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Abstract

We describe an effort to annotate a corpus
of natural language instructions consisting of
622 wet lab protocols to facilitate automatic or
semi-automatic conversion of protocols into a
machine-readable format and benefit biologi-
cal research. Experimental results demonstrate
the utility of our corpus for developing ma-
chine learning approaches to shallow seman-
tic parsing of instructional texts. We make our
annotated Wet Lab Protocol Corpus available
to the research community.1

1 Introduction

As the complexity of biological experiments in-
creases, there is a growing need to automate wet
laboratory procedures to avoid mistakes due to hu-
man error and also to enhance the reproducibility
of experimental biological research (King et al.,
2009). Several efforts are currently underway to
define machine-readable formats for writing wet
lab protocols (Ananthanarayanan and Thies, 2010;
Soldatova et al., 2014; Vasilev et al., 2011). The
vast majority of today’s protocols, however, are
written in natural language with jargon and collo-
quial language constructs that emerge as a byprod-
uct of ad-hoc protocol documentation. This moti-
vates the need for machine reading systems that
can interpret the meaning of these natural lan-
guage instructions, to enhance reproducibility via
semantic protocols (e.g. the Aquarium project)
and enable robotic automation (Bates et al., 2016)
by mapping natural language instructions to exe-
cutable actions.

In this study we take a first step towards this
goal by annotating a database of wet lab protocols
with semantic actions and their arguments; and
conducting initial experiments to demonstrate its
utility for machine learning approaches to shallow
semantic parsing of natural language instructions.

1The dataset is available on the authors’ websites.

Isolation of temperate phages by plaque agar overlay
1. Melt soft agar overlay tubes in boiling water and place
in the 47C water bath.
2. Remove one tube of soft agar from the water bath.
3. Add 1.0 mL host culture and either 1.0 or 0.1 mL viral
concentrate.
4. Mix the contents of the tube well by rolling back and
forth between two hands, and immediately empty the tube
contents onto an agar plate.
5. Sit RT for 5 min.
6. Gently spread the top agar over the agar surface by slid-
ing the plate on the bench surface using a circular motion.
7. Harden the top agar by not disturbing the plates for 30
min.
8. Incubate the plates (top agar side down) overnight to 48
h.
9. Temperate phage plaques will appear as turbid or
cloudy plaques, whereas purely lytic phage will appear as
sharply defined, clear plaques.

Figure 1: An example wet lab protocol. The first seven
steps are imperative sentences, and the last sentence de-
scribes the end results and their subsequent utilization.

To the best of our knowledge, this is the first anno-
tated corpus of natural language instructions in the
biomedical domain that is large enough to enable
machine learning approaches.

There have been many recent data collection
and annotation efforts that have initiated natu-
ral language processing research in new direc-
tions, for example political framing (Card et al.,
2015), question answering (Rajpurkar et al., 2016)
and cooking recipes (Jermsurawong and Habash,
2015). Although mapping natural language in-
structions to machine readable representations is
an important direction with many practical appli-
cations, we believe current research in this area is
hampered by the lack of available annotated cor-
pora. Our annotated corpus of wet lab protocols
could enable further research on interpreting nat-
ural language instructions, with practical applica-
tions in biology and life sciences.

Prior work has explored the problem of learn-
ing to map natural language instructions to ac-
tions, often learning through indirect supervision

97



Figure 2: Example sentences (#5 and #6) from the lab protocol in Figure 1 as shown in the BRAT annotation
interface.
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Figure 3: An action graph can be directly derived from
annotations as seen in Figure 2 (example sentence #6) .

to address the lack of labeled data in instructional
domains. This is done, for example, by interact-
ing with the environment (Branavan et al., 2009,
2010) or observing weakly aligned sequences of
instructions and corresponding actions (Chen and
Mooney, 2011; Artzi and Zettlemoyer, 2013). In
contrast, we present the first steps towards a prag-
matic approach based on linguistic annotation
(Figure 3). We describe our effort to exhaus-
tively annotate wet lab protocols with actions cor-
responding to lab procedures and their attributes
including materials, instruments and devices used
to perform specific actions. As we demonstrate in
§6, our corpus can be used to train machine learn-
ing models which are capable of automatically an-
notating lab-protocols with action predicates and
their arguments (Gildea and Jurafsky, 2002; Das
et al., 2014); this could provide a useful linguis-
tic representation for robotic automation (Bollini
et al., 2013) and other downstream applications.

2 Wet Lab Protocols

Wet laboratories are laboratories for conducting
biology and chemistry experiments which involve
chemicals, drugs, or other materials in liquid
solutions or volatile phases. Figure 1 shows
one representative wet lab protocol. Research
groups around the world curate their own repos-

itories of protocols, each adapted from a canoni-
cal source and typically published in the Materials
and Method section at the end of a scientific article
in biology and chemistry fields. Only recently has
there been an effort to gather collections of these
protocols and make them easily available. Lever-
aging an openly accessible repository of protocols
curated on the https://www.protocols.io platform,
we annotated hundreds of academic and commer-
cial protocols maintained by many of the lead-
ing bio-science laboratory groups, including Verve
Net, Innovative Genomics Institute and New Eng-
land Biolabs. The protocols cover a large spec-
trum of experimental biology, including neurol-
ogy, epigenetics, metabolomics, cancer and stem
cell biology, etc (Table 1). Wet lab protocols con-
sist of a sequence of steps, mostly composed of
imperative statements meant to describe an action.
They also can contain declarative sentences de-
scribing the results of a previous action, in addi-
tion to general guidelines or warnings about the
materials being used.

3 Annotation Scheme

In developing our annotation guidelines we had
three primary goals: (1) We aim to produce a se-
mantic representation that is well motivated from
a biomedical and linguistic perspective; (2) The
guidelines should be easily understood by annota-
tors with or without biology background, as evalu-
ated in Table 3; (3) The resulting corpus should be
useful for training machine learning models to au-
tomatically extract experimental actions for down-
stream applications, as evaluated in §6.

We utilized the EXACT2 framework (Soldatova
et al., 2014) as a basis for our annotation scheme.
We borrowed and renamed 9 object-based entities
from EXACT2, in addition, we created 5 measure-
based (NUMERICAL, GENERIC-MEASURE, SIZE,
PH, MEASURE-TYPE) and 3 other (MENTION,
MODIFIER, SEAL) entity types. EXACT2 con-
nects the entities directly to the action without
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Protocol Category Count avg #Sentences avg #Words avg #Entities avg #Relations avg #Actions
molecular biology 186 27.42 338.06 85.25 84.20 35.77
microbiology 105 22.07 328.94 74.46 71.71 27.89
cell biology 94 19.23 236.74 61.09 60.95 23.93
Plant biology 48 17.17 219.96 44.67 43.85 20.44
Immunology 79 25.92 339.58 83.17 78.24 32.68
chemical biology 110 14.37 188.30 46.40 47.45 19.01

Table 1: Statistics of our Wet Lab Protocol Corpus by protocol category.

Total per Protocol per Sentence
# of sentences 13679 21.99 –
# of words 177770 285.80 12.99
# of entities 43236 69.51 3.16
# of relations 42425 68.21 3.10
# of actions 17485 28.11 1.28

Table 2: Statistics of the Wet Lab Protocol Corpus.

describing the type of relations, whereas we de-
fined and annotated 12 types of relations between
actions and entities, or pairs of entities (see Ap-
pendix for a full description).

For each protocol, the annotators were re-
quested to identify and mark every span of text
that corresponds to one of 17 types of entities
or an action (see examples in Figure 2). Inter-
section or overlap of text spans, and the subdi-
vision of words between two spans were not al-
lowed. The annotation guideline was designed to
keep the span short for entities, with the average
length being 1.6 words. For example, CONCEN-
TRATION tags are often very short: 60% 10x, 10M,
1 g/ml. The METHOD tag has the longest aver-
age span of 2.232 words with examples such as
rolling back and forth between two hands. The
methods in wet lab protocols tend to be descrip-
tive, which pose distinct challenges from exist-
ing named entity extraction research in the med-
ical (Kim et al., 2003) and other domains. After
all entities were labelled, the annotators connected
pairs of spans within each sentence by using one
of 12 directed links to capture various relation-
ships between spans tagged in the protocol text.
While most protocols are written in scientific lan-
guage, we also observe some non-standard usage,
for example using RT to refer to room tempera-
ture, which is tagged as TEMPERATURE.

4 Annotation Process

Our final corpus consists of 622 protocols anno-
tated by a team of 10 annotators. Corpus statistics
are provided in Table 1 and 2. In the first phase

Annotators Entities+Actions Relations
Biologist-Linguist 0.7600 0.6084
Biologist-Other 0.7621 0.6619
Linguist-Other 0.7574 0.6753
all 4 coders 0.7599 0.6625

Table 3: Inter-annotator agreement (Krippendorff’s α)
between annotators with biology, linguistics and other
backgrounds.

of annotation, we worked with a subset of 4 anno-
tators including one linguist and one biologist to
develop the annotation guideline for 6 iterations.
For each iteration, we asked all 4 annotators to an-
notate the same 10 protocols and measured their
inter-annotator agreement, which in turn helped
in determining the validity of the refined guide-
lines. The average time to annotate a single proto-
col of 40 sentences was approximately 33 minutes,
across all annotators.

4.1 Inter-Annotator Agreement

We used Krippendorff’s α for nominal data (Krip-
pendorff, 2004) to measure the inter-rater agree-
ment for entities, actions and relations. For enti-
ties, we measured agreement at the word-level by
tagging each word in a span with the span’s la-
bel. To evaluate inter-rater agreement for relations
between annotated spans, we consider every pair
of spans within a step and then test for matches
between annotators (partial entity matches are al-
lowed). We then compute Krippendorff’s α over
relations between matching pairs of spans. Inter-
rater agreement for entities, actions and relations
is presented in Figure 3.

5 Methods

To demonstrate the utility of our annotated cor-
pus, we explore two machine learning approaches
for extracting actions and entities: a maximum en-
tropy model and a neural network tagging model.
We also present experiments for relation classifi-
cation. We use the standard precision, recall and
F1 metrics to evaluate and compare the perfor-
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mance.

5.1 Maximum Entropy (MaxEnt) Tagger
In the maximum entropy model for action and en-
tity extraction (Borthwick and Grishman, 1999),
we used three types of features based on the cur-
rent word and context words within a window of
size 2:
• Parts of speech features which were gener-

ated by the GENIA POS Tagger (Tsuruoka
and Tsujii, 2005), which is specifically tuned
for biomedical texts;
• Lexical features which include unigrams, bi-

grams as well as their lemmas and synonyms
from WordNet (Miller, 1995) are used;
• Dependency parse features which include

dependent and governor words as well as the
dependency type to capture syntactic infor-
mation related to actions, entities and their
contexts. We used the Stanford dependency
parser (Chen and Manning, 2014).

5.2 Neural Sequence Tagger
We utilized the state-of-the-art Bidirectional
LSTM with a Conditional Random Fields (CRF)
layer (Ma and Hovy, 2016; Lample et al.,
2016; Plank et al., 2016), initialized with 200-
dimentional word vectors pretrained on 5.5 bil-
lion words from PubMed and PMC biomedical
texts (Moen and Ananiadou, 2013). Words unseen
in the pretrained vocabulary were randomly ini-
tialized using a uniform distribution in the range
(-0.01, 0.01). We used Adadelta (Zeiler, 2012)
optimization with a mini-batch of 16 sentences
and trained each network with 5 different random
seeds, in order to avoid any outlier results due to
randomness in the model initialization.

5.3 Relation Classification
To demonstrate the utility of the relation annota-
tions, we also experimented with a maximum en-
tropy model for relation classification using fea-
tures shown to be effective in prior work (Li and
Ji, 2014; GuoDong et al., 2005; Kambhatla, 2004).
The features are divided into five groups:
• Word features which include the words con-

tained in both arguments, all words in be-
tween, and context words surrounding the ar-
guments;
• Entity type features which include action

and entity types associated with both argu-
ments;

Entity/Action
(freq. in test set) MaxEnt BiLSTM

BiLSTM
+ CRF

Action (3519) 83.87 85.95 86.89
Amount (886) 68.25 81.59 82.34
Conc. (273) 56.84 65.36 76.36
Device (408) 49.14 58.73 64.02
Gen.-Measure (91) 05.88 06.45 25.68
Location (1007) 61.07 69.57 73.53
Meas.-Type (50) 15.38 18.75 21.62
Mention (37) 43.37 52.31 57.97
Method (177) 37.97 30.60 38.21
Modifier (720) 50.86 56.90 59.34
Numerical (129) 39.70 47.84 49.80
Reagent (2486) 60.54 71.34 74.55
Seal (43) 49.52 54.05 66.67
Size (69) 19.35 24.82 26.92
Speed (200) 74.88 85.31 91.00
Temperature (469) 80.69 86.68 91.90
Time (708) 83.68 92.69 93.94
pH (21) 41.86 53.66 70.00
Macro-avg F1 49.23 58.81 64.44
Micro-avg F1 68.03 74.99 78.03

Table 4: F1 scores for segmenting and classifying en-
tities and action triggers compared across the various
models.

MaxEnt Model Relations
Features P R F1
Words 66.16 46.84 54.85
+ Entity Type 78.93 72.75 75.72
+ Overlap 80.81 74.73 77.65
+ Base Phrase Chunking 81.04 76.52 78.71
+ Dependency Tree 80.98 77.04 78.96

Table 5: Precision, Recall and F1 (micro-average) of
the maximum entropy model for relation classification,
as each feature is added.

• Overlapping features which are the number
of words, as well as actions or entities, in be-
tween the candidate entity pair;
• Chunk features which are the chunk tags of

both arguments predicted by the GENIA tag-
ger;
• Dependency features which are context

words related to the arguments in the depen-
dency tree according to the Stanford Depen-
dency Parser.

Also included are features indicating whether the
two spans are in the same noun phrase, preposi-
tional phrase, or verb phrase.

6 Results

The full annotated dataset of 622 protocols are
randomly split into training, dev and test sets using
a 6:2:2 ratio. The training set contains 374 proto-
cols of 8207 sentences, development set contains
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MaxEnt Model Actions Entities
Features P R F1 P R F1
POS 74.83 79.94 77.30* 26.66 27.93 28.77
uni/bigram 76.29 69.59 72.79 43.75 32.93 37.58
POS, uni/bigram 79.77 85.51 82.54 49.83 54.51 52.07
POS, uni/bigram, lem./syn. 80.10 85.56 82.74 49.79 54.54 52.06
POS, uni/bigram, lem./syn., dep. 81.65 86.22 83.87 57.04 63.03 59.90*

Table 6: Performance of maximum entropy model with various features.*The POS features are especially useful
for recognizing actions; dependency based features are more helpful for entities than actions.

POS tag (freq.) Top 3 examples
VB (9345) Add(1404), Incubate(638), Remove(396)

VBG (755) adding(112), inverting(89), pipetting(34)

VBN (727) added(43), stored(38), incubated(38)

VBP (512) Do(80), mix(38), pour(33)

VBD (147) resuspend(25), put(20), kept(8)

VBZ (44) remains(5), covers(4), washes(3)

NN (4248) Centrifuge(324), Transfer(301), Place(215)

NNP (1551) Mix(335), Wash(277), Vortex(114)

NNS (80) washes(9), to(7), dilutions(4)

JJ (576) dry(66), Apply(26), decant(23)

OTHER (1080) not(111), off(110), up(105)

Table 7: Frequency of different part-of-speech (POS)
tags for action words. Majority of the action words
either fall under the verb POS tags (VBs 60.48%) or
nouns (NNs 30.84%). The GENIA POS tagger is
under-identifying verbs in the wet lab protocols, tag-
ging some as adjectives (JJ).

123 protocols of 2736 sentences, and test set con-
tains 125 protocols of 2736 sentences. We use the
evaluation script from the CoNLL-03 shared task
(Tjong Kim Sang and De Meulder, 2003), which
requires exact matches of label spans and does not
reward partial matches. During the data prepro-
cessing, all digits were replaced by ‘0’.

6.1 Entity Identification and Classification

Table 4 shows the performance of various methods
for entity tagging. We found that the BiLSTM-
CRF model consistently outperforms other meth-
ods, achieving an overall F1 score of 86.89 at iden-
tifying action triggers and 72.61 at identifying and
classifying entities.

Table 6 shows the system performance of the
MaxEnt tagger using various features. Depen-
dency based features have the highest impact on
the detection of entities, as illustrated by the ab-
solute drop of 7.84% in F-score when removed.
Parts of speech features alone are the most effec-
tive in capturing action words. This is largely due
to action words appearing as verbs or nouns in the
majority of the sentences as shown in Table 7. We
also notice that the GENIA POS tagger, which is

is trained on Wall Street Journal and biomedical
abstracts in the GENIA and PennBioIE corpora,
under-identifies verbs in wet lab protocols. We
suspect this is due to fewer imperative sentences
in the training data. We leave further investigation
for future work, and hope the release of our dataset
can help draw more attention to NLP research on
instructional languages.

6.2 Relation Classification

Finally, precision and recall at relation extraction
are presented in Table 5. We used gold action and
entity segments for the purposes of this particu-
lar evaluation. We obtained the best performance
when using all feature sets.

7 Conclusions

In this paper, we described our effort to annotate
wet lab protocols with actions and their semantic
arguments. We presented an annotation scheme
that is both biologically and linguistically moti-
vated and demonstrated that non-experts can ef-
fectively annotate lab protocols. Additionally, we
empirically demonstrated the utility of our cor-
pus for developing machine learning approaches
to shallow semantic parsing of instructions. Our
annotated corpus of protocols is available for use
by the research community.
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A Annotation Guidelines

The wet lab protocol dataset annotation guidelines
were designed primarily to provide a simple de-
scription of the various actions and their argu-
ments in protocols so that it could be more ac-
cessible and be effectively used by non-biologists
who may want to use this dataset for various nat-
ural language processing tasks such as action trig-
ger detection or relation extraction. In the follow-
ing sub-sections we summarize the guidelines that
were used in annotating the 622 protocols as we
explore the actions, entities and relations that were
chosen to be labelled in this dataset.

A.1 Actions

Under a broad categorization, Action is a process
of doing something, typically to achieve an aim. In
the context of wet lab protocols, action mentions
in a sentence or a step are deliberate but short de-
scriptions of a task tying together various entities
in a meaningful way. Some examples of action
words, (categorized using GENIA POS tagger),
are present in Table 7 along with their frequencies.

A.2 Entities

We broadly classify entities commonly seen in
protocols under 17 tags. Each of the entity tags
were designed to encourage short span length,
with the average number of words per entity tag
being 1.6. For example, Concentration tags
are often very short: 60% 10x, 10M, 1 g/ml, while
the Method tag has the longest average span of
2.232 words with examples such as rolling back
and forth between two hands (as seen in Figure 4).
The methods in wet lab protocols tend to be de-
scriptive, which pose distinct challenges from ex-
isting named entity extraction research in the med-
ical and other domains.

A.2.1 Object Based Entities
Reagent: A substance or mixture for use in any
kind of reaction in preparing a product because of
its chemical or biological activity.
Location: Containers for reagents or other phys-
ical entities. They lack any operation capabili-
ties other than acting as a container. These could
be laboratory glassware or plastic tubing meant to
hold chemicals or biological substances.
Device: A machine capable of acting as a con-
tainer as well as performing a specific task on the
objects that it holds. A device and a location are

Tag Examples

5K10K15K
Freq. of Tags

0.51.01.52.0
Avg-Word

Action Add, Incubate, Pipette off,  etc

Reagent mtDNA Adenylation Mix, Para..

Location
microcentrifuge tube, PCR
Plate, Petri dish, etc

Amount 1 mL, 100 µl, 1.5 ml, etc

Modifier
gently, at least, appropriate,
proportionally, etc

Time 5min, overnight, until late aft..

Device
pipette, microfuge, Sorvall
SS34 rotor, etc

Temperature 25°C, 56 degree Celsius, room..

Concentration
1X, 70%, 50 mM, 1 x 108 cells/
mL, etc

Method
dialysis, transmission electron
microscopy, etc

Speed 14,000xg, 10,000 rpm, 44,000 ..

Numerical 10, 20, once, two, several, etc

Generic-Measure30-kD, 100 V, 595nm, 6 V cm-..

Size
12 x 75 mm, 150 mm, 25mm
diameter, etc

Measure-Type concentration, purity and yiel..

Seal
dialysis cap, aluminum foil,
adhesive PCR plate seal, etc

Mention it, them, they, etc

pH
pH 7.8, neutral pH, 7.2 ± 0.2
pH, etc

17485

13703

5402

4801

4307

3590

2417

2369

1782

1024

961

743

626

516

336

302

225

132

1.094

1.665

1.553

1.694

1.244

1.962

1.691

1.436

1.763

2.232

1.999

1.167

2.080

1.812

1.518

1.672

1.098

2.023

Figure 4: Examples, Frequency and Avg-Word for ac-
tions and entities.

similar in all aspects except that a device performs
a specific set of operations on its contents, usually
illustrated in the sentence itself, or sometimes im-
plied.
Seal: Any kind of lid or enclosure for the location
or device. It could be a cap, or a membrane that ac-
tively participates in the protocol action, and hence
is essential to capture this type of entity.

A.2.2 Measure Based Entities
Amount: The amount of any reagent being used
in a given step, in terms of weight or volume.
Concentration: Measure of the relative propor-
tions of two or more quantities in a mixture. Usu-
ally in terms of their percentages by weight or vol-
ume.
Time: Duration of a specific action described in a
single step or steps, typically in secs, min, days, or
weeks.
Temperature: Any temperature mentioned in de-
gree Celsius, Fahrenheit, or Kelvin.
Method: A word or phrase used to concisely de-
fine the procedure to be performed in association
with the chosen action verb. Its usually a noun, but
could also be a passive verb.
Speed: Typically a measure that represents rota-
tion per min for centrifuges.
Numerical: A generic tag for a number that
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Label Syntax/Rules Example

Acts-on
Action⇒ Reagent | Location | Mention | Device |
Seal

Creates Action⇒ Reagent |Mention

Site Action⇒ Location | Device |Mention | Reagent

Using
Action⇒Method |Action | Seal |Device |Mention
| Reagent | Location

Setting
Action | Device | Modifier ⇒ Method | Action |
Seal | Device |Mention | Reagent | Location

Count Action⇒ Numerical

Measure-
Type-Link

Action⇒Measure-Type

Coreference Mention⇒ [Every other entity]

Mod-Link [Every Entity or Action]⇒Modifier

Measure
Reagent | Location | Device | Mention | Seal
⇒ Amount | Numerical | Size | Concentration |
Generic-Measure | pH

Meronym
Reagent | Location | Device | Mention | Seal ⇒
Reagent | Location | Device |Mention | Seal

Or [All Entities or Action]⇒ [All Entities or Action]

Of-Type Generic-Measure | Numerical⇒Measure-Type

Table 8: Relations along with their rules and examples
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doesn’t fit time, temp, etc and which isn’t accom-
panied by its unit of measure.
Generic-Measure: Any measures that don’t fit
the list of defined measures in this list.
Size A measure of the dimension of an object. For
example: length, area or thickness.
Measure-Type: A generic tag to mark the type of
measurement associated with a number.
pH: measure of acidity or alkalinity of a solution.

A.2.3 Parts of Speech based Entities
Modifier: A word or a phrase that acts as an ad-
ditional description of the entity it is modifying.
For example, quickly mix vs slowly mix are clearly
two different actions, informed by their modifiers
”quickly” or ”slowly” respectively.
Mention: Words that can refer to an object men-
tioned earlier in the sentence.

A.3 Relations

A.3.1 Action Relations (Action - Entity)
Acts-On: Links the reagent, or location that the
action acts on, typically linking the direct objects
in the sentence to the action.
Creates: This relation marks the physical entity
that the action creates.
Site: A link that associates a Location or Device to
an action. It indicates that the Device or Location
is the site where the action is performed. It is also
used as a way to indicate which entity will finally
hold/contain the result of the action.
Using: Any entity that the action verb makes use
of is linked with this relation.
Setting: Any measure type entity that is being
used to set a device is linked to the action that is
attempting to use that numerical.
Count: A Numerical entity that represents the
number of times the action should take place.
Measure Type Link: Associates an action to a
Measure Type entity that the Action is instructing
to measure.

A.3.2 Binary Relations (Entity - Entity)
Coreference: A link that associates two phrases
when those two phrases refer to the same entity.
Mod Link: A Modifier entity is linked to any en-
tity that it is attempting to modify using this rela-
tion.
Settings: Links devices to their settings directly,
only if there is no Action associated with those set-
tings.

Measure: A link that associates the various nu-
merical measures to the entity its trying to measure
directly.
Meronym: Links reagents, locations or devices
with materials contained in the reagent, location
or device.
Or: Allows chaining multiple entities where ei-
ther of them can be used for a given link.
Of-Type: used to specify the Measure-Type of a
Generic-Measure or a Numerical, if the sentence
contains this information.

106


