
Proceedings of NAACL-HLT 2018, pages 1676–1686
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Encoding Conversation Context for Neural Keyphrase Extraction
from Microblog Posts

Yingyi Zhang†∗ Jing Li‡ Yan Song‡ Chengzhi Zhang†
†Nanjing University of Science and Technology
{yingyizhang, zhangcz}@njust.edu.cn

‡Tencent AI Lab
{ameliajli,clksong}@tencent.com

Abstract

Existing keyphrase extraction methods suffer
from data sparsity problem when they are con-
ducted on short and informal texts, especially
microblog messages. Enriching context is one
way to alleviate this problem. Considering that
conversations are formed by reposting and re-
plying messages, they provide useful clues for
recognizing essential content in target posts
and are therefore helpful for keyphrase iden-
tification. In this paper, we present a neural
keyphrase extraction framework for microblog
posts that takes their conversation context into
account, where four types of neural encoders,
namely, averaged embedding, RNN, attention,
and memory networks, are proposed to repre-
sent the conversation context. Experimental
results on Twitter and Weibo datasets1 show
that our framework with such encoders outper-
forms state-of-the-art approaches.

1 Introduction

The increasing popularity of microblogs results in
a huge volume of daily-produced user-generated
data. As a result, such explosive growth of data far
outpaces human beings’ reading and understand-
ing capacity. Techniques that can automatically
identify critical excerpts from microblog posts are
therefore in growing demand. Keyphrase extrac-
tion is one of the techniques that can meet this
demand, because it is defined to identify salient
phrases, generally formed by one or multiple
words, for representing key focus and main topics
for a given collection (Turney, 2000; Zhao et al.,
2011). Particularly for microblogs, keyphrase ex-
traction has been proven useful to downstream
applications such as information retrieval (Choi

*Work was done during the internship at Tencent AI Lab.
1Our datasets are released at: http://ai.tencent.

com/ailab/Encoding_Conversation_Context_
for_Neural_Keyphrase_Extraction_from_
Microblog_Posts.html

Target post for keyphrase extraction:
”I will curse you in that forum” is the lowest of low. You
are an embarrassment president Duterte. Childish!
Messages forming a conversation:
[R1]: any head of state will be irked if asked to report
to another head of state
[R2]: Really? Did Obama really asked Duterte to report
to him? LOL

Table 1: An example conversation about “presi-
dent Duterte” on Twitter. [Ri]: The i-th message in
conversation ordered by their positing time. pres-
ident Duterte: keyphrase to be detected; Italic
words: words that are related to the main topic in
conversations and can indicate the keyphrase.

et al., 2012), text summarization (Zhao et al.,
2011), event tracking (Ribeiro et al., 2017), etc.

To date, most efforts on keyphrase extraction on
microblogs treat messages as independent docu-
ments or sentences, and then apply ranking-based
models (Zhao et al., 2011; Bellaachia and Al-
Dhelaan, 2012; Marujo et al., 2015) or sequence
tagging models (Zhang et al., 2016) on them. It
is arguable that these methods are suboptimal for
recognizing salient content from short and infor-
mal messages due to the severe data sparsity prob-
lem. Considering that microblogs allow users to
form conversations on issues of interests by re-
posting with comments2 and replying to messages
for voicing opinions on previous discussed points,
these conversations can enrich context for short
messages (Chang et al., 2013; Li et al., 2015),
and have been proven useful for identifying topic-
related content (Li et al., 2016). For example, Ta-
ble 1 displays a target post with keyphrase “presi-
dent Duterte” and its reposting and replying mes-
sages forming a conversation.

Easily identified, critical words are mentioned
multiple times in conversations. Such as in [R2],
keyword “Duterte” re-occurs in the conversation.

2On Twitter, reposting behavior is named as retweet.
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Also, topic-relevant content, e.g., “head of state”,
“another head of state”, “Obama”, helps to in-
dicate keyphrase “president Duterte”. Such con-
textual information embedded in a conversation
is nonetheless ignored for keyphrase extraction in
existing approaches.

In this paper, we present a neural keyphrase
extraction framework that exploits conversation
context, which is represented by neural encoders
for capturing salient content to help in indicating
keyphrases in target posts. Conversation context
has been proven useful in many NLP tasks on so-
cial media, such as sentiment analysis (Ren et al.,
2016), summarization (Chang et al., 2013; Li
et al., 2015), and sarcasm detection (Ghosh et al.,
2017). We use four context encoders in our model,
namely, averaged embedding, RNN (Pearlmut-
ter, 1989), attention (Bahdanau et al., 2014), and
memory networks (Weston et al., 2015), which are
proven useful in text representation (Cho et al.,
2014; Weston et al., 2015; Huang et al., 2016; Nie
et al., 2017). Particularly in this task, to the best
of our knowledge, we are the first to encode con-
versations for detecting keyphrases in microblog
posts. Experimental results on Twitter and Sina
Weibo datasets demonstrate that, by effectively
encoding context in conversations, our proposed
approach outperforms existing approaches by a
large margin. Quantitative and qualitative analy-
sis suggest that our framework performs robustly
on keyphrases with various length. Some en-
coders such as memory networks can detect salient
and topic-related content, whose occurrences are
highly indicative of keyphrases. In addition, we
test ranking-based models with and without con-
sidering conversations. The results also confirm
that conversation context can boost keyphrase ex-
traction of ranking-based models.

2 Keyphrase Extraction with
Conversation Context Encoding

Our keyphrase extraction framework consists of
two parts, i.e., a keyphrase tagger and a conversa-
tion context encoder. The keyphrase tagger aims
to identify keyphrases from a target post, and the
context encoders captures the salient content in
conversations, which would indicate keyphrases in
the target post. The entire framework is learned
synchronously with the given target posts and their
corresponding conversation context. In prediction,
the keyphrase tagger identifies keyphrases in a
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Figure 1: The overall structure of our keyphrase
extraction framework with context encoder. Grey
dotted array refer to the inputs of target posts that
are also used in context encoding.

SINGLE xi,t is a one-word keyphrase (keyword).
BEGIN xi,t is the first word of a keyphrase.

MIDDLE xi,t is part of a keyphrase but it is neither
the first nor the last word of the keyphrase.

END xi,t is the last word of a keyphrase
NOT xi,t is not a keyword or part of a keyphrase.

Table 2: Definitions of different yi,t.

post with the help of representations generated by
the encoder. Figure 1 shows the overall structure
of our keyphrase extraction framework. In the rest
of this section, Section 2.1 describes the keyphrase
taggers used in our framework; Section 2.2 gives
the details of different context encoders.

2.1 Keyphrase Taggers
We follow Zhang et al. (2016) to cast keyphrase
extraction into the sequence tagging task. For-
mally, given a target microblog post xi formulated
as word sequence < xi,1, xi,2, ..., xi,|xi| >, where
|xi| denotes the length of xi, we aim to produce
a tag sequence < yi,1, yi,2, ..., yi,|xi| >, where yi,t
indicates whether xi,t is part of a keyphrase. In
detail, yi,t has five possible values:

yi,t ∈ {SINGLE, BEGIN,MIDDLE, END,NOT}

Table 2 lists the definition of each value. Zhang
et al. (2016) has shown that keyphrase extraction
methods with this 5-value tagset perform better
than those with binary outputs, i.e., only marked
with yes or no for a word to be part of a keyphrase.

To predict keyphrase tags, we use four state-
of-the-art neural sequence taggers, namely, recur-
rent neural networks (RNN) (Pearlmutter, 1989),
RNN with gated recurrent units (GRU) (Chung
et al., 2014), long short-term memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997),
and bidirectional LSTM (BiLSTM) (Graves and
Schmidhuber, 2005).
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Figure 2: The structure of attention-based conver-
sation context encoder.

In addition to one-type output, we also use
joint-layer RNN proposed by Zhang et al. (2016),
which is demonstrated to be the state-of-the-
art keyphrase tagger in previous work without
modeling conversation context. As a multi-task
learner (Collobert and Weston, 2008), joint-layer
RNN tackles two tasks with two types of outputs,
y1i,t and y2i,t. y

1
i,t has a binary tagset, which indi-

cates whether word xi,t is part of a keyphrase or
not. y2i,t employs the 5-value tagset defined in Ta-
ble 2. Besides the standard RNN version, in imple-
mentation, we also build the joint-layer RNN with
its GRU, LSTM, and BiLSTM counterparts. To be
consistent, taggers with one-type output with the
5-value tagset are named as single-layer taggers.

As shown in Figure 1, our keyphrase tagger is
built upon input feature map I(·), which embeds
each word xi,t in target post into a dense vector
format, i.e., I(xi,t) = νννi,t. We initialize input fea-
ture map by pre-trained embeddings, and update
embeddings during training.

2.2 Context Encoders
We aggregate all reposting and replying messages
in conversations to form a pseudo-document as
context by their posting time, and input context
in forms of word sequences into context encoder.
Let xc

i denote the context word sequence of the
target post xi, we propose four methods to encode
xc
i , namely, averaged embedding, RNN, attention,

and memory networks. Similar to keyphrase tag-
gers (see Section 2.1), each word xci,s in context xc

i

takes the form of a vector νννci,s mapped by an input
layer Ic(·), which is also initialized by pre-trained
embeddings, and updated in the training process.

2.2.1 Averaged Embedding
As a straightforward sentence representation tech-
nique, averaged embedding simply takes the aver-
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Figure 3: The structure of the conversation context
encoder based on memory networks.

age embeddings of words in a context, i.e., νννci,s, as
the encoding of context representation, i.e.,

eci =
1

|xc
i |

|xc
i |∑

s=1

νννci,s (1)

where |xc
i | is the length of xc

i in the context.

2.2.2 RNN
RNN encoders employ the recurrent neural net-
work model for the embedded context sequence
< νννci,1, ννν

c
i,2, ..., ννν

c
i,|xc

i |
>, through the recurrent

functions over all the states:

hc
i,s = δh(W

1
hh

c
i,s−1 +W2

hννν
c
i,s) (2)

where W1
h and W2

h are learnable weight matri-
ces, and δh is the component-wise sigmoid func-
tion. The encoder representation is thus given by
the hidden units at the last state:

eci = hc
|xc

i | (3)

In this paper, RNN-based encoders have four
variants, namely, RNN, GRU, LSTM, and BiL-
STM. Particularly, as BiLSTM has two opposite
directions, its context representation takes the con-
catenation of the last states from both directions,
which come from two ends of a given context.

2.2.3 Attention
Attention-based encoders put attention mecha-
nism (Bahdanau et al., 2014) upon RNN model
for “soft-addressing” important words in the con-
versation context. In this paper, we use the
feed-forward attention (Raffel and Ellis, 2015;
SØnderby et al., 2015), as shown in Figure 2. The
encoder is thus represented as

eci =

|xc
i |∑

s=1

αc
i,sh

c
i,s (4)
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where αc
i,s is the attention coefficient obtained for

word xc
s, which implicitly reflects its importance

for helping keyphrase identification. αc
i,s is com-

puted via a softmax over the hidden states by

αc
i,s = softmax(a(hc

i,s)) (5)

where a(·) is a learnable function formulated as:

a(hc
i,s) = tanh(Wah

c
i,s) (6)

which takes input only from on hc
i,s. Wa are pa-

rameters of the function a(·) to be learned.

2.2.4 Memory Networks
The encoder based on memory networks
(MemNN) (Weston et al., 2015) stores and
updates the representations of conversation
contexts in a memory module. The updated
representations are used to guide the keyphrase
tagger. Figure 3 illustrates its structure.

Formally, each embedded context sequence
Vc

i =< νννci,1, ννν
c
i,2, ..., ννν

c
i,|xc

i |
> is stored into mem-

ory Mi. We then yield the match between embed-
ded target post Vi =< νννi,1, νννi,2, ..., νννi,|xi| > and
context memory Mi by their inner product acti-
vated by softmax:

Pi = softmax(Vi ·Mi) (7)

where Pi,j,j′ captures the similarity between the
j-th word in conversation context xc

i and the j′-th
word in target post xi.

To transform context input xc
i into an aligned

form so that it is able to be added with Pi,
we include another embedding matrix Ci =<
µµµi,1, ...,µµµi,|xc

i | >. Similar to attention encoder,
the MemNN encoder aims to generate a represen-
tation, which addresses the important part in the
conversation context that helps tagging keyphrases
in target post xi. The sum of Ci and matching
matrix Pi serves as the encoded representation for
conversation context:

eci = Pi +Ci (8)

In particular, both attention and MemNN ex-
plores salient words in conversations that describe
main focus of the conversation, which helps indi-
cate keyphrases of a target post. In comparison,
MemNN explicitly exploits the affinity of target
posts and conversations in matching each other,
while attention implicitly highlights certain con-
text without taking target posts into account.

Dataset # of an-
not. msgs

# of msgs
in context

Context
length Vocab

Twitter
Train 3,976 3.38 49.74 34,412
Dev 497 3.19 46.44 7,186
Test 497 3.30 48.09 8,779

Weibo
Train 13,816 1.97 55.77 25,259
Dev 1,727 2.01 45.00 9,106
Test 1,727 1.82 51.95 9,305

Table 3: Statistics of two datasets. Train, Dev, and
Test denotes training, development, and test set,
respectively. # of annot. msgs: number of mes-
sages with keyphrase annotation, each containing
conversation context. # of msgs in context: av-
erage count of message in conversation context.
Context length: average count of words in conver-
sation context. Vocab: vocabulary size.

3 Experiment Setup

3.1 Datasets

Our experiments are conducted on two datasets
collected from Twitter and Weibo3, respectively.
The Twitter dataset is constructed based on
TREC2011 microblog track4. To recover conver-
sations, we used Tweet Search API5 to retrieve full
information of a tweet with its “in reply to status
id” included. Recursively, we searched the “in re-
ply to” tweet till the entire conversation is recov-
ered. Note that we do not consider retweet rela-
tions, i.e., reposting behaviors on Twitter, because
retweets provide limited extra textual information
for the reason that Twitter did not allow users to
add comments in retweets until 2015. To build
the Weibo dataset, we tracked real-time trending
hashtags6 on Weibo and used the hashtag-search
API7 to crawl the posts matching the given hash-
tag queries. In the end, a large-scale Weibo corpus
is built containing Weibo messages posted during
January 2nd to July 31st, 2014.

For keyphrase annotation, we follow Zhang
et al. (2016) to use microblog hashtags as gold-

3Weibo is short for Sina Weibo, the biggest microblog
platform in China and shares the similar market penetration
as Twitter (Rapoza, 2011). Similar to Twitter, it has a length
limitation of 140 Chinese characters.

4http://trec.nist.gov/data/tweets/
5http://developer.twitter.com/en/docs/

tweets/search/api-reference/get-saved_
searches-show-id

6http://open.weibo.com/wiki/Trends/
hourly

7http://www.open.weibo.com/wiki/2/
search/topics
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Single-layer Taggers Joint-layer Taggers
RNN GRU LSTM BiLSTM RNN GRU LSTM BiLSTM

No Encoder 44.9±1.4 53.9±4.7 54.9±3.8 60.8±3.6 51.0±3.3 56.1±3.4 55.1±2.6 62.5±0.9

Context Encoder
Avg Emb 50.4±0.9 58.8±2.9 56.0±0.7 62.2±3.0 51.5±1.7 59.0±3.5 58.7±3.7 64.5±0.4
RNN 46.4±1.6 56.4±1.9 55.6±2.5 59.0±2.4 52.2±2.8 54.4±2.8 58.3±1.8 63.7±1.3
GRU 50.3±0.8 53.7±1.0 58.0±0.9 56.8±2.3 50.8±4.8 52.3±3.8 57.0±2.1 63.0±1.3
LSTM 51.6±2.0 56.4±1.4 57.9±2.3 64.0±3.1 50.8±3.1 57.9±2.3 58.3±4.0 64.2±0.6
BiLSTM 49.2±1.7 58.3±1.1 56.0±2.0 62.6±3.2 52.7±3.4 56.8±1.0 56.5±3.6 63.7±2.3
Att (LSTM) 48.7±1.7 58.1±1.7 58.1±3.1 64.0±1.8 51.7±4.8 57.4±2.3 58.0±2.4 63.8±1.5
Att (BiLSTM) 51.7±1.4 58.3±1.5 57.0±3.6 62.8±2.5 52.3±4.3 58.0±1.8 59.0±3.9 64.2±3.4
MemNN 53.6±0.3 59.4±3.1 59.5±4.1 62.4±4.8 53.7±3.5 59.4±2.1 62.3±3.3 65.5±1.6

Table 4: Comparisons of the average F1 scores (%) and their standard deviations measured on Twitter over
the results of models with 5 sets of parameters for random initialization. The left half reports results of
single-layer taggers; The right half reports results of joint-layer taggers. Each column: results of the same
tagger with different encoders. Each row: results of different taggers with the same encoder. No Encoder:
taggers without encoding context. Abbreviations for context encoders: Avg Emb – averaged embedding;
Att (LSTM) – attention on LSTM; Att (BiLSTM) – attention on BiLSTM; MemNN – memory networks.

standard keyphrases8 and filtered all microblog
posts by two rules: first, there is only one hash-
tag per post; second, the hashtag is inside a post,
i.e., containing neither the first nor the last word
of a post. Then, we removed all the “#” symbols
in hashtags before keyphrase extraction. For both
Twitter and Weibo dataset, we randomly sample
80% for training, 10% for development, and the
rest 10% for test. Table 3 reports the statistics of
the two datasets. The dataset released by Zhang
et al. (2016) is not used because it does not con-
tain conversation information.

We preprocessed Twitter dataset with Twitter
NLP tool9 (Gimpel et al., 2011; Owoputi et al.,
2013) for tokenization. For Weibo dataset, we
used NLPIR tool10 (Zhang et al., 2003) for Chi-
nese word segmentation. In particular, Weibo con-
versations have an relatively wide range (from 3 to
8,846 words), e.g., one conversation could contain
up to 447 messages. If use the maximum length
of all conversations as the input length for en-
coders, padding the inputs will lead to a sparse ma-
trix. Therefore, for long conversations (with more
than 10 messages), we use KLSum (Haghighi and
Vanderwende, 2009) to produce summaries with a
length of 10 messages and then encode the pro-
duced summaries. In contrast, we do not sum-
marize Twitter conversations because their length
range is much narrower (from 4 to 1,035 words).

8Zhang et al. (2016) proves that 90% of the hashtag-
annotated keyphrases match human annotations.

9http://www.cs.cmu.edu/˜ark/TweetNLP/
10https://github.com/NLPIR-team/NLPIR

3.2 Model Settings

For keyphrase taggers based on RNN, GRU, and
LSTM, we follow Zhang et al. (2016) and set their
state size to 300. For the BiLSTM tagger, which
has two directions, we set the state size for each
direction to 150. The joint-layer taggers employ
the same hyper-parameters according to Zhang
et al. (2016). The state size of context encoders
shares the same settings with keyphrase taggers.
In training, the entire keyphrase extraction frame-
work uses cross-entropy loss and RMSprop opti-
mizer (Graves, 2013) for parameter updating.

We initialize input feature map I for target post
and Ic for conversation context by embeddings
pre-trained on large-scale external microblog col-
lections from Twitter and Weibo. Twitter embed-
dings are trained on 99M tweets with 27B tokens
and 4.6M words in the vocabulary. Weibo embed-
dings are trained on 467M Weibo messages with
1.7B words and 2.5M words in the vocabulary.

In comparison, we employ neural taggers with-
out encoding conversation context, which are
based on RNN, GRU, LSTM, and BiLSTM. We
also compare our models with the state-of-the-art
joint-layer RNN (Zhang et al., 2016) and its GRU,
LSTM, and BiLSTM variations.

To further illustrate the effectiveness of lever-
aging conversation context for keyphrase extrac-
tion, we also evaluate some ranking-based mod-
els, namely, TF-IDF (Salton and Buckley, 1988),
TextRank (Mihalcea and Tarau, 2004), and KEA
implemented by KEA-3.011 (Witten et al., 1999).

11www.nzdl.org/Kea/Download/KEA-3.0.zip
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Single-layer Taggers Joint-layer Taggers
RNN GRU LSTM BiLSTM RNN GRU LSTM BiLSTM

No encoder 58.8±1.4 66.2±0.8 67.3±1.6 74.8±0.7 55.5±0.5 64.1±0.7 64.9±0.6 76.8±0.5

Context Encoder
Avg Emb 63.3±0.9 68.2±0.7 69.4±0.4 76.6±0.9 61.1±1.2 69.7±1.3 69.3±0.7 79.8±0.6
RNN 58.2±1.6 64.9±0.6 65.3±0.8 73.1±0.1 60.9±0.5 67.1±0.6 66.7±0.5 71.2±0.7
GRU 56.5±0.8 67.0±0.6 67.4±1.1 73.8±0.7 58.4±1.1 65.5±0.8 67.1±0.4 76.2±0.7
LSTM 59.4±2.0 67.6±0.8 68.1±0.5 75.5±0.2 61.1±1.9 68.4±1.1 69.5±0.7 78.1±1.0
BILSTM 60.8±1.7 68.6±1.0 68.4±0.7 75.9±0.7 61.6±1.8 69.3±1.0 69.6±0.3 78.2±0.8
Att (LSTM) 62.4±1.8 67.6±1.1 69.0±0.7 75.8±1.2 63.1±1.3 70.2±0.8 70.8±1.3 79.3±0.5
Att (BiLSTM) 59.6±1.4 68.6±0.6 70.4±1.0 76.5±0.8 61.5±2.2 70.5±0.6 71.0±0.5 80.5±1.7
MemNN 61.1±0.4 69.3±0.5 69.9±0.7 79.1±1.1 61.8±1.4 68.7±0.9 69.3±0.4 79.6±1.4

Table 5: Comparisons of F1 scores on Weibo. The abbreviations are defined the same as those in Table 4.

We design two experiment settings when running
these models: 1) each target post is treated as a
document; 2) each conversation (containing the
target post) is treated as a document. We select the
top N words for each target post by their ranked-
orders and the threshold N is tuned on the de-
velopment set. As a result, N ranges from 2 to
7 for various methods. Particularly, since TF-
IDF and TextRank extract keywords instead of
keyphrases, we aggregate the selected keywords
according to Bellaachia and Al-Dhelaan (2012).

4 Experimental Results

Section 4.1 to 4.5 present quantitative and quali-
tative analysis of our neural keyprhase extraction
models. Section 4.6 reports the performance of
ranking-based models where we test the general
applicability of incorporating conversation context
to non-neural keyphase extraction methods.

4.1 Overall Comparisons

Table 4 and Table 5 report F1 scores on Twitter
and Weibo, respectively.12 We have the following
observations.

Conversation context is useful for keyphrase ex-
traction. By combining the encoded context in
conversations, the F1 scores of all taggers are bet-
ter than their basic versions without context en-
coders. It confirms that content in conversations
helps in indicating keyphrases in target posts.

Selecting the correct context encoder is impor-
tant. Encoding context simply by RNN or GRU
yields poor results. The reason for RNN is that
it suffers from gradient vanishing problem when
encoding long conversations (conversions in our

12We also tried BiRNN and BiGRU as keyphrase taggers
and as context encoders. They are outperformed by BiLSTM.
We don’t report these results due to the space limitation.

two datasets have over 45 words on average). The
reason for GRU is that its forget gates may be not
well trained to process important content when the
training set is small.

The results of AvgEmb are the worst on Twit-
ter while competitive to other encoders on Weibo.
The performance of AvgEmb is competitive to
other complex context encoders on Weibo. The
reason may be that incorrect word orders generally
do not affect the understanding in Chinese, where
word order misuse is prevalent in Chinese Weibo
messages. As a result, encoding word orders, as is
done by the encoders except AvgEmb, might bring
noise to keyphrase extraction on Weibo dataset. In
contrast, AvgEmb is the worst encoder on Twitter
dataset, as word order is crucial in English.

Identifying salient content in context is impor-
tant. Four types of context encoders have differ-
ent behaviors. Avg Emb considers all words in
conversation context are equally important. RNN-
variant context encoders, i.e., RNN, GRU, LSTM,
and BiLSTM, additionally explore the relations
between succeeded words without distinguishing
salient and non-salient words. Attention (Att
(LSTM) and Att (BiLSTM)) and MemNN can
recognize critical content in conversations, which
would indicate keyphrases in target posts. There-
fore, our keyphrase extraction framework with at-
tention or MemNN encoder has generally better
F1 scores than those with other encoders.

MemNN can effectively capture salient content
in context. On Twitter dataset, MemNN achieves
the best F1 scores when combining with var-
ious keyphrase taggers except for single-layer
GRU and BiLSTM. On Weibo dataset, although
MemNN does not always outperform other en-
coders, its performance is close to the best ones.
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SL BiLSTM JL BiLSTM
Twitter Weibo Twitter Weibo

No encoder 60.8 74.8 62.5 76.8
Avg Emb 61.0 75.7 63.3 79.2
RNN 58.8 72.7 63.1 71.1
GRU 56.4 73.1 62.7 76.0
LSTM 61.3 75.2 63.9 77.8
BiLSTM 62.0 75.4 62.3 78.0
Att (LSTM) 62.6 75.6 63.7 79.2
Att (BiLSTM) 62.0 76.5 63.9 79.9
MemNN 61.6 77.4 65.1 79.2

Table 6: The F1 scores of BiLSTM taggers mea-
sured on test instances without conversation con-
text (%). SL BiLSTM and JL BiLSTM denote
keyphrase tagger as single-layer and joint-layer
BiLSTM, respectively. The other abbreviations
are defined the same as those in Table 4.

4.2 Test without Conversation Context

Although we have shown in the previous section
that conversation context is useful for training ef-
fective models for keyphrase extraction on mi-
croblog posts, it is necessary to consider that con-
versation context might be unavailable to some
microblog posts, which do not sparking any re-
post or reply message. Under this circumstance,
the models trained on messages with conver-
sation context might be affected in extracting
the keyphrases for messages without conversation
context. To study whether conversation context
is critical in testing process, we assume that the
conversations are only available for training data,
while all the target posts in the test set have no
context to be leveraged. To this end, we apply the
models trained for the experiment in Section 4.1
on the test posts without using their conversation
context. In prediction, context encoders of the
trained models take the target posts instead of con-
versation as input. Results are reported in Table 6,
where models with context encoders yield better
F1 scores than their counterparts without such en-
coders no matter providing conversation to test
data or not. This observation indicates that encod-
ing conversations in training data helps in learn-
ing effective keyphrase extraction models, which
is beneficial to detect keyphrases in a microblog
post with or without its conversation context. In
addition, by comparing Table 6 with Table 4 and 5,
we find that, for each model with context encoder,
higher F1 scores are observed when conversation
context is used in testing process. This observa-
tion confirms that, conversation context of target
posts helps in indicating keyphrases in prediction.

Figure 4: The heatmap of the context representa-
tion generated by MemNN (see Eq. 8). The hori-
zontal axis refers to words in the conversation con-
text, while the vertical axis refers to words in the
target post. Darker colors indicate higher weights.
The red box indicates the keyphrase to be detected.

4.3 Qualitative Analysis

To qualitatively analyze why MemNN encoder
generally performs better in comparison, we con-
duct a case study on the sample instance in Ta-
ble 1. Recall that the keyphrase should be “pres-
ident Duterte”. We compare the keyphrases pro-
duced by the joint-layer BiLSTM tagger with var-
ious context encoders, given in Table 7. Of all
models, only the one with MemNN encoder tags
correctly. Interestingly, Avg Emb does not ex-
tract any keyphrase. The reason might be that it
considers each word in conversations independent
and equally important. Therefore, when using
this encoder, non-topic words like “if ” and “LOL”
may distract the keyphrase tagger in identifying
the key information. Models with BiLSTM, Att
(BiLSTM), and the basic model without encoder
mistakenly extract the sentiment word “childish”
since sentiment words are prominent on Twitter.

We also visualize context representation gen-
erated by MemNN for conversation context in
a heatmap shown in Figure 4. It is ob-
served that MemNN highlights different types of
words for keyphrases and non-keyphrases. For
keyphrases, MemNN highlights topical words
such as “Obama”. For non-keyphrases, MemNN
highlights non-topic words, e.g., “be”, “to”.
Therefore, features learned for keyphrases and
non-keyphrases are different, which can thus
benefit keyphrase tagger to correctly distinguish
keyphrases from non-keyphrases.

4.4 Keyphrases with Various Lengths

To further evaluate our methods, we investigate
them on keyphrases with various lengths. Figure 5
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Extracted keyphrase
Gold-standard president duterte
No encoder duterte childish
Context Encoder
Avg Emb NULL
BiLSTM duterte childish
Att (BiLSTM) president duterte childish
MemNN president duterte

Table 7: Outputs of joint-layer BiLSTM combined
with various context encoders given the example
illustrated in Table1. “NULL”: Avg Emb did not
produce any keyphrase.

shows the histograms of F1 scores yielded by a
single-layer and a joint-layer tagger on Twitter and
Weibo when keyphrase lengths are different. Note
that we only report the results of BiLSTM taggers
because their overall F1 scores are the best accord-
ing to Table 4 and Table 5.

In general, the F1 scores of all models decrease
when keyphrases becomes longer, which implies
that detecting longer keyphrases is harder than
short ones. In comparison of different context en-
coders, we observe that MemNN obtained the best
F1 score in detection of long keyphrases. This is
because MemNN highlights salient content in con-
versation context by jointly considering its sim-
ilarities with keyphrases in target posts. When
the keyphrases become longer, there are more
words in context highlighted, which hence helps
keyphrase tagger. For short keyphrases, MemNN
is still competitive with other context encoders.
The observation suggests that MemNN is robust
in detecting various length of keyphrases.

4.5 Error Analysis

In this section, we briefly discuss the errors found
in our experiments. It is observed that one ma-
jor incorrect prediction is additionally extracted
neighboring words surrounding a gold-standard
keyphrase. For example, in the tweet “Hillary
Clinton accepted gifts from UAE, Saudi Arabia,
Oman and others while SOS. CROOKED Podesta
Emails 29 ...”, in addition to the gold-standard
“Podesta Emails 29”, our models also extract out
“CROOKED”. In general, these additionally ex-
tracted words are mostly modifiers of keyphrases.
External features for identifying modifiers can be
used to filter these auxiliary parts of a keyphrase.

Another main error comes from the words that
are not keyphrases in target posts but reflect the
topics in conversations. For example, joint-layer

(a) SL BiLSTM on Twitter (b) JL BiLSTM on Twitter

(c) SL BiLSTM on Weibo (d) JL BiLSTM on Weibo

Figure 5: Histograms of F1 scores on extract-
ing keyphrases with various lengths. SL BiL-
STM: tagger based on single-layer BiLSTM. JL
BiLSTM: tagger based on joint-layer BiLSTM.
Length: count of words in keyphrases. For each
length range, histograms from left to right show
the results of No encoder, Avg Emb, LSTM, BiL-
STM, Att (LSTM), ATT (BiLSTM), and MemNN.

BiLSTM tagger with MemNN encoder mistak-
enly extracts “Hillary” as a keyphrase for “DOU-
BLE STANDARD: Obama DOJ Prosecuted Others
For Leaking FAR LESS Than Hillary Espionage
URL” whose keyphrase should be “Espionage”.
Because the corresponding conversation of this
post is centered around “Hillary” instead of “Espi-
onage”, such information is captured by the con-
text encoder, which leads to incorrect keyphrase
prediction. However, this type of error points
out the potential of extending our framework to
extracting keyphrases from conversations instead
of a post, which would be beneficial to gener-
ating summary-worthy content for conversations
(Fernández et al., 2008; Loza et al., 2014).

4.6 Ranking-based Models

Table 8 reports the results of ranking models on
Twitter and Weibo. We have the following ob-
servations. First, tagging-based models perform
much better than ranking-based ones in keyphrase
extraction. Comparing the results in Table 8 with
that in Table 4 and Table 5, all neural taggers
outperform non-neural ranking-based models by
a large margin. This fact, again, confirms that
keyphrase extraction is a challenging task on short
microblog messages. Compared to ranking-based
models, neural tagging models have the ability
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Twitter Weibo
Pre Rec F1 Pre Rec F1

w/o context
TF-IDF 6.3 48.8 11.1 1.9 7.3 3.0
TextRank 6.6 18.8 9.7 1.0 8.6 1.7
KEA 3.5 0.8 1.3 0.1 0.2 0.1
w/ context
TF-IDF 7.9 45.6 13.4 2.1 8.3 3.4
TextRank 4.8 20.8 7.8 1.0 9.5 1.8
KEA 15.4 12.9 14.0 2.2 12.3 3.7

Table 8: Precision, recall, and F1 scores of
ranking-based baselines (%). w/o context: each
target post is treated as a document; w/ con-
text: each conversation and its corresponding tar-
get post is treated as a document.

to capture indicative features. Second, conversa-
tion context improves ranking-based models by a
large margin. Simply by aggregating conversa-
tions to a pseudo-document, the F1 scores of TF-
IDF, TextRank, and KEA are generally better than
their counterparts that are only performed on tar-
get posts. For TF-IDF and TextRank, which are
unsupervised, context remarkably improves recall
by enriching more topic-related words. While for
supervised method KEA, context improves both
precision and recall, because supervision helps in
identifying good features from conversations.

5 Related Work

Previous work on extracting keyphrases mainly fo-
cuses on formal texts like news reports (Wan and
Xiao, 2008) and scientific articles (Nguyen and
Kan, 2007). Existing keyphrase extraction mod-
els can be categorized as ranking-based models
and tagging-based models. Ranking-based meth-
ods include models based on graph ranking (Mi-
halcea and Tarau, 2004; Wan and Xiao, 2008), text
clustering (Liu et al., 2009), TF-IDF (Jones, 2004;
Zhang et al., 2007; Lee and Kim, 2008; Kireyev,
2009; Wu and Giles, 2013), etc. The empirical
study provided by Hasan and Ng (2010) shows
that TF-IDF has robust performance and can serve
as a strong baseline. Tagging models focus on us-
ing manually-crafted features for binary classifiers
to predict keyphrases (Frank et al., 1999; Tang
et al., 2004; Medelyan and Witten, 2006). Our
models are in the line of tagging approaches, and
provide an alternative choice that incorporates ad-
ditionally knowledge from conversations.

Recently, keyphrase extraction methods have
been extended to social media texts (Zhao et al.,
2011; Bellaachia and Al-Dhelaan, 2012; Marujo

et al., 2015; Zhang et al., 2016). These work suf-
fers from the data sparsity issue because social
media texts are normally short. Also, they only
use internal information in the input text and ig-
nore external knowledge in conversation context.
Thus our work provides an improved approach
that compensates their limitations.

6 Conclusion

This work presents a keyphrase extraction frame-
work for microblog posts with considering conver-
sation context to alleviate the data sparsity in short
and colloquial messages. The posts to be tagged
are enriched by conversation context through four
types of encoders based on averaged embedding,
RNN, attention, and memory networks, which are
effective in capturing salient content in conversa-
tions that is indicative for keyphrase identification.
Experimental results on Twitter and Weibo dataset
have shown that by effectively encoding conversa-
tion context, our proposed models outperform ex-
isting approaches by a large margin. Qualitative
analysis confirm that our context encoders capture
critical content in conversations.
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