
Proceedings of NAACL-HLT 2018, pages 524–528
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Using Word Vectors to Improve Word Alignments for Low Resource
Machine Translation

Nima Pourdamghani, Marjan Ghazvininejad, Kevin Knight
Information Sciences Institute & Department of Computer Science

University of Southern California
{damghani,ghazvini,knight}@isi.edu

Abstract

We present a method for improving word
alignments using word similarities. This
method is based on encouraging common
alignment links between semantically similar
words. We use word vectors trained on mono-
lingual data to estimate similarity. Our experi-
ments on translating fifteen languages into En-
glish show consistent BLEU score improve-
ments across the languages.

1 Introduction

Word alignments are essential for statistical ma-
chine translation (MT), especially in low-resource
settings where neural MT systems often do
not compete with phrase-based and syntax-based
MT (Koehn and Knowles, 2017). The most widely
used word alignment method (Brown et al., 1993)
works by estimating the parameters of IBM mod-
els from training data using the Expectation Max-
imization (EM) algorithm. However, EM works
poorly for low-frequency words as they do not ap-
pear enough in the training data for confident pa-
rameter estimation. This problem is even worse
in low-resource settings where a large portion of
word types appear infrequently in the parallel data.
In this paper we improve word alignments and
consequently machine translation in low resource
settings by improving the alignments of infrequent
tokens.

Works that deal with the rare-word problem in
word alignment include those that alter the proba-
bility distribution of IBM models’ parameters by
adding prior distributions (Vaswani et al., 2012;
Mermer and Saraçlar, 2011), smoothing the prob-
abilities (Moore, 2004; Zhang and Chiang, 2014;
Van Bui and Le, 2016) or introducing symmetriza-
tion (Liang et al., 2006; Pourdamghani et al.,
2014). These works, although effective, merely
rely on the information extracted from the paral-

lel data. Another branch adds linguistic knowl-
edge like word stems, orthography (Hermjakob,
2009) morphological analysis (De Gispert et al.,
2006; Lee, 2004), syntactic constraints (Fossum
et al., 2008; Cherry and Lin, 2006; Toutanova
et al., 2002) or a mixture of such clues (Tiede-
mann, 2003). These methods need language-
specific knowledge or tools like morphological an-
alyzers or syntax parsers that is costly and time
consuming to obtain for any given language.

A less explored branch that can help aligning
rare words is adding semantic information. The
motivation behind this branch is simple: Words
with similar meanings should have similar trans-
lations. Previously, Ma et al. (2011) cluster words
using monolingual data and substitute each word
with its cluster representative to get alignments.
They then duplicate their parallel data and use both
regular alignments and alignments on word classes
for training MT. Kočiskỳ et al. (2014) simultane-
ously learn alignments and word representations
from bilingual data. Their method does not bene-
fit from monolingual data and requires large par-
allel data for training. Songyot and Chiang (2014)
define a word-similarity model that can be trained
from monolingual data using a feed-forward neu-
ral network, and alter the implementation of IBM
models in Giza++ (Och and Ney, 2003) to use
the word similarity inside their EM. They require
large monolingual data for both source language
and English. While English monolingual data is
abundant, availability of large and reliable mono-
lingual data for many low resource languages is
not guaranteed.

All these previous works define their own word
similarity models, which similar to the more
widely used distributed word representation meth-
ods (Mikolov et al., 2013; Pennington et al., 2014),
assign high similarity to substitutable words in a
given context; however, substitutability does not

524

always imply synonymy. For instance tea and cof-
fee, or Pakistan and Afghanistan will be similar in
these models but do not share translations.

In this paper we propose a simple method to use
off-the-shelf distributed representation methods to
improve word alignments for low-resource ma-
chine translation (Section 2). Our model is based
on encouraging common alignment links between
semantically similar words. We do this by extract-
ing a bilingual lexicon, as a subset of the transla-
tion tables trained by IBM models and adding it
to the parallel data. For instance, the rare word
obliterated and its semantically similar word de-
stroyed, have a common entry destruida in the
English/Spanish translation table. We add a new
(obliterated, destruida) pair to the parallel data to
encourage aligning obliterated to destruida.

The simplicity of our method makes it easy
to be widely used. Our work addresses a major
problem of previous works, which is taking sub-
stitutability for synonymy without discrimination.
Finally, the lexicon can be extracted either with
or without help of word vectors trained on foreign
language monolingual data. Large and reliable
foreign monolingual data can help our alignments,
but we still get good improvements over baseline
for languages with small monolingual data where
we only use English word vectors (Section 4).

We test our method on both alignment f-
score and machine translation BLEU (Section 4).
Alignment accuracy is tested on Arabic-English,
Chinese-English and Farsi-English gold align-
ments. Machine translation accuracy is tested
on fifteen languages were we show a consistent
BLEU score improvement.

2 Proposed Method

We improve the alignment of rare words by en-
couraging them to align to what their semantic
neighbors align to. For instance we encourage the
rare word obliterated to align to what destroyed
aligns to. However, we should be careful in this
process. Distributed word representation methods
like (Mikolov et al., 2013; Pennington et al., 2014)
often define word similarity as the ability to sub-
stitute one word for another given a context. This
does not always imply having same translations.
Multiple reasons contribute to this problem. First,
word vectors are noisy, especially when monolin-
gual data is small. Second, some words might
have multiple meanings and a semantically simi-

IBM
Models

E||F
parallel
data

t-tables: p(f |e), p(e|f)
Extract
Lexicon

E word vectors

F word vectors
E||F lexicon

+

IBM
Models

MT

Figure 1: Word vectors trained on monolingual data are
used to extract a bilingual lexicon out of translation ta-
bles. This lexicon is added to the parallel data, resulting
in improved alignments for machine translation.

lar word might share only part of these meanings.
Finally, some words do not have synonyms, es-
pecially proper names. Word vectors often group
such entities together as they are substitutable, but
this similarity should not be used for alignments.

We bring a simple three-fold solution to these
problems. First, we split the use of English and
foreign word vectors in the method, so that if for-
eign monolingual data is small or unreliable, we
can fall back to only using English word vectors.
Second, and more importantly, we limit the ef-
fect of a semantic neighbor on the alignments of
a token to the common alignment links between
them. This removes the effect of a semantic neigh-
bor which is not a synonym (like effect of tea on
alignments of coffee) and irrelevant meanings of a
semantic neighbor (like multiple meanings of bow
on alignments of token crossbow) as we only en-
courage an alignment link if it appears as a po-
tential translation for both the neighbors. Third,
we note that using similarities based on distributed
representations only hurts alignments for proper
names. For these cases we encourage alignment
to transliterations if applicable.

Figure 1 shows the outline of the proposed
method. We provide the initial parallel data to the
IBM models and train the translate tables p(f |e)
and p(e|f). We then use the word vectors trained
on English and foreign language monolingual data
to extract a bilingual lexicon from these tables.
This lexicon is added to the original parallel data
and used to re-train the alignments. The lexi-
con contains both common alignment links and
transliteration links that are extracted from the

525

translation table. Next we will describe how each
section of the lexicon is generated.

2.1 Extracting Semantically Similar Tokens

Assume an infrequent English token e (w.r.t. the
parallel data), and its semantic neighbor e′. If
e and e′ have a common t-table entry—some f,
where p(f |e) > 0 and p(f |e′) > 0.1 we encour-
age the translation of e to f by adding this pair to
the parallel data for re-alignment. We limit the lex-
icon entries to non-common words. We only add
entries where freq(e) ≤ 100 and freq(f) ≤ 100.
The translation table is trained by 5 iterations of
each of IBM models 1, HMM, and 4.

We add each (e,f) pair multiple times to the lex-
icon proportional to p(f |e′), the cosine distance of
e and e′, and the frequency of e. More precisely,
for each neighbor e′, each (e, f) pair appears
dmin(freq(e) × dist(e, e′) × p(f |e′), freq(e)4)e
times in the lexicon.

To measure similarity, we use cosine distance
of word vectors trained on monolingual data us-
ing an implementation of continues bag-of-words
(CBOW) algorithm.1 English word vectors are
trained on the one-billion-word language model-
ing benchmark (Chelba et al., 2013). Foreign lan-
guage word vectors are trained on the monolingual
data described in Section 3. All vectors are trained
with window size 6 and dimension 300. For each
word we consider its two nearest neighbors ac-
cording to the cosine distance.

In a similar manner, we extract a lexicon from
the p(e|f) translation table as well. For each for-
eign rare token f and its semantic neighbor f ′, we
add (e, f) pair to the lexicon if p(e|f) > 0 and
p(e|f ′) > 0.1. However, as discussed in Section 4,
it is better to use this lexicon only if the foreign
language word vectors are trained on more than
10 million tokens of monolingual data.

2.2 Extracting Transliterations

For any infrequent English token e (w.r.t. the par-
allel data) and its translation table entry f , if f is
a transliteration of e we add the (e, f) pair to the
lexicon. Similarly we extract transliteration pairs
from the p(e|f) translation table. Each translitera-
tion pair is added once to the lexicon.

In order to decide whether two tokens are
transliterations, we compute the normalized edit
distance of their romanizations. We use uro-

1https://code.google.com/archive/p/word2vec/

man,2 a universal romanizer that converts text in
any script to its romanized version (Latin alpha-
bet). We say two tokens are transliterations if
dist(rom(e), rom(f)) ≤ 0.25, where dist is the
normalized Levenshtein distance and rom(.) is the
output of the romanizer.

3 Data

We use data from fifteen languages for our ma-
chine translation experiments.3 These languages
include Amheric, Arabic, Bengali, Mandarin,
Farsi, Hausa, Somali, Spanish, Tamil, Thai, Turk-
ish, Uighur, Urdu, Uzbek and Yoruba. Table 1
shows the size of training, development, test and
monolingual data for each language. In addition,
we use hand aligned data4 for Arabic/English
(77.3K+119.5K tokens), Chinese/English
(240.2K+305.2K tokens), and Farsi/English
(0.9K+0.8K tokens) for word alignment experi-
ments. We lowercase and tokenize all data using
Moses (Koehn et al., 2007) scripts.

train dev. test mono.
amh 2.1M 39.8K 19.5K 4.3M
ara 3.8M 39.1K 19.8K 230.4M
ben 0.9M 41.9K 21.0K 2.5M
cmn 10.6M 41.7K 20.5K 33.2M
fas 4.3M 47.7K 24.2K 271.2M
hau 2.1M 48.0K 24.1K 3.9M
som 2.8M 46.8K 23.5K 13.5M
spa 24.1M 49.4K 24.3K 14.7M
tam 0.5M 39.0K 11.4K 1.0M
tha 0.7M 39.1K 23.1K 39.7M
tur 4.1M 40.2K 19.9K 483.0M
uig 5.2M 8.6K 4.3K 33.8M
urd 1.1M 46.7K 23.2K 14.4M
uzb 4.2M 42.5K 21.7K 60.3M
yor 2.1M 47.9K 24.5K 7.0M

Table 1: Data split and size of monolingual data (to-
kens) for different languages. For parallel data, size
refers to the number of English plus foreign language
tokens.

2https://www.isi.edu/ ulf/uroman.html
3LDC2015E13, LDC2015E14, LDC2015E83,

LDC2015E84, LDC2016E57, and LDC2016E86 to
LDC2016E105

4LDC2012E51, LDC2012E24, (Pilevar et al., 2011)

526

4 Experiments

4.1 Machine Translation

We perform end-to-end machine translation exper-
iments on 15 different languages described in Sec-
tion 3. We use Giza++ (Och and Ney, 2003) to get
the alignments and Moses (Koehn et al., 2007) to
train and decode phrase based machine translation
(PBMT) systems. The parallel data is stemmed
to the first 4 characters for training the alignments
but not for the PBMT system. We use 5 iterations
of each of IBM models 1, HMM and 4 to train the
alignments both before and after adding the lexi-
cons. In order to reduce the effect of randomness,
we tune and test each system three times and re-
port the average scores. Our baseline is the system
before adding the lexicons. We test both the effect
of only adding the lexicon extracted from p(f |e)
translation table using the English word vectors
(Le), and adding both the lexicons (Le + Lf). Ta-
ble 2 shows the BLEU scores of running different
experiments. The languages are sorted by the size
of their monolingual data. The first five languages
have less than 10M tokens of monolingual data.

baseline Le Le + Lf improve
tam 19.2 19.3 19.2 0.1
ben 8.1 8.2 8.0 0.1
hau 19.4 19.6 19.9 0.2
amh 11.5 11.9 11.2 0.4
yor 14.2 14.6 14.3 0.4
som 18.7 19.1 18.9 0.2
urd 15.6 15.2 16.2 0.6
spa 40.0 40.0 40.0 0.0
cmn 12.5 12.7 12.7 0.2
uig 12.8 14.3 14.0 1.2
tha 20.3 20.1 20.5 0.2
uzb 13.2 13.5 13.9 0.7
ara 18.2 18.1 18.0 -0.2
fas 19.2 19.3 19.4 0.2
tur 14.7 15.4 15.4 0.7

Table 2: Machine translation experiments (BLEU).
For languages with less than 10M monolingual tokens
(first five) we only use Le, otherwise we use both lexi-
cons Le+Lf . This way we improve baseline for almost
all languages.

We see that it is generally better to only use Le

for languages with small monolingual data and use
both Le and Lf for others. If we put the thresh-
old at 10M tokens of monolingual data, we im-

prove the BLEU score over baseline for almost all
languages, up to 1.2 points for Uighur. The ex-
ceptions are Arabic and Spanish. However, the
Spanish experiment is hardly within the low re-
source settings as it has about 24M tokens of par-
allel data.

4.2 Alignments
In addition, we perform word alignment exper-
iments on Arabic/English, Chinese/English, and
Farsi/English, for which we have access to gold
alignment data (Section 3). We append the test
sentences to the existing parallel training data for
each language (Table 1) and use it to get the align-
ments. Baseline and proposed methods are de-
fined as in the machine translation experiments
above (Section 4.1). Note that word vectors for
these three languages are trained on more than
10M tokens, so we use both lexicons in the pro-
posed method. Table 3 presents the precision, re-
call, and f-score of the alignments compared to the
gold alignments.

baseline Le + Lf

ara 63.1/58.1/60.5 63.8/58.4/61.0

cmn 66.5/61.6/63.9 66.7/61.6/64.1

fas 52.7/66.7/58.9 54.3/68.5/60.6

Table 3: Word alignment experiments (alignment
precision/recall/f-score). The proposed method (Le +
Lf) improves baseline in all cases.

The proposed method gets better precision, re-
call, and f-score for all three languages.

5 Conclusion

In this paper we present a method for improv-
ing word alignments using word similarities. The
method is simple and yet efficient. We use off-
the-shelf distributed word representation tools to
encourage a subset of translation table entries
that are common between semantically similar
words. End-to-end experiments on translating
15 languages into English, as well as alignment-
accuracy experiments for three languages, show
consistent improvement over the baseline.

Acknowledgments

This work was supported by DARPA contract
HR0011-15-C-0115. The authors would like to
thank Ulf Hermjakob, Jonathan May, and Michael
Pust for their comments and suggestions.

527

References
Peter F. Brown, Vincent J. Della Pietra Stephen A.

Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational linguistics 19(2).

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005 .

Colin Cherry and Dekang Lin. 2006. Soft syntactic
constraints for word alignment through discrimina-
tive training. In Proc. COLING.

Adrià De Gispert, Deepa Gupta, Maja Popović, Patrik
Lambert, Jose B Marino, Marcello Federico, Her-
mann Ney, and Rafael Banchs. 2006. Improving
statistical word alignments with morpho-syntactic
transformations. In Advances in Natural Language
Processing.

Victoria Fossum, Kevin Knight, and Steven Abney.
2008. Using syntax to improve word alignment
precision for syntax-based machine translation. In
Proc. Workshop on Statistical Machine Translation.

Ulf Hermjakob. 2009. Improved word alignment with
statistics and linguistic heuristics. In Proc. EMNLP.

Tomáš Kočiskỳ, Karl Moritz Hermann, and Phil Blun-
som. 2014. Learning bilingual word representa-
tions by marginalizing alignments. arXiv preprint
arXiv:1405.0947 .

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Proc.
ACL, interactive poster and demonstration sessions.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural MT. In Proc. Workshop on Neural
Machine Translation.

Young-Suk Lee. 2004. Morphological analysis for sta-
tistical machine translation. In Proc. NAACL.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proc. NAACL.

Jeff Ma, Spyros Matsoukas, and Richard Schwartz.
2011. Improving low-resource statistical machine
translation with a novel semantic word clustering al-
gorithm. Proc. MT Summit XIII .

Coşkun Mermer and Murat Saraçlar. 2011. Bayesian
word alignment for statistical machine translation.
In Proc. ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Robert C Moore. 2004. Improving IBM word-
alignment model 1. In Proc. ACL.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational linguistics 29(1).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proc. EMNLP.

Mohammad Taher Pilevar, Heshaam Faili, and Ab-
dol Hamid Pilevar. 2011. Tep: Tehran English-
Persian parallel corpus. In Proc. CICLing.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings with
abstract meaning representation graphs. In Proc.
EMNLP.

Theerawat Songyot and David Chiang. 2014. Improv-
ing word alignment using word similarity. In Proc.
EMNLP.

Jörg Tiedemann. 2003. Combining clues for word
alignment. In Proc. EACL.

Kristina Toutanova, H Tolga Ilhan, and Christopher D
Manning. 2002. Extensions to HMM-based statisti-
cal word alignment models. In Proc. EMNLP.

Vuong Van Bui and Cuong Anh Le. 2016.
Smoothing parameter estimation framework
for IBM word alignment models. arXiv preprint
arXiv:1601.03650 .

Ashish Vaswani, Liang Huang, and David Chiang.
2012. Smaller alignment models for better trans-
lations: unsupervised word alignment with the l0-
norm. In Proc. ACL.

Hui Zhang and David Chiang. 2014. Kneser-Ney
smoothing on expected counts. In Proc. ACL.

528

