
Proceedings of NAACL-HLT 2018, pages 55–60
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Guiding Generation for Abstractive Text Summarization
based on Key Information Guide Network

Chenliang Li and Weiran Xu∗ and Si Li and Sheng Gao
Beijing University of Posts and Telecommunications, Beijing

chenliangli,xuweiran,lisi,gaosheng@bupt.edu.cn

Abstract
Neural network models, based on the at-
tentional encoder-decoder model, have good
capability in abstractive text summarization.
However, these models are hard to be con-
trolled in the process of generation, which
leads to a lack of key information. We propose
a guiding generation model that combines the
extractive method and the abstractive method.
Firstly, we obtain keywords from the text by a
extractive model. Then, we introduce a Key
Information Guide Network (KIGN), which
encodes the keywords to the key information
representation, to guide the process of gener-
ation. In addition, we use a prediction-guide
mechanism, which can obtain the long-term
value for future decoding, to further guide the
summary generation. We evaluate our model
on the CNN/Daily Mail dataset. The exper-
imental results show that our model leads to
significant improvements.

1 Introduction

Text summarization aims to generate a brief sum-
mary from an input document while retaining the
key information. There are two broad approaches
to summarization: extractive and abstractive. Ex-
tractive models (Mihalcea and Tarau, 2004; Ya-
sunaga et al., 2017) usually extract a few sentences
or keywords from the source text, while abstrac-
tive models (Rush et al., 2015; Nallapati et al.,
2016) generate new words and phrases that not in
the source text to construct the summary.

Recently, inspired by the success of encoder-
decoder model (Sutskever et al., 2014), abstractive
summarization models (Nallapati et al., 2016; See
et al., 2017) are able to generate the summaries
with high ROUGE scores. While these models
proved to be capable of capturing the regularities
of the text summarization, they are hard to be con-
trolled in the process of generation. Without ex-
ternal guidance, these models just get the source

∗ Corresponding Author: Weiran Xu

text as input and then output the summary, which
certainly leads to a lack of key information.

Zhou et al. (2017) propose a selective gate net-
work to retain more key information in the sum-
mary. However, the selective gate network, which
is controlled by the representation of the input
text, controls the information flow from encoder
to decoder for just once. If some key informa-
tion does not pass the network, it is hard for them
to appear in the summary. See et al. (2017) pro-
pose a pointer-generator model, which uses the
pointer mechanism (Vinyals et al., 2015) to copy
words from the input text, to deal with the out-of-
vocabulary (OOV) words. Without external guid-
ance, it is hard for the pointer to identify key-
words. To address these problems, we combine
the extractive model and the abstractive model and
use the former one to obtain keywords as guidance
for the latter one.

In this paper we propose a guiding generation
model for abstractive text summarization. Firstly,
we use a extractive method to obtain the keywords
from the text. Then, we introduce a Key Infor-
mation Guide Network (KIGN), which encodes
the keywords to the key information representa-
tion and integrates it into the abstractive model, to
guide the process of generation. The guidance is
mainly in two aspects: the attention mechanism
(Bahdanau et al., 2014) and the pointer mecha-
nism. In addition, we propose a novel prediction-
guide mechanism based on He et al. (2017), which
predicts the extent of key information covered in
the final summary, to further guide the summary
generation. Experiments show that our model
achieves significant improvements.

2 Related work

Neural encoder-decoder models. Abstractive
models(Rush et al., 2015; Chopra et al., 2016)
have been widely used in text summarization. Nal-
lapati et al. (2016) use a pointer network (Vinyals

55



attention

An earthquake magnitude struck sourthern iran on wednesdayText:

earthquake struck wednesdayirankeywods:

...

...

softmax

earthquakeAn<START>

struck(0.6)

hit(0.3)

shake(0.05)

...

Encoder Decoder

... ...

Key Information 

Guide Network
pointer

Figure 1: Our key information guide model. It consists of key information guide network, encoder and decoder. In
the key information guide network, we encode the keywords to the key information representation k.

et al., 2015) to deal with the unknown word prob-
lem.

Keywords extraction. TextRank algorithm
(Mihalcea and Tarau, 2004), which extracts key-
words from the source text, is unsupervised.

Prediction-guide mechanism. Inspired by the
success of AlphaGO, He et al. (2017) propose a
prediction network to predict the long-term value
of the final summary. Our prediction-guide mech-
anism is use to guarantee the more key information
covered in the final summary.

3 Our Model

In this section, we describe (1) our baseline
encoder-decoder model, (2) our key information
guide network, and (3) our prediction-guide mech-
anism.

3.1 Encoder-decoder model based attention

Our baseline model is similar to that of Nallap-
ati et al. (2016). The tokens of the input arti-
cle x= {x1, x2, ..., xN} are fed into the encoder,
which maps the text into a sequence of encoder
hidden states {h1, h2, ..., hn}. At each decoding
time step t, the decoder reads the previous word
embedding wt−1 and the previous context vector
ct−1 as inputs to obtain the decoder hidden state
st. The context vector ct is calculated by using the
attention mechanism:

eti = vT tanh(Whhi +Wsst) (1)

αe
t = softmax(et) (2)

ct =

N∑

i=1

αe
tihi (3)

where v,Wh,Ws are learnable parameters, hi is
the hidden state of the input token xi.

The context vector ct, which represents what
has been read from the source text, is concatenated
with the decoder hidden state st to predict the next
word with a softmax layer over the whole vocabu-
lary:

P (yt|y1, ..., yt−1) = softmax(f(st, ct)) (4)

where f represents a linear function.

3.2 Key information guide network

Most encoder-decoder models (Zhou et al., 2017;
See et al., 2017) just get the source text as input
and then output the summary, which is hard to be
controlled in the process of generation and leads
to a lack of key information in the summary. We
propose a key information guide network to guide
the process of generation from two aspects: the
attention mechanism and the pointer mechanism.

In detail, we extract keywords from the text by
using TextRank algorithm. As shown in Figure 1,
the keywords are fed one-by-one into the key in-
formation guide network, and then we concatenate
the last forward hidden state~hn and backward hid-
den state ~h1 as the key information representation
k:

k =

[
~h1

~hn

]
(5)

Attention mechanism: Traditional attention
mechanism is hard to identify keywords, which
just uses the decoder state as a query to get the at-
tention distribution of the encoder hidden states.
We use the key information representation k as

56



extra input to the attention mechanism, changing
equation (1) to:

eti = vT tanh(Whhi +Wsst +Wkk) (6)

where Wk is a learnable parameter. We use the
new eti to obtain new attention distribution αe

t

(Equation 2) and new context vector ct (Equation
3).

Our key information representation k makes the
attention mechanism more focus on the keywords.
That is seem like to introduce prior knowledge to
the model.

Then, we apply the key information representa-
tion k and use the new context vector ct to calcu-
late a probability distribution over all words in the
vocabulary, changing equation (4) to:

Pv(yt|y1, ..., yt−1) = softmax(f(st, ct, k)) (7)

where v represents that yt is from the target vocab-
ulary.

Pointer mechanism: Due to the limitation of
the vocabulary size, some keywords may not be
in the target vocabulary, which will certainly lead
to a lack of them in the final summary. Therefore
we take the key information representation k, the
context vector ct and the decoder hidden state st
as inputs to calculate a soft switch psw, which is
used to choose between generating a word from
the target vocabulary or copying a word from the
input text:

psw = σ(wT
k k + wT

c ct + wT
stst + bsw) (8)

where wT
k , w

T
c , w

T
s and bsw are parameters, σ is

the sigmoid function.
Our pointer mechanism, which is equipped with

the key information representation, has the ability
to identify the keywords. We use the new atten-
tion distribution αe

ti as the probability of the input
token wi and obtain the following probability dis-
tribution to predict the next word:

P (yt = w) = pswPv(yt = w)

+ (1− psw)
∑

i:wi=w

αe
ti

(9)

Note that if w is an out-of-vocabulary word,
Pv(yt = w) is zero.

During training, we minimize a maximum-
likelihood loss at each decoding time step, which
is most widely used in sequence generation. We

define y∗t as the target word for the decoding time
step t and the overall loss is:

L = − 1

T

T∑

t=0

logP (y∗t |y∗1, ..., y∗t−1, x) (10)

3.3 Prediction-guide mechanism at test time
At test time, when predicting the next word, we
consider not only the above probability (Equa-
tion 9), but also a long-term value predicted by
the prediction-guide mechanism. The prediction-
guide mechanism is based on He et al. (2017).

Our prediction-guide mechanism, which is a
single-layer feed forward network with sigmoid
activation function, predicts the extent of the key
information covered in the final summary. At each
decoding time step t, we take mean pooling over
the decoder hidden states s̄t = 1

t

∑t
l=1 sl, the en-

code hidden states h̄n = 1
n

∑n
i=1 hi and the key

information representation k as inputs to calculate
the long-term value.

We sample two partial summaries yp1 and yp2

for each x with random stop to get s̄t. Then, we
finish the generation from yp to obtain M aver-
age decoder hidden states s̄ of the completed sum-
maries S(yp) (using beam search), and compute
the average score:

AvgCos(x, yp) =
1

M

∑

s̄∈S(yp)

cos(s̄, k) (11)

where cos is the function of cosine similarity.
We hope the predicted value of v(x, yp1) can

be larger than v(x, yp2) if AvgCos(x, yp1) >
AvgCos(x, yp2). Therefore, the loss function of
the prediction-guide network is as follows:

Lpg =
∑

(x,yp1,yp2)

ev(x,yp2)−v(x,yp1) (12)

where AvgCos(x, yp1) > AvgCos(x, yp2).
At test time, we first compute the normalized

log probability of each candidate, and then lin-
early combine it with the value predicted by the
prediction-guide network. In detail, given an ab-
stractive model P (y|x) (Equation 9), a prediction-
guide network v(x, y) and a hyperparameter α ∈
(0, 1), the score of partial sequence y for x is com-
puted by:

α× logP (y|x) + (1− α)× log v(x, y) (13)

where α ∈ (0, 1), is a hyperparameter.

57



Model ROUGE-1 ROUGE-2 ROUGE-L
Enc-dec+attn baseline (50k vocab) 31.33 11.81 28.83
Abstractive model (Nallapati et al., 2016) 35.46 13.30 32.65
Baseline+pointer 36.44 15.66 33.42
KIGN 37.76 16.56 34.49
Prediction-guide 37.24 16.27 34.14
KIGN+Prediction-guide 38.95 17.12 35.68

Table 1: ROUGE F1 scores for models on the CNN/Daily Mail test set. All our ROUGE scores have a 95%
confidence interval of at most ±0.25 as reported by the official ROUGE script.

4 Experiments

4.1 Experiment setting

We use the CNN/Daily Mail dataset(Nallapati
et al., 2016; Hermann et al., 2015) and use scripts
supplied by Nallapati et al. (2016) to obtain the
same version of the data, which has 28,7226 train-
ing pairs, 13,368 validation pairs and 11,490 test
pairs. We use two 256-dimensional LSTMs for
the bidirectional encoder and one 256-dimensional
LSTM for the decoder. In our key information
guide network, the approach of encoding key-
words is same to the encoder. In addition, we use a
vocabulary of 50k words for both source and target
and do not pre-train the word embeddings - they
are learned from scratch during training. During
training and testing, we truncate the text to 400 to-
kens and limit the length of the summary to 100 to-
kens. We train using Adagrad (Duchi et al., 2011)
with learning rate 0.15 and an initial accumulator
value of 0.1. The batch size is set as 16. Following
the previous work, our evaluation metric is F-score
of ROUGE (Lin and Hovy, 2003).

In addition, for the prediction-guide mecha-
nism, we set the single-layer feed forward network
with 800 nodes. For the hyperparameter α, we
test the performances of KIGN+Prediction-guide
model using different α during decoding. As can
be seen from the figure 2, the performance is sta-
ble for the α ranging from 0.8 to 0.95. When α
is set as 0.9, we can obtain the highest F-score
of ROUGE. Besides, we set the M as 8 and adapt
mini-batch training with batch size to be 16. The
network is trained with AdaDelta (Zeiler, 2012).

During training and at test time we truncate the
input tokens to 400 and limit the length of the
output summary to 100 tokens for training and
120 tokens at test time, which is similar to See
et al. (2017). We trained our keywords network
model less than 200, 000 training iterations. Then

R
O

U
G

E
 F

 S
c
o

re

Figure 2: ROUGE-1, ROUGE-2 and ROUGE-L F1
scores of KIGN+Prediction-guide model w.r.t different
hyperparameter α.

we trained the single-layer feed forward network
based on the KIGN model. Finally, at test time,
we combine the KIGN model and the prediction-
guide mechanism to generate the summary.

4.2 Results and discussions

We compare our model with the baseline model
(enc-dec+attn), hierarchical networks (Nallapati
et al., 2016) and the baseline model equipped with
pointer-mechanism since we use the pointer mech-
anism in our model.

Table 1 shows that our key information
guide network scores exceed the baseline model
equipped with the pointer-mechanism by (+1.3
ROUGE-1, +0.9 ROUGE-2, +1.0 ROUGE-L). In
addition, we just add the prediction-guide mech-
anism on the baseline model equipped with the
pointer-mechanism to understand the contribution
of each part. The scores of that exceed the baseline
model equipped with the pointer-mechanism by
(+0.8 ROUGE-1, +0.6 ROUGE-2, +0.7 ROUGE-
L). Finally, combining the key information guide
network and the prediction-guide mechanism, we
achieve a better performance. Our best model
scores exceed the baseline model with pointer-

58



Text(truncated): google claims to have cracked a problem
that has flummoxed anyone who has tried to read a doctor’s
note - how to read anyone’s handwriting. the firm claims
the latest update to its android handsets can under 82 lan-
guages in 20 distinct scripts, and works with both printed
and cursive writing input with or without a stylus. it even
allows users to simply draw emoji they want to send. scroll
down for video. the california search giant claims the latest
update to its android handsets can understand handwriting in
82 languages in 20 distinct scripts. google says its handwrit-
ing recognition works by building on large-scale language
modeling, robust multi-language ocr.

Gold: google handwriting input works on android phones
and tablets. handsets can under 82 languages in 20 distinct
scripts. works with both printed and cursive writing input
with or without a stylus.

Baseline+pointer-mechanism: google claims to have
cracked a problem that has flummoxed anyone who has tried
to read a doctor ’s note how to read anyone ’s handwriting.

Our model: google claims the latest update to its android
handsets can under 82 languages in 20 distinct scripts, and
works with both printed and cursive writing input with or
without a stylus.

Figure 3: Comparison of the output of two models
on a news article. Bold words in text are the key
information. (Baseline: enc-dec+attn; Our model:
KIGN+prediction-guide)

mechanism by (+2.5 ROUGE-1, +1.5 ROUGE-2,
+2.2 ROUGE-L). In this paper, we do not imple-
ment coverage mechanism in our model, which
can greatly improve the score of ROUGE (See
et al., 2017).

4.3 Case study

Figure 3 is an example to show the coverage of
the key information between the text and the sum-
mary and the bold words are the key information
of the text. We compare the output of two models
and give the gold summary. It shows that the main
idea of the text is about google handwriting input
working on android handsets and some function
introduction. The baseline model equipped with
pointer-mechanism produces the summary, which
just shows that google have cracked the problem
of reading handwriting, while the summary gener-
ated by our model covers almost all the key infor-
mation of the text.

5 Conclusion

In this work, we propose a guiding generation
model for abstractive text summarization. We
combine the extractive model and the abstractive
model. Firstly, we use the extractive method to

obtain keywords from the input text. Then, we in-
troduce a key information guide network, which
encodes the keywords to the key information rep-
resentation, to guide the process of generation. In
addition, we propose a prediction-guide mecha-
nism to further guide the generation at test time.
Experiments show that our model leads to signifi-
cant improvements.

Acknowledge

We thank the anonymous reviewers for useful
comments. This work was supported by Beijing
Natural Science Foundation (4174098), National
Natural Science Foundation of China (61702047),
National Natural Science Foundation of China
(61703234) and the Fundamental Research Funds
for the Central Universities (2017RC02).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98. Asso-
ciation for Computational Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res.,
12:2121–2159.

Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang,
and Tieyan Liu. 2017. Decoding with value net-
works for neural machine translation. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
177–186. Curran Associates, Inc.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 1693–1701. Curran Associates,
Inc.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003
Human Language Technology Conference of the

59



North American Chapter of the Association for
Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into texts. In Proceedings of EMNLP
2004, pages 404–411, Barcelona, Spain. Associa-
tion for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Ab-
stractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of The
20th SIGNLL Conference on Computational Natural
Language Learning, pages 280–290. Association for
Computational Linguistics.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389. Association for
Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 27th International
Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’14, pages 3104–3112, Cam-
bridge, MA, USA. MIT Press.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu,
Ayush Pareek, Krishnan Srinivasan, and Dragomir
Radev. 2017. Graph-based neural multi-document
summarization. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), pages 452–462. Association for
Computational Linguistics.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou.
2017. Selective encoding for abstractive sentence
summarization. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1095–
1104. Association for Computational Linguistics.

60


