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Abstract

We evaluate the performance of state-of-the-
art algorithms for automatic cognate detec-
tion by comparing how useful automatically
inferred cognates are for the task of phyloge-
netic inference compared to classical manually
annotated cognate sets. Our findings suggest
that phylogenies inferred from automated cog-
nate sets come close to phylogenies inferred
from expert-annotated ones, although on av-
erage, the latter are still superior. We con-
clude that future work on phylogenetic recon-
struction can profit much from automatic cog-
nate detection. Especially where scholars are
merely interested in exploring the bigger pic-
ture of a language family’s phylogeny, algo-
rithms for automatic cognate detection are a
useful complement for current research on lan-
guage phylogenies.

1 Introduction

The task of cognate detection, i.e., the search for
genetically related words in different languages,
has traditionally been regarded as a task that is
barely automatable. During the last decades,
however, automatic cognate detection approaches
since Covington (1996) have been constantly im-
proved following the work of Kondrak (2002),
both regarding the quality of the inferences (List
et al., 2017b; Jäger et al., 2017), and the sophisti-
cation of the methods (Hauer and Kondrak, 2011;
Rama, 2016; Jäger et al., 2017), which have been
expanded to account for the detection of partial
cognates (List et al., 2016b), language specific
sound-transition weights (List, 2012) or the search
of cognates in whole dictionaries (St Arnaud et al.,
2017).

Despite the progress, none of the automated
cognate detection methods have been used for
the purpose of inferring phylogenetic trees us-
ing modern Bayesian phylogenetic methods (Yang

and Rannala, 1997) from computational biology.
Phylogenetic trees are hypotheses of how sets of
related languages evolved in time. They can in
turn be used for testing additional hypotheses of
language evolution, such as the age of language
families (Gray and Atkinson, 2003; Chang et al.,
2015), their spread (Bouckaert et al., 2012; Gray
et al., 2009), the rates of lexical change (Greenhill
et al., 2017), or as a proxy for tasks like cognate
detection and linguistic reconstruction (Bouchard-
Côté et al., 2013). By plotting shared traits on a
tree and testing how they could have evolved, trees
can even be used to test hypotheses independent
from language evolution, such as the universality
of typological statements (Dunn et al., 2011), or
the ancestry of cultural traits (Jordan et al., 2009).

In the majority of these approaches, schol-
ars infer phylogenetic trees with help of expert-
annotated cognate sets which serve as input to
the phylogenetic software which usually follows
a Bayesian likelihood framework. Unfortunately,
expert cognate judgments are only available for
a small number of language families which look
back on a long tradition of classical comparative
linguistic research (Campbell and Poser, 2008).
Despite the claims that automatic cognate detec-
tion is useful for linguists working on less well
studied language families, none of the papers ac-
tually tested, if automated cognates can be used
instead as well for the important downstream task
of Bayesian phylogenetic inference. So far, schol-
ars have only tested distance-based approaches
to phylogenetic reconstruction (Wichmann et al.,
2010; Rama and Borin, 2015; Jäger, 2013), which
employ aggregated linguistic distances computed
from string similarity algorithms to infer phyloge-
netic trees.

In order to test whether automatic cognate de-
tection is useful for phylogenetic inference, we
collected multilingual wordlists for five different
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language families (230 languages, cf. section 2.1)
and then applied different cognate detection meth-
ods (cf. section 2.2) to infer cognate sets. We
then applied the Bayesian phylogenetic inference
procedure (cf. section 3) to the automated and
the expert-annotated cognate sets in order to infer
phylogenetic trees. These trees were then evalu-
ated against the family gold standard trees, based
on external linguistic knowledge (Hammarström
et al., 2017), using the Generalized Quartet Dis-
tance (cf. section 4.1). The results are provided in
table 3 and the paper is concluded in section 5.

To the best of our knowledge, this is the first
study in which the performance of several auto-
matic cognate detection methods on the down-
stream task of phylogenetic inference is com-
pared. While we find that on average the trees
inferred from the expert-annotated cognate sets
come closer to the gold standard trees, the trees in-
ferred from automated cognate sets come surpris-
ingly close to the trees inferred from the expert-
annotated ones.

Dataset Mngs. Lngs. AMC

Austronesian 210 45 0.79
Austro-Asiatic 200 58 0.90
Indo-European 208 42 0.95
Pama-Nyungan 183 67 0.89
Sino-Tibetan 110 64 0.91

Table 1: Datasets used in our study. The second, third,
and fourth columns show the number of number of
meanings, languages and average mutual coverage for
each language family respectively.

2 Materials and Methods

2.1 Datasets

Our wordlists were extracted from publicly avail-
able datasets from five different language fami-
lies: Austronesian (Greenhill et al., 2008), Austro-
Asiatic (Sidwell, 2015), Indo-European (Dunn,
2012), Pama-Nyungan (Bowern and Atkinson,
2012), and Sino-Tibetan (Peiros, 2004). In order
to make sure that the datasets were amenable for
automatic cognate detection, we had to make sure
that the transcriptions employed are readily rec-
ognized, and that the data is sufficient for those
methods which rely on the identification of regu-
lar sound correspondences. The problem of tran-
scriptions was solved by applying intensive semi-

automatic cleaning. In order to guarantee an op-
timal data size, we selected a subset of languages
from each dataset, which would guarantee a high
average mutual coverage (AMC). AMC is calcu-
lated as the average proportion of words shared by
all language pairs in a given dataset. All analy-
ses were carried out with version 2.6.2 of LingPy
(List et al., 2017a). Table 1 gives an overview on
the number of languages, concepts, and the AMC
score for all datasets.1

2.2 Automatic Cognate Detection

The basic workflow for automatic cognate detec-
tion methods applied to multilingual wordlists has
been extensively described in the literature (Hauer
and Kondrak, 2011; List, 2014). The workflow can
be divided into two major steps: (a) word simi-
larity calculation, and (b) cognate set partitioning.
In the first step, similarity or distance scores for
all word pairs in the same concept slot in the data
are computed. In the second step, these scores are
used to partition the words into sets of presum-
ably related words. Since the second step is a mere
clustering task for which many solutions exist, the
most crucial differences among algorithms can be
noted for step (a).

For our analysis, we tested six different meth-
ods for cognate detection: The Consonant-
Class-Matching (CCM) Method (Turchin et al.,
2010), the Normalized Edit Distance (NED) ap-
proach (Levenshtein, 1965), the Sound-Class-
Based Aligmnent (SCA) method (List, 2014), the
LexStat-Infomap method (List et al., 2017b), the
SVM method (Jäger et al., 2017), and the Online
PMI approach (Rama et al., 2017).

The CCM approach first reduces the size of the
alphabets in the phonetic transcriptions by map-
ping consonants to consonant classes and discard-
ing vowels. Assuming that different sounds which
share the same sound class are likely to go back to
the same ancestral sound, words which share the
first two consonant classes are judged to be cog-
nate, while words which differ regarding their first
two classes are regarded as non-cognate.

1In order to allow for an easy re-use of our datasets,
we linked all language varieties to Glottolog (Hammarström
et al., 2017) and all concepts to Concepticon (List et al.,
2016a). In addition to the tabular data formats required to run
the analyses with our software tools, we also provide the data
in form of the format specifications suggested by the Cross-
Linguistic Data Formats initiative (Forkel et al., 2017). Data
and source code are provided along with the supplementary
material accompanying this paper.
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The NED approach first computes the normal-
ized edit distance (Nerbonne and Heeringa, 1997)
for all word pairs in given semantic slot and
then clusters the words into cognate sets using a
flat version of the UPGMA algorithm (Sokal and
Michener, 1958) and a user-defined threshold of
maximal distance among the words. We follow
List et al. (2017b) in setting this threshold to 0.75.

The SCA approach is very similar to NED, but
the pairwise distances are computed with help of
the Sound-Class-Based Phonetic Alignment algo-
rithm (List, 2014) which employs an extended
sound-class model and a linguistically informed
scoring function. Following List et al. (2017b),
we set the threshold for this approach to 0.45.

The LexStat-Infomap method builds on the
SCA method by employing the same sound-
class model, but individual scoring functions are
inferred from the data for each language pair
by applying a permutation method and comput-
ing the log-odds scores (Eddy, 2004) from the
expected and the attested distribution of sound
matches (List, 2014). While SCA and NED em-
ploy flat UGPMA clustering for step 2 of the
workflow, LexStat-Infomap further uses the In-
fomap community detection algorithm (Rosvall
and Bergstrom, 2008) to partition the words into
cognate set. Following List et al. (2017b), we set
the threshold for LexStat-Infomap to 0.55.

The OnlinePMI approach (Rama et al., 2017)
estimates the sound-pair PMI matrix using the
online procedure described in Liang and Klein
(2009). The approach starts with an empty PMI
matrix and a list of synonymous word pairs from
all the language pairs. The approach proceeds by
calculating the PMI matrix from alignments cal-
culated for each minibatch of word pairs using the
current PMI matrix. Then the calculated PMI ma-
trix for the latest minibatch is combined with the
current PMI matrix. This procedure is repeated
for a fixed number of iterations. We employ the
final PMI matrix to calculate pairwise word sim-
ilarity matrix for each meaning. In an additional
step, the similarity score was transformed into a
distance score using the sigmoid transformation:
1.0−(1+exp(−x))−1 The word distance matrix is
then supplied as an input to the Label Propagation
algorithm (Raghavan et al., 2007) to infer cognate
clusters. We set the threshold for the algorithm to
be 0.5.

For the SVM approach (Jäger et al., 2017) a

linear SVM classifier was trained with PMI sim-
ilarity (Jäger, 2013), LexStat distance, mean word
length, distance between the languages as features
on cognate and non-cognate pairs extracted from
word lists from Wichmann and Holman (2013)
and List (2014). The details of the training dataset
are given in table 1 in Jäger et al. (2017). We used
the same training settings as reported in the paper
to train our SVM model. The trained SVM model
is then employed to compute the probability that a
word pair is cognate or not. The word pair proba-
bility matrix is then given as input to InfoMap al-
gorithm for inferring word clusters. The threshold
for InfoMap algorithm is set to 0.57 after cross-
validation experiments on the training data.

We evaluate the quality of the inferred cog-
nate sets using the above described methods us-
ing B-cubed F-score (Amigó et al., 2009) which is
widely used in evaluating the quality of automat-
ically inferred cognate clusters (Hauer and Kon-
drak, 2011). We present the cognate evaluation
results in table 2. The SVM system is the best
in the case of Austro-Asiatic and Pama-Nyungan
whereas LexStat algorithm performs the best in
the case of rest of the datasets. This is surpris-
ing since LexStat scores are used as features for
SVM and we expect the SVM system to perform
better than LexStat in all the language families.
On the other hand, both OnlinePMI and SCA sys-
tems perform better than the algorithmically sim-
pler systems such as CCM and NED. Given these
F-scores, we hypothesize that the cognate sets out-
put from the best cognate identification systems
would also yield the high quality phylogenetic
trees. However, we find the opposite in our phylo-
genetic experiments.

3 Bayesian Phylogenetic Inference

The objective of Bayesian phylogenetic inference
is based on the Bayes rule in 1.

f(τ, v, θ|X) =
f(X|τ, v, θ)f(τ, v, θ)

f(X)
(1)

where X is the data matrix, τ is the topology of
the tree, v is the vector of branch lengths, and θ is
the substitution model parameters. The data ma-
trix X is a binary matrix of dimensions N × C
where N is the number of languages and C is the
number of cognate clusters in a language family.
The posterior distribution f(τ, v, θ|X) is difficult
to calculate analytically since one has to sum over
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Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

CCM 0.71 0.7 0.75 0.74 0.48
NED 0.73 0.77 0.69 0.53 0.49
SCA 0.76 0.78 0.81 0.71 0.56
LexStat 0.76 0.84 0.83 0.84 0.6
OnlinePMI 0.76 0.81 0.82 0.72 0.56
SVM 0.82 0.81 0.79 0.86 0.5

Table 2: B-cubed F-scores for different cognate detection methods across the language families.

all the possible topologies ( (2N−3)!
2N−2(N−2)! ) to com-

pute the marginal in the denominator. However,
posterior probability of all the parameters of inter-
est (here, Ψ = {τ, v, θ}) can be computed from
samples drawn using a Markov chain Monte Carlo
(MCMC) method. Typically, Metropolis-Hastings
(MH) algorithm is the MCMC algorithm used to
sample phylogenies from the posterior distribution
(Huelsenbeck et al., 2001).

The MH algorithm constructs a Markov chain
of the parameters’ states by proposing change to
a single parameter or a block of parameters in Ψ.
The current state Ψ in the Markov chain has a pa-
rameter θ and a new value θ∗ is proposed from
a distribution q(θ∗|θ), then θ∗ is accepted with a
probability

r =
f(X|τ, v, θ∗)
f(X|τ, v, θ)

f(θ∗)
f(θ)

q(θ|θ∗)
q(θ∗|θ) (2)

The likelihood of the data f(X|Ψ) is computed
using the Felsenstein’s pruning algorithm (Felsen-
stein, 1981) also known as sum-product algorithm
(Jordan et al., 2004). We assume that τ, θ, v are
independent of each other.

4 Experiments

In this section, we report the experimental settings,
the evaluation measure, and the results of our ex-
periments.

All our Bayesian analyses use binary datasets
with states 0 and 1. We employ the Generalized
Time Reversible Model (Yang, 2014, chapter 1)
for computing the transition probabilities between
individual states. The rate variation across sites
is modeled using a four category discrete Γ distri-
bution (Yang, 1994). We follow Lewis (2001) and
Felsenstein (1992) in correcting the likelihood cal-
culation for ascertainment bias resulting from un-
observed 0 patterns. We used a uniform tree prior
(Ronquist et al., 2012) in all our analyses which
constructs a rooted tree and draws internal node
heights from uniform distribution. In our analysis,

we assumes a Independent Gamma Rates relaxed
clock model (Lepage et al., 2007) where the rate
for a branch j of length bj in the tree is drawn
from a Gamma distribution with mean 1 and vari-
ance σ2IG/bj where σ2IG is a parameter sampled in
the MCMC analysis.

We infer τ, v, θ from two independent random
starting points and sample every 1000th state in
the chain until the phylogenies from the two inde-
pendent runs do not differ beyond 0.01. For each
dataset, we ran the chains for 15 million genera-
tions and threw away the initial 50% of the chain’s
states as part of burnin. After that we computed
the generalized quartet distance from each of the
posterior trees to the gold standard tree described
in subsection 4.1. All our experiments are per-
formed using MrBayes 3.2.6 (Zhang et al., 2015).

4.1 GQD

Pompei et al. (2011) introduced Generalized Quar-
tet Distance (GQD) as an extension to Quartet Dis-
tance (QD) in order to compare binary trees with
a polytomous tree, since gold standard trees can
have non-binary internal nodes. It was widely
used for comparing inferred language phylogenies
with gold standard phylogenies (Greenhill et al.,
2010; Wichmann et al., 2011; Jäger, 2013).

QD measures the distance between two trees
in terms of the number of different quartets (Es-
tabrook et al., 1985). A quartet is defined as a
set of four leaves selected from a set of leaves
without replacement. A tree with n leaves has(n
4

)
quartets in total. A quartet defined on four

leaves a, b, c, d can have four different topologies:
ab|cd, ac|bd, ad|bc, and ab × cd. The first three
topologies have an internal edge separating two
pairs of leaves. Such quartets are called as but-
terflies. The fourth quartet has no internal edge
and as such is known as star quartet. Given a tree
τ with n leaves, the quartets can be partitioned
into sets of butterflies, B(τ), and sets of stars,
S(τ). Then, the QD between τ and τg is defined
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Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

Expert cognate sets 0.0081 ± 0.001 0.1056 ± 0.0118 0.0249 ± 0.0079 0.1384 ± 0.0225 0.0561 ± 0.0123

CCM 0.0243 ± 0.018 0.0854 ± 0.0176 0.0369 ± 0.0148 0.1617 ± 0.0162 0.1424 ± 0.027
NED 0.0265 ± 0.007 0.0458 ± 0.0152 0.046 ± 0.0132 0.196 ± 0.0166 0.1614 ± 0.0282
SCA 0.0152 ± 0.0035 0.0514 ± 0.013 0.0256 ± 0.009 0.166 ± 0.0153 0.0704 ± 0.0206
LexStat 0.0267 ± 0.0085 0.0848 ± 0.0226 0.0314 ± 0.0091 0.1507 ± 0.0143 0.0786 ± 0.0209
OnlinePMI 0.0158 ± 0.0048 0.1056 ± 0.0198 0.0457 ± 0.0135 0.1717 ± 0.0185 0.1184 ± 0.031
SVM 0.0146 ± 0.0039 0.0989 ± 0.0224 0.0452 ± 0.011 0.1827 ± 0.0237 0.1199 ± 0.0269

Table 3: The mean and standard deviation for each method and family is computed from 7500 posterior trees. The
automatic methods which comes closest to the gold standard phylogeny is shaded in gray, and where the expert
cognate sets perform best, this is indicated with a bold font.

as 1 − |S(τ)∩S(τg)|+|B(τ)∩B(τg)|
(n4)

. The QD formu-

lation counts the butterflies in an inferred tree τ
as errors. The tree τ should not be penalized if
an internal node in the gold standard tree τg is m-
ary. To this end, Pompei et al. (2011) defined a
new measure known as GQD to discount the pres-
ence of star quartets in τg. GQD is defined as
DB(τ, τg)/B(τg) where DB(.) is the number of
different butterflies between τ, τg.

We extracted gold standard trees from Glottolog
(Hammarström et al., 2017) for the purpose of
evaluating the inferred posterior trees from each
automated cognate identification system. We note
that the Bayesian inference procedure produces
rooted trees with branch lengths whereas the gold
standard trees do not have any branch lengths. Al-
though there exist other linguistic phylogenetic in-
ference algorithms such as those of Ringe et al.
(2002) we do not test the algorithms due to the
non-availability and scalability of the software to
datasets with more than twenty languages.

4.2 Results

The results of our experiments are given in table
3. A average lower GQD score implies that the
inferred trees are closer to the gold standard phy-
logeny than a higher average GQD score. Except
for Austronesian, Bayesian inference based on ex-
pert cognate sets yields trees that are very close
to the gold standard tree. Surprisingly, algorith-
mically simple systems such as NED and CCM
show better performance than the machine-learned
SVM model except from Sino-Tibetan. SCA is
a subsystem of LexStat but emerges as the win-
ner in two language families (Indo-European and
Sino-Tibetan). Given that SCA is outperformed
by SVM and LexStat in automatic cognate detec-
tion, this is very surprising, and further research
is needed to find out, why the simpler models

perform well on phylogenetic reconstruction. Al-
though our results indicate that expert-coded cog-
nate sets are generally more suitable for phyloge-
netic reconstruction, we can also see that the dif-
ference to trees inferred from automated cognate
sets is not very large.

5 Conclusion

In this paper, we carried out a preliminary evalu-
ation of the usefulness of automated cognate de-
tection methods for phylogenetic inference. Al-
though the cognate sets predicted by automated
cognate detection methods yield phylogenetic
trees that come close to expert trees, there is
still room for improvement, and future research is
needed to further enhance automatic cognate de-
tection methods. However, as our experiments
show, expert-annotated cognate sets are also not
free from errors, and it seems likewise useful to
investigate, how the consistency of cognate cod-
ing by experts could be further improved.

As future work, we intend to create a cognate
identification system that combines the output of
different algorithms in a more systematic way. We
intend to infer cognate sets from the combined
system and use them to infer phylogenies and eval-
uate the inferred phylogenies against the gold stan-
dard trees.
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