note that if we were to aggregate n and plot Psa

for n ≤ 3, 5 and 7, as shown in Fig. 3, the distri-
butions of Psa created by inserting in the middle
and inserting randomly are very similar, but the
distribution of inserting in the middle is skewed
against the beginnings and ends of the paragraphs.
This explains why in our experiment studying the
effect of distractor placement strategies (see Ta-
ble 2), InsMid’s performance was not skewed to-
wards either AddSent or AddSentPrepend, but was
worse on both when compared to InsRandom.

This method of calculating the distribution of
Psa allows us to predict the model’s performance
when trained on datasets where the distractors are
inserted at specific locations. To test this hy-
pothesis, we created two datasets: InsFront-3 and
InsFront-6 where the distractors were inserted as
the 3rd and 6th sentence from the beginning and

Figure 5: Distributions of Psa under InsFront-3 and
InsFront-6 for n ≤ 5.

Training AddSent AddSentPrepend Average
InsFront-3 75.47 72.79 74.13
InsFront-6 77.73 64.42 71.10

Table 5: F1 Performance of the BSAE model trained on
datasets with different distractor placement strategies.

measure the model’s performance when trained on
these two datasets. The distributions of Psa for
these two datasets are shown in Fig. 5, from which
we can predict that models trained on InsFront-3
should perform slightly better on adversarial sets
where the distractors are appended (as opposed to
prepended), whereas those trained on InsFront-6
will perform much better on such adversarial sets.
These predictions are confirmed by the results in
Table 5.

581


