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Abstract

This paper presents models to predict event
durations. We introduce aspectual features that
capture deeper linguistic information than pre-
vious work, and experiment with neural net-
works. Our analysis shows that tense, aspect
and temporal structure of the clause provide
useful clues, and that an LSTM ensemble cap-
tures relevant context around the event.

1 Introduction

Robust textual understanding requires identifying
events and temporal relations between them. Be-
yond event participants, a crucial piece of informa-
tion regarding events is their duration, an attribute
rarely mentioned explicitly. For example, taking a
shower lasts a few minutes (not days), and a vaca-
tion lasts a few days (not years). Core tasks such as
temporal understanding and reasoning, as well as
applications such as temporal question answering
(Llorens et al., 2015) would benefit from knowing
the expected duration of events.

Consider a system that extracts temporal rela-
tions such as IS INCLUDED (Cassidy et al., 2014,
among others). When deciding whether a relation
holds between an event and a temporal expression,
such a system would benefit from knowing the du-
ration of the event at hand. For example, argu-
ment y of IS INCLUDED(built a house, y) must be
a temporal span ranging from a few weeks to a
year—the expected duration of built a house. Thus
relation candidates such as IS INCLUDED(built a
house, 4/5/2016 ) could be discarded right away.

Similarly, event durations combined with event
ordering and temporal anchoring would help to de-
termine the time of subsequent events. For ex-
ample, if John Doe started his drive to work at
8:00am, it is reasonable to expect him to start
working by 9:00am because commuting took him
(most likely) between a few minutes to an hour.

In this paper, we classify events based on their
expected duration. Specifically, we differentiate
between events whose duration is less than a day,
and events whose duration is a day or more. The
main contributions are: (a) linguistically moti-
vated features that yield better results than previ-
ous work, (b) an LSTM ensemble that obtains the
best results to date, and (c) error analysis shedding
light on the benefits of our models.

2 Related Work

TimeBank (Pustejovsky et al., 2006) is the corpus
of reference for temporal information. The anno-
tations follow TimeML (Pustejovsky et al., 2010)
and include events, temporal expressions (e.g., last
Friday), temporal signals (e.g., when, during), and
links encoding relations. TimeBank does not an-
notate the expected duration of events.

Annotating and learning event durations was
pioneered by Pan et al. (2011), who annotated
the events in TimeBank with their expected dura-
tions. Gusev et al. (2011) use query patterns in an
unsupervised approach to predict the duration of
events. The work presented here builds upon these
previous works: we introduce additional features
and an LSTM ensemble that obtains the best re-
sults to date. The new features are inspired by pre-
vious work on assigning situation entity (SE) type
labels to clauses (Friedrich et al., 2016). SE types
are a linguistic categorization of semantic clause
type, whereby each clause is labeled according to
the type of situation it introduces to a discourse
(STATE, EVENT, GENERIC, and GENERALIZING

SENTENCE (also known as habituals)).

Other related works include efforts modeling
event durations in social media (Williams and
Katz, 2012), and temporal anchoring of, among
others, durative events (Reimers et al., 2016).
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# Description

Pan et al.
1-3 event token, lemma and POS tag
4-9 head word, lemma and POS tags of the syntactic subject and object of the event

10-18 three closest hypernyms of the event, subject and object

Gusev et al.
19-20 named entity types of the syntactic subject and object of the event

21 flag indicating if the event is a reporting verb
22-25 flags indicating presence of dobj, iobj, pobj and advmod syntactic dependencies of the verb

Aspectual
features inspired
by situation
entities (Friedrich
et al.)

26 event tense: past, present or future, and simple, perfect or continuous form
27 whether the event is in active or passive voice
28 type of determiner present in the subject
29 noun type of the subject
30 subject person
31 whether the subject is a bare plural

32-40 synset id of the two closest hypernyms in WordNet of the event, subject and object
41-43 lexical filename of the event, subject and object in WordNet
44-46 depth of the event, subject and object in the WordNet taxonomy

47 countability from WebCelex of the subject and object
48 number of modifiers in the sentence
49 adverbial degree of the sentence
50 whether the sentence contains an adverb

51-700 flags indicating the Brown clusters present in the sentence

Table 1: Feature set to predict the expected duration of events with SVM. Features 1–25 were previously proposed
for the same task. Features 26–700 are inspired by previous work assigning situation entity types to clauses (2016).

3 Corpus

We use the corpus by Pan et al. (2011), who anno-
tated the events in TimeBank (Pustejovsky et al.,
2003) with their expected durations by specify-
ing upper and lower bounds. The authors clus-
tered these bounds into two labels: less than a day
(<day) and a day or longer (≥day), and the corpus
contains 2,354 events (<day: 958, ≥day: 1,396).
The same event predicate may have different dura-
tions depending on context as exemplified below:

• I want to be absolutely clear, to the extent
there is any implication that Mrs. Currie be-
lieves that the President or anyone else tried
to influence her recollection, that is abso-
lutely false and a mischaracterization of the
facts. Duration of want: <day.

• Nationalists want to move towards Irish unity
and see this process as a bridge in that direc-
tion. Duration of want: ≥day.

4 Experiments and Results

We experiment with traditional SVM and neural
networks. Our rationale behind SVM is to (a) in-
corporate deeper linguistic features than previous
work, and (b) establish a solid baseline. We exper-
iment with neural networks to evaluate the abil-
ity of word embeddings and recurrent neural net-
works to capture the context required to determine
event durations. Regarding SVM, we use scikit-
learn (Pedregosa et al., 2011). Regarding neu-
ral networks, we use Keras (Chollet et al., 2015)

with TensorFlow backend (Abadi et al., 2015). All
networks use GloVe embeddings with 300 dimen-
sions (Pennington et al., 2014) and the Adam opti-
mizer (Kingma and Ba, 2014). We use grid search
and 5-fold cross-validation to tune hyperparame-
ters (C and γ for SVM, and batch size, dropout
rate, etc. for neural networks).

4.1 Support Vector Machine

Table 1 describes the full feature set. We use
spaCy1 to tokenize the input text and extract lem-
mas, part-of-speech tags, named entities, and de-
pendencies. The features by Pan et al. (2011) and
Gusev et al. (2011) capture primarily lexical infor-
mation, relying on tendencies of particular words
to denote events of certain durations. These ten-
dencies are, however, subject to contextual influ-
ence. Duration is one component of the internal
temporal structure of events, and as such it is an
important factor for distinguishing between var-
ious aspectual categories (Vendler, 1957; Smith,
1991). It thus stands to reason that other features
which capture aspectual distinctions may also cor-
relate with event duration and be useful for clas-
sifying the duration of events in texts. In order
to explore this intuition, we adapt features from a
system designed to assign situation entity types to
clauses (Friedrich et al., 2016). Diagnostic crite-
ria for situation entity types include lexical aspect
(stative vs. dynamic) of the main verb, generic-
ity of the clause’s subject, and whether the clause

1https://github.com/explosion/spaCy
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Figure 1: Neural network architecture to predict event durations. The output layer combines (a) the embedding of
the verb at hand and (b) the output of three LSTMs: one for the whole sentence (bottom), one for the tokens before
the event (top left), and one for the tokens after the event (top right).

is episodic, habitual, or static. It is primarily
these criteria which features 26-50 aim to cap-
ture. For example, bare plural subjects with a sim-
ple present tense verb (e.g., Bats eat mosquitos)
are a hallmark of GENERIC clauses. Although
situation entity types do not directly map onto
the duration labels (<day or ≥day), the criteria
which contribute to determining them clearly in-
fluence aspectual interpretation, thus influencing
understanding of the duration of events. Regard-
ing Brown clusters, we use freely available clus-
ters trained on news data by Turian et al. (2010)
using the implementation by Liang (2005). We in-
clude one feature per cluster and set it to true if
any word in the sentence belongs to the cluster.

4.2 Feed-Forward Neural Network

The first neural network we experiment with is
a one-hidden-layer feed-forward neural network
that takes as input the event embedding. The tun-
ing process revealed that the size of the hidden
layer is not important, thus we report results us-
ing a hidden layer with 5 neurons. Intuitively, this
vanilla network evaluates whether pretrained word
embeddings can predict the duration of events.

4.3 LSTM Ensemble

The LSTM ensemble is an improvement of the
vanilla feed-forward neural network. It combines
the event embedding with three LSTMs (Hochre-
iter and Schmidhuber, 1997) capturing different
context around the event (Figure 1). The first
LSTM (200 units, bottom in Figure 1) take as in-
puts the full sentence, and each token is repre-
sented by two embeddings: the word embedding
(blue in Figure 1) and an additional embedding in-
dicating whether the token is the event of interest
or not (light and dark grey). The other two LSTMs
(200 units each, top in Figure 1) take as input the
sequence of tokens before and after the event at

P R F1

Pan et al.
<day .76 .57 .65
≥ day .70 .85 .77
Avg. .73 .72 .71

Pan et al. +
Gusev et al.

<day .73 .52 .61
≥ day .68 .84 .75
Avg. .70 .69 .68

Pan et al. +
Gusev et al. +
Situation Entities

<day .82 .63 .71
≥ day .74 .89 .81
Avg. .78 .77 *.76

Feed-forward
neural network

<day .87 .63 .73
≥day .77 .93 .84
Avg. .81 .80 *.80

LSTM ensemble
<day .97 .62 .76
≥day .78 .99 .87
Avg. .86 .83 *.82

Table 2: Results obtained using SVM and several fea-
ture combinations (top), and neural networks (bottom).
We indicate statistical significance with respect to Pan
et al. (2011) with *. Avg. stands for weighted average.

hand, respectively, and each token is represented
by the corresponding word embedding. Word em-
beddings remain fixed, but the additional embed-
dings are initialized randomly and tuned during
training along with all other network parameters.

4.4 Results

Table 2 presents results obtained with the test set
(WSJ data with 156 event instances). We used
the same train and test splits as Pan et al. (2011)
and Gusev et al. (2011), but reimplemented their
systems and obtained better results than those re-
ported by the authors. We believe this is due to
the fact that spaCy (and the state-of-the-art in gen-
eral) is more robust than older tools. Regarding
SVM, the feature sets previously proposed obtain
moderate results (F1: 0.71 and 0.68). These previ-
ous features clearly benefit from the new aspectual
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features (F1: 0.76), showing that the latter features
capture contextual information useful to determine
event durations. The feed-forward neural net-
work outperforms the SVM (F1: 0.80) although it
doesn’t have access to the context surrounding the
event at hand. This shows that embeddings alone
are effective at predicting event durations. Finally,
despite the relatively small dataset, the LSTM en-
semble complements the pretrained verb embed-
ding with distributional representations of the con-
text around it (the full sentence, and the words be-
fore and after the event), yielding an 0.82 F1.

5 Error Analysis

In this section, we provide insights into why the
additional aspectual features and neural networks
are useful to predict event durations.
Aspectual features yield 7% improvement in
overall F1 (0.71 vs. 0.76). Here are some exam-
ples that benefit from these features:

• The company said 80% of its auction busi-
ness is usually conducted in the second and
fourth quarters. The adverbial degree feature
(feature 49) characterizes that conducted is a
habitual event and made the SVM correctly
classify this event into ≥day.

• Nationalists want to move towards Irish unity
and see this process as a bridge in that direc-
tion. The subject of want is the bare plural
Nationalists (feature 31), which in turn indi-
cates that the event duration is ≥day.

• Sotheby’s Holdings Inc., the parent of
the auction house Sotheby’s, said its net
loss for the seasonally slow third quarter
narrowed from a year earlier on a leap
in operating revenue. The event narrowed
belongs to the WordNet lexical filename
verb.change and its object (loss) belongs to
noun.possession. These semantic classes
(features 41–43) made the classifier correctly
predict ≥day. Another important lexical file-
name is verb.possession, all events belonging
to this filename are annotated ≥day.

Neural Networks outperform any feature combi-
nation despite not having explicit access to any in-
formation beyond the sentence to which the event
belongs and pretrained word embeddings. Word
embeddings alone are surprisingly effective for
this task (feed-forward neural network F1: 0.80),
and benefit especially when the event at hand has
not been seen in training. Similar to the Word-

Net lexical filenames, embeddings cluster together
events with similar durations. The benefit of em-
beddings is, however, that they are pretrained on
massive amounts of data and virtually account for
any event (all the events annotated in the corpus
we work with have a GloVe embedding). Here is
an example of an unseen event in training that the
embeddings predict correctly:

• Revenue totaled $1.01 billion, a 43% in-
crease from $704.4 million, reflecting the
company’s acquisition of Emery earlier this
year. The feed-forward neural network and
embeddings learnt that mathematical expres-
sions last less than a day (<day).

Although the difference in F1 is small (0.82 vs.
0.80), the LSTM ensemble successfully captures
context required to predict event durations. Here
are two examples that benefit:

• The Portland, Ore., thrift said the restructur-
ing should help it meet new capital standards
from the Financial Institution Reform, Recov-
ery and Enforcement Act. The fact that re-
structuring appears nearby and has duration
≥day helps the LSTM ensemble predict that
meet also has duration ≥day in this context,
despite most meetings lasting less than a day.
Also, the LSTM ensemble has access only to
the nearby events but not to their duration.

• In over-the-counter trading yesterday, Ben-
jamin Franklin rose 25 cents to $4.25 (dura-
tion: <day). The LSTM ensemble is very
successful when temporal cues surrounding
the event at hand are present (e.g., yesterday).

6 Conclusions

In this paper, we classify events into those whose
duration is shorter than a day (<day) or a day or
longer (≥day). We have presented aspectual fea-
tures that account for deeper linguistic information
than previous work, and showed that they comple-
ment basic features used previously. We have also
experimented with neural networks, and showed
that (a) pretrained word embeddings successfully
solve this task, and (b) an LSTM ensemble cap-
tures relevant context around the event despite that
the corpus we work with is relatively small. We
believe that determining the duration of events has
the potential to help temporal reasoning in gen-
eral. For example, somebody can participate in
two events taking place at different locations only
if they do not overlap temporally.
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