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Abstract

Submodular maximization with the greedy
algorithm has been studied as an effective
approach to extractive summarization. This
approach is known to have three advan-
tages: its applicability to many useful sub-
modular objective functions, the efficiency
of the greedy algorithm, and the provable
performance guarantee. However, when it
comes to compressive summarization, we
are currently missing a counterpart of the
extractive method based on submodular-
ity. In this paper, we propose a fast greedy
method for compressive summarization.
Our method is applicable to any mono-
tone submodular objective function, includ-
ing many functions well-suited for docu-
ment summarization. We provide an ap-
proximation guarantee of our greedy algo-
rithm. Experiments show that our method
is about 100 to 400 times faster than an
existing method based on integer-linear-
programming (ILP) formulations and that
our method empirically achieves more than
95%-approximation.

1 Introduction

Automatic document summarization continues to
be a seminal subject of study in natural lan-
guage processing and information retrieval (Luhn,
1958; Edmundson, 1969; Cheng and Lapata, 2016;
Peyrard and Eckle-Kohler, 2017). Owing to the
recent advances in data collection, the size of doc-
ument data to be summarized has been exploding,
which has been bringing a drastic increase in the
demand for fast summarization systems.

Extractive summarization is a widely used ap-
proach to designing fast summarization systems.
With this approach, we construct a summary by

extracting some sentences from the original docu-
ment(s). The extractive approach is not only fast
but also has the potential to achieve state-of-the-
art ROUGE scores (Lin, 2004), which was revealed
by Hirao et al. (2017b). In many existing meth-
ods, sentences are extracted by solving various
subset selection problems: for example, the knap-
sack problem (McDonald, 2007), maximum cover-
age problem (Filatova and Hatzivassiloglou, 2004;
Takamura and Okumura, 2009a), budgeted median
problem (Takamura and Okumura, 2009b), and sub-
modular maximization problem (Lin and Bilmes,
2010). Of particular interest, the method based
on submodular maximization has three advantages:
(1) Many objective functions used for document
summarization are known to be monotone and
submodular (Lin and Bilmes, 2011; J Kurisinkel
et al., 2016); examples of such functions include
the coverage function, diversity reward function,
and ROUGE. Therefore, the method can deliver
high performance by using monotone submodular
objective functions that are suitable for the given
tasks. (2) The efficient greedy algorithm is effective
for the submodular maximization problem, which
provides fast summarization systems. (3) Theo-
retical performance guarantees of the greedy algo-
rithm can be proved; for example, a 1

2(1 − e−1)-
approximation guarantee can be obtained.

Although the above extractive methods success-
fully obtain summaries with high ROUGE scores,
they have the following shortcoming: A long sen-
tence typically has redundant parts, which means
a summary constructed simply by extracting some
sentences often includes many redundant parts. As
a result, if the limitation placed on summary length
is tight, the extractive approach cannot yield an
informative summary.

Compressive summarization is known to be ef-
fective in overcoming this problem. With this
approach, a summary is constructed with some
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compressed sentences, and thus we can obtain a
concise and informative summary. To make com-
pressed sentences, the dependency-tree-based ap-
proach (Filippova and Strube, 2008) is often used,
which is advantageous in that each compressed sen-
tence preserves its original dependency relations.
Specifically, given a set of dependency trees con-
structed for sentences in the original documents,
a summary is obtained by extracting some rooted
subtrees; each subtree corresponds to a compressed
sentence. Different from the extractive summa-
rization, the dependency relations in each sentence
must be taken into account, and hence the afore-
mentioned extractive methods cannot be applied to
compressive summarization. A number of methods
have been proposed for compressive summariza-
tion (Berg-Kirkpatrick et al., 2011; Almeida and
Martins, 2013; Morita et al., 2013; Kikuchi et al.,
2014; Hirao et al., 2017a). These methods formu-
late summarization as a type of combinatorial opti-
mization problem with a tree constraint, and they
obtain summaries by solving the problem. Unfor-
tunately, the existing methods have two drawbacks:
(1) The class of objective functions to which they
are applicable is limited; for example, they work
only with the linear function or coverage function.
As a result, the performance of these methods can-
not be improved by elaborating the objective func-
tions. (2) They contain costly procedures as their
building blocks: integer-linear-programming (ILP)
solvers, dynamic programming (DP) algorithms,
and so on. Therefore, they are not fast enough to be
applied to large-scale document data. In a nutshell,
compressive summarization is currently missing a
fast method that is applicable to a wide variety of
objective functions.

1.1 Our Contribution

In this paper, we propose a submodularity-based
greedy method for compressive summarization.
Our method is, so to speak, a compressive coun-
terpart of the greedy method for extractive sum-
marization (Lin and Bilmes, 2010). Similar to the
extractive method, our method has the three key
advantages:

1. Our method works with any monotone sub-
modular objective function, a wide class
of useful objective functions, examples of
which include the coverage function, ROUGE,
and many others (Lin and Bilmes, 2011;
J Kurisinkel et al., 2016).

2. Our method is faster than existing compres-
sive summarization methods since it employs
the efficient greedy algorithm. Specifically,
given a set, V , of all textual units contained in
the document data and a summary length lim-
itation value, L, our method requires at most
O(L|V |) objective function evaluations. Ex-
periments show that our method is about 100
to 400 times faster than the ILP-based method
implemented with CPLEX.

3. A theoretical guarantee of our method can
be proved; specifically, a 1

2(1 − e−1/λ)-
approximation guarantee can be obtained,
where λ is a parameter defined from given
document data (a definition is shown later).
This result generalizes the 1

2(1 − e−1)-
approximation of the greedy algorithm for
submodular maximization with a knapsack
constraint (Leskovec et al., 2007). In experi-
ments, our method achieved more that 95%-
approximation. Furthermore, our method at-
tained ROUGE1 scores comparable to those of
the ILP-based method.

1.2 Related Work

There are many existing methods for compres-
sive summarization (Berg-Kirkpatrick et al., 2011;
Almeida and Martins, 2013; Morita et al., 2013;
Kikuchi et al., 2014; Hirao et al., 2017a), and they
attempt to create summaries by solving optimiza-
tion problems with a tree and length constraints.
Unfortunately, these methods accept only a few
objective functions.

A common approach is to use ILP formulations.
Berg-Kirkpatrick et al. (2011) formulate the prob-
lem as an ILP with the coverage objective function,
which is solved by using an ILP solver. Almeida
and Martins (2013) also employs an ILP formula-
tion and solves the problem via an algorithm based
on dual decomposition, which runs faster than an
ILP solver.1 These ILP-based methods are optimal
in terms of objective function values. However, it
is hard to apply them to large-scale document data
since to solve ILPs often takes long computation
time.

1Their method was observed to be about 25 times faster
than GLPK, a commonly used free ILP solver. On the other
hand, CPLEX, which is a commercial ILP solver used in our
experiments, was observed to be about 3 to 20 times faster
than GLPK, and our method is about 100 to 400 times faster
than CPLEX. Consequently, our method is estimated to be
about 12 to 320 times faster than their method.
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In an attempt to uncover the potential power
of dependency-tree-based compressive summariza-
tion, Hirao et al. (2017a) solved ILPs with the
ROUGE objective function with an ILP solver.
Their method obtains summaries by directly maxi-
mizing the ROUGE score for given reference sum-
maries (i.e., any other methods cannot achieve
higher ROUGE scores than their method). The re-
sulting summaries, called oracle summaries, were
revealed to attain substantially high rouge scores,
which implies that there remains much room for
further research into compressive summarization.

A greedy method with a DP algorithm (Morita
et al., 2013) is probably the closest one to our idea.
Their method iteratively chooses compressed sen-
tences in a greedy manner, for which a DP algo-
rithm is employed. Thanks to the submodularity
of their objective function, their method enjoys a
1
2(1−e−1)-approximation guarantee. However, be-
cause of the costly DP procedure, their method is
less scalable than the standard greedy methods such
as the extractive method (Lin and Bilmes, 2010)
and ours. Moreover, it is applicable only to objec-
tive functions that are designed for their problem
settings; for example, it cannot use ROUGE as an
objective function.

1.3 Overview of Our Approach

A high-level sketch of our approach is as follows:
As in many existing works, we formulate the com-
pressive summarization task as a combinatorial op-
timization problem with a tree constraint, which we
call the submodular tree knapsack problem (STKP).
STKP is generally NP-hard; in fact, it includes the
knapsack problem and maximum coverage prob-
lem as special cases. Unfortunately, as we will
see later, a naive greedy algorithm for STKP does
not offer any approximation guarantee in general.
The main difficulty with STKP is that its tree con-
straint is too complex. To avoid dealing with the
complex constraint directly, we transform STKP
into a special case of the submodular cost submod-
ular knapsack problem (SCSKP) (Iyer and Bilmes,
2013). For general SCSKP, no approximation guar-
antee has been proved. Fortunately, in our case, a
1
2(1− e−1/λ)-approximation can be proved by ex-
ploiting the structure of the resulting SCSKP. Thus
we obtain a fast greedy method for compressive
summarization, which works with various mono-
tone submodular objective functions and enjoys an
approximation guarantee.

2 Submodularity

Given finite set V (e.g., a set of chunks), set func-
tion g : 2V → R is said to be submodular if
g(A ∪ B) + g(A ∩ B) ≤ g(A) + g(B) holds
for any A,B ⊆ V . We define g(A | B) :=
g(A ∪ B) − g(B). The submodularity is also
characterized by the following diminishing return
property: g({v} | A) ≥ g({v} | B) for any
A ⊆ B and v ∈ V \B. Set function g is mono-
tone if g(A) ≤ g(B) for any A ⊆ B. In this
paper, we focus on monotone submodular func-
tions such that g(∅) = 0. The submodularity and
monotonicity are a natural fit for document summa-
rization; intuitively, the marginal gain, g({v} | S),
of adding new chunk v ∈ V to summary S ⊆ V
is small if S already has many chunks (submodu-
larity), and a summary becomes more informative
as it gets more chunks (monotonicity). In fact, as
in (Lin and Bilmes, 2011), many objective func-
tions well-suited for document summarization have
submodularity and monotonicity; examples of such
functions include the coverage function, diversity
reward function, and ROUGE, to name a few.

3 Problem Statements

We formulate the summarization task as the follow-
ing subtree extraction problem called STKP here-
after. In what follows, we let [M ] := {1, . . . ,M}
for any positive integer M .

We attempt to summarize document data con-
sisting of N sentences. Each sentence forms a de-
pendency tree, which can be constructed by using
existing methods (e.g., (Filippova and Strube, 2008;
Filippova and Altun, 2013)). For convenience, we
call the dependency tree of a sentence the sentence
tree. The i-th sentence (i ∈ [N ]) yields sentence
tree Ti = (Vi, Ei) rooted at ri ∈ Vi, where Vi
is a set of textual units (e.g., words or chunks)
contained in the i-th sentence, and edges in Ei
represent their dependency relations. We define
a document tree with a dummy root vertex r as
T := ({r} ∪ V,E), where V and E are vertex and
edge sets, respectively, defined as follows:

V :=
⋃

i∈[N ]
Vi, E :=

⋃

i∈[N ]
{Ei ∪ {(r, ri)}}.

Namely, V is the set of all textual units contained
in the document data, and edges in E represent
the dependency relations as well as the relations
between r and ri, with which the multiple sentence
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(b) Set of all paths rooted at r

Figure 1: Illustration of the problem reformulation. The left figure is a document tree rooted at r; it consists
of two sentence trees, T1 and T2, rooted at r1 and r2, respectively. We have V = {r1, r2, v1, . . . , v6}. The
right figure shows P , the set of all paths rooted at r. Note that |V | = |P| holds. With our method, the
greedy algorithm is performed over P , which requires at most O(|V |) objective function evaluations in
each iteration.

trees form a single document tree. Figure 1 (a)
illustrates an example of a document tree.

Given document tree T, a summary preserves
the original dependency relations if it forms a sub-
tree rooted at r in T. Therefore, our aim is to
find a rooted subtree of T that includes informative
textual units. For each v ∈ V , the length of v is
denoted by `v ≥ 0; for example, `v is the number
of words or characters in chunk v. If S ⊆ V is a
subset of the textual units included in an obtained
summary, its total length must be less than or equal
to the given length limitation value L ≥ 0; namely,
the following knapsack constraint must be satis-
fied:

∑
v∈S `v ≤ L. The quality of summary S

is evaluated by a monotone submodular function
g. Consequently, compressive summarization is
formulated as STKP:

maximize
S⊆V

g(S) (1)

subject to
∑

v∈S
`v ≤ L,

S ∪ {r} forms a subtree in T.

At first glance, it may seem that the following naive
greedy approach works well for this problem: Start-
ing from root r, we sequentially add the most bene-
ficial child to the current solution until the knapsack
constraint is violated. Unfortunately, the approxi-
mation ratio of this method can become arbitrarily
bad since it may miss beneficial vertices that are far

from r; if such missed vertices are more beneficial
than those added to the solution by a considerable
margin, the resulting approximation ratio is almost
equal to zero. To avoid this difficulty, we reformu-
late STKP in the next section.

4 Proposed Method

We observed that the naive greedy algorithm does
not work well for STKP (1) due to the complex tree
constraint. We circumvent this difficulty by trans-
forming STKP into a special case of the submod-
ular cost submodular knapsack problem (SCSKP).
We then provide a greedy algorithm for SCSKP.
An approximation guarantee of the greedy algo-
rithm is also presented.

4.1 Problem Reformulation

We show that STKP can be transformed into
SCSKP. Let P be a set of all paths that connect
v ∈ V to r. Note that there is a one-to-one corre-
spondence between v ∈ V and p ∈ P that connects
v to r, and hence |P| = |V |. We define Vp ⊆ V as
the set of vertices that are included in p ∈ P , and
we let VX := ⋃

p∈X Vp for any X ⊆ P . If X ⊆ P ,
then VX ∪{r} forms a subtree in T. Conversely, if
S ∪{r} forms a subtree in T (S ⊆ V ), there exists
X ⊆ P such that VX = S. Thus STKP (1) can
be transformed into the following maximization
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Algorithm 1 Greedy

1: U ← P , X ← ∅
2: while U 6= ∅ do
3: p = argmaxp′∈U

f(p′|X)
c(p′|X)

4: if c(X + p) ≤ L then
5: X ← X + p
6: end if
7: U ← U − p
8: end while
9: p̂ = argmaxp′∈P f(p′)

10: return Y = argmaxX′∈{X,p̂} f(X ′)

problem on P:

maximize
X⊆P

f(X) := g(VX) (2)

subject to c(X) :=
∑

v∈VX

`v ≤ L.

We here suppose that c(p) ≤ L holds for all p ∈ P ;
any p ∈ P violating this condition can be removed
in advance since no feasible solution includes such
p. The set functions f and c are monotone submod-
ular functions defined on P (see the Appendix),
and thus the above problem is SCSKP. Figure 1
illustrates how to transform STKP into SCSKP.

4.2 Greedy Algorithm
We provide a greedy algorithm for SCSKP (2). In
what follows, given any X,Y ⊆ P , we define the
binary operators + and − on P as

X + Y := {p ∈ P : p ∈ X and/or p ∈ Y },
X − Y := {p ∈ P : p ∈ X and p /∈ Y }.

Namely, they are the union and subtraction of two
subsets defined on P . We sometimes abuse the
notation and regard p ∈ P as a subset of P; for
example, we let X + p = X + {p} for any X ⊆ P
and p ∈ P . Furthermore, we define f(X | Y ) :=
f(X + Y )− f(Y ) and c(X | Y ) := c(X + Y )−
c(Y ) for any X,Y ⊆ P .

Algorithm 1 presents a concise description of
the greedy algorithm for SCSKP (2). In practice,
function evaluations in the above greedy algorithm
can be reduced by using the technique provided
in (Leskovec et al., 2007) with some modifications.
The resulting greedy algorithm requires at most
O(L|V |) function evaluations.

Different from the naive greedy algorithm ex-
plained in Section 3, the above greedy algorithm is
performed on the set of all rooted paths, P . Thus,

even if beneficial vertices are far from r, rooted
paths that include such beneficial vertices are con-
sidered as candidates to be chosen in each itera-
tion. As a result, we get the following performance
guarantee for Algorithm 1; we define λi as the
number of leaves in Ti for i ∈ [N ], and we let
λ := maxi∈[N ] λi.

Theorem 1. If Y ⊆ P is the output of Algorithm 1
and X∗ ⊆ P is an optimal solution for SCSKP (2),
then we have f(Y ) ≥ 1

2(1− e−1/λ)f(X∗).

Proof. See the Appendix.

In other words, Algorithm 1 enjoys a 1
2(1 −

e−1/λ)-approximation guarantee. Notably, if the
values of λi (i ∈ [N ]) are bounded by a small
constant for all N sentences, the performance guar-
antee does not deteriorate no matter how many
sentences are in the document data. This implies
that our method works effectively for summariz-
ing large-scale document data that comprises many
sentences.

4.3 Relation with Existing Work

We first see some existing results. For submodu-
lar maximization with a size constraint (i.e., |S|
must be at most a certain value), the greedy al-
gorithm has been proved to achieve (1 − e−1)-
approximation (Nemhauser et al., 1978). Khuller
et al. (1999) studied the maximum coverage
problem with a knapsack constraint, and proved
that the greedy algorithm achieves (1 − e−1/2)-
approximation. They also showed that (1− e−1)-
approximation can be obtained by executing the
greedy algorithm O(|V |3) times, and this result
was generalized to the case with a submodu-
lar objective function (Sviridenko, 2004). The
greedy algorithm for submodular maximization
with a knapsack constraint is known to achieve
1
2(1− e−1)-approximation (Leskovec et al., 2007).
Lin and Bilmes (2010) stated that (1 − e−1/2)-
approximation can be obtained with the greedy
algorithm, but a mistake in their proof was pointed
out by Morita et al. (2013).2

Unlike the above problem settings, submodular
maximization with a tree constraint has only a few
literatures. Krause et al. (2006) studied submodu-
lar maximization over a graph with a knapsack and
tree constraints, but their algorithm, called pSPIEL,

2Probably, this mistake can be fixed with the techniques
used in (Khuller et al., 1999).
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requires a complicated preprocessing step and im-
poses some assumptions on the problem, which do
not hold in most summarization tasks. Iyer and
Bilmes (2013) addressed SCSKP, a more general
problem setting. Their algorithm is, however, more
expensive than the greedy algorithm, and it only
achieves a bi-criterion approximation guarantee
(i.e., not only the objective value but also the mag-
nitude of constraint violation is approximated); if
we use this algorithm for document summariza-
tion, a resulting summary may violate the length
limitation.

We turn to the relation between our result and
the existing ones. We consider submodular maxi-
mization with a knapsack constraint. This problem
can be formulated as an STKP on a star graph,
whose vertex and edge sets are {r, r1, . . . , rN} and
{(r, r1), . . . , (r, rN )}, respectively (i.e., every leaf
corresponds to an element in V = {r1, . . . , rN}).
In this case, we have λ = 1, and thus we obtain
a 1

2(1− e−1)-approximation guarantee, matching
the result of (Leskovec et al., 2007).3

5 Objective Functions

As presented in (Lin and Bilmes, 2011), many ob-
jective functions used for document summarization
are known to be monotone and submodular. Below
we list examples of the functions that will be used
in the experiments.

Coverage Function
To use the coverage function is a simple but power-
ful approach to document summarization, and so it
appears in many existing works (e.g., (Filatova and
Hatzivassiloglou, 2004; Takamura and Okumura,
2009a; Berg-Kirkpatrick et al., 2011)). Let M be
the number of distinct words in the document data,
and suppose that they are indexed with j ∈ [M ].
We let wj (j ∈ [M ]) be the weight value of the
j-th word. Given summary S ⊆ V , the coverage
function COV(S) is defined as follows:

COV(S) :=
M∑

j=1
wjzj ,

where zj ∈ {0, 1} is a binary decision variable that
indicates whether the j-th word is included in S or
not; more precisely, zj = 1 if and only if at least
one textual unit in S contains the j-th word.

3 We also tried to obtain an approximation guarantee that
corresponds to the (1 − e−1/2)-approximation (Khuller et al.,
1999; Lin and Bilmes, 2010), but it was not straightforward to
apply their techniques to our case.

Coverage Function with Rewords
A summary obtained with the above coverage func-
tion often consists of many overly-compressed sen-
tences, which typically leads to low readability.
Morita et al. (2013) addressed this problem by
adding a positive reward term to the coverage func-
tion. Given summary S, let bri ∈ {0, 1} (i ∈ [N ])
be a binary decision variable that indicates whether
ri, the root node of sentence tree Ti, is included
in S or not. Note that, if S ∪ {r} forms a rooted
subtree in T, we have bri = 1 if and only if at
least one textual unit in the i-th sentence appears
in S. With these additional variables, the modified
coverage function can be written as

COVR(S) := COV(S) + γ

(∑

v∈S
`v −

N∑

i=1
bri

)
,

where γ ≥ 0 is a parameter that controls the rate
of sentence compression. The value of

∑N
i=1 bri

is equal to the number of sentences whose textual
unit(s) is used in S. Therefore, a summary that
consists of fewer sentences tends to get a higher
objective value, thus enhancing readability.

ROUGE

ROUGE (Lin, 2004) is widely used for summariza-
tion evaluation, and it is known to be highly corre-
lated with human evaluation. Furthermore, ROUGE

is known to be monotone and submodular (Lin and
Bilmes, 2011). Specifically, given K reference
summaries R1, . . . , RK ⊆ V and function Ce(S),
which counts the number of times that n-gram e
occurs in summary S ⊆ V , the ROUGEn score
function is defined as

ROUGEn(S)

:=
∑K
k=1

∑
e∈Rk

min{Ce(S),Ce(Rk)}∑K
k=1

∑
e∈Rk

Ce(Rk)
.

6 Experiments

We applied our method to compressive summariza-
tion tasks with the three kinds of objective func-
tions: the coverage function, the one with rewards,
and ROUGE1. To benchmark our method, we also
applied the ILP-based method to the tasks. These
two methods were compared in terms of achieved
approximation ratios, ROUGE1 scores, and running
times.
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Objective function Method Approximation ratio ROUGE1 Time (ms)

Coverage
Greedy 0.964 0.347 1.34

ILP 1.00 0.346 231

Coverage with rewards
Greedy 0.967 0.334 1.44

ILP 1.00 0.332 552

ROUGE1
Greedy 0.985 0.468 0.759

ILP (oracle) 1.00 0.494 92.1

Table 1: Approximation ratios, ROUGE1 scores, and running times for our method (Greedy) and the
ILP-based method (ILP); the average values over the 50 topics are presented. The two methods are applied
to compressive summarization tasks with three types of objective functions: Coverage, Coverage with
rewards, and ROUGE1. Summaries obtained with the ILP-based method and ROUGE1 objective function
are oracle summaries.

6.1 Settings

In the following experiments, we regard V as the
set of all chunks in the document data. For each
chunk v ∈ V , we let `v be the number of words
contained in v, and we set the length limitation,
L, to 100. For the coverage function and the one
with rewards, the weight values wj (j ∈ [M ]) were
estimated by logistic regression (Yih et al., 2007)
trained on the DUC-2003 dataset. For the coverage
function with rewards, we set the parameter, γ, to
0.9.

The experiments were conducted on the DUC-
2004 dataset for multiple document summarization
evaluation, which is a commonly used benchmark
dataset. The dataset consists of 50 topics, each
of which has 10 newspaper articles. The depen-
dency trees for this dataset were obtained as fol-
lows: We first applied the Stanford parser (de Marn-
effe et al., 2006) to all sentences in the dataset in or-
der to obtain dependency relations between words.
We then applied Filippova’s rules (Filippova and
Strube, 2008; Filippova and Altun, 2013) to the
obtained relations so as to construct trees that rep-
resent dependency relations between chunks. To
obtain summaries with high readability, we treated
a set of chunks connected with certain relations
(e.g., subject–object) as a single chunk.

Our algorithm was implemented in C++ and
compiled with GCC version 4.8.5. The ILP-
based method solved ILPs with CPLEX ver.
12.5.1.0, a widely used commercial ILP solver.
The details of ILP formulations for the three objec-
tive functions are presented in the Appendix. All
experiments were conducted on a Linux machine
(CPU: Intel Xeon E5-2620 v4 2.10GHz and 32GB
RAM).

6.2 Results

Table 1 summarizes the comparisons of the
achieved approximation ratios, ROUGE1 scores and
running times. The ILP-based method are al-
ways optimal in terms of objective values (i.e.,
100%-approximation is attained), and our method
achieved more than 95%-approximation. We ob-
served that the maximum number, λ, of leaves in
a sentence tree was about 22 on average, which
leads to a 2.2%-approximation guarantee of our
algorithm. Therefore, our method empirically per-
forms much better than the theoretical guarantee;
this is often the case with the greedy algorithm for
submodular maximization problems, in particular
when the problems have complex constraints. The
ROUGE1 scores of our method are comparable to
those of the ILP-based method. With the cover-
age function and the one with rewards, it happened
that our method attained slightly higher ROUGE1
scores than those of ILP-based methods;4 note that
this result is possible since the objective values
and ROUGE1 scores are not completely correlated.
The results on approximation ratios and ROUGE1
scores imply that our method compares favorably
with the ILP-based method in terms of empirical
performance. With regard to the running times, our
method substantially outperformed the ILP-based
method. Specifically, our method was about 170,
380, and 120 times faster than the ILP-based one
for the coverage function, the one with rewards,
and the ROUGE1 objective function, respectively.

Table 2 shows examples of the summaries ob-
tained by our method and the ILP-based method;
both methods used the coverage function with
rewards as an objective function. We see that

4 Similar results were observed in (Takamura and Oku-
mura, 2009a).
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Greedy:
Yeltsin suffered from disease and had a heart attack followed by multiple bypass surgery in the months.
Russian President Boris Yeltsin cut short a trip to Central Asia on Monday due to a respiratory infection
that revived questions about his health and ability to lead Russia through a sustained economic crisis.
Doctors insisted that Yeltsin fly home ahead of schedule. The prime minister reiterated Wednesday that
Yeltsin has plans to resign early elections. Russia’s Constitutional Court opened hearings Thursday on
whether Boris Yeltsin can seek a term. Sources in Primakov’s office said the cancellation was due to
concerns.
ILP:
Russian President Boris Yeltsin cut short a trip to a respiratory infection that revived questions about
his health and ability to lead Russia through a economic crisis. Yeltsin was spending outside Moscow
his spokesman Dmitry Yakushkin told reporters. Doctors insisted Monday that Yeltsin fly home from
Central Asia ahead of schedule because he was suffering. Yeltsin falls ill speculation arises. The prime
minister reiterated Wednesday that Yeltsin has plans to resign early elections. Russia’s Constitutional
Court opened hearings Thursday on whether Boris Yeltsin can seek a term. Sources in Primakov’s
office said the cancellation was due to concerns.

Table 2: Summaries obtained with our greedy method (upper) and the ILP-based method (lower) for
topic:D31032. To obtain these summaries, both methods used the coverage function with rewards as an
objective function.

both methods successfully created informative sum-
maries that preserve original dependency relations.
The readability of obtained summaries is unfortu-
nately not high enough. Note that not only our
method but also most compressive summarization
methods suffer this problem; in fact, there is lit-
tle difference between the two summaries obtained
with our method and the optimal ILP-based method
with regard to readability. To conclude, the empiri-
cal performance of our method matches that of the
ILP-based method, while running about 100 to 400
times faster.

7 Conclusion and Discussion

We proposed a fast greedy method for compres-
sive summarization. Our method works with
any monotone submodular objective function; ex-
amples of such functions include the coverage
function, ROUGE, and many others. The 1

2(1 −
e−1/λ)-approximation guarantee of our method
was proved, which generalizes the 1

2(1 − e−1)-
approximation for submodular maximization with
a knapsack constraint. Experiments showed that
our greedy method empirically achieves more than
95%-approximation and that it runs about 100 to
400 times faster than the ILP-based method im-
plemented with CPLEX. With the coverage func-
tion and its variant, our method attained as high
ROUGE1 scores as the ILP-based method.

As mentioned above, current compressive sum-

marization systems often fail to achieve high read-
ability, and one possible approach to this problem
is to develop better objective functions. Since our
method is applicable to various monotone submod-
ular objective functions and can find almost optimal
solutions efficiently, our method would be helpful
in testing the performance of newly proposed ob-
jective functions. Thus we believe that our method
is useful for advancing the study into compressive
summarization.

Interestingly, STKP can be seen as a variant of
DR-submodular maximization (Soma and Yoshida,
2017), which is a submodular maximization prob-
lem defined over integer lattice. The constraint that
appears in DR-submodular maximization is some-
what easier to deal with than that of our problem;
exploiting this, Soma and Yoshida (2017) devel-
oped a polynomial-time algorithm that achieves
roughly 1

2 -approximation. The techniques studied
in this field may be useful to develop better algo-
rithms for STKP, which we leave for future work.
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