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Abstract

This paper proposes an approach for apply-
ing GANs to NMT. We build a condition-
al sequence generative adversarial net which
comprises of two adversarial sub models, a
generator and a discriminator. The generator
aims to generate sentences which are hard to
be discriminated from human-translated sen-
tences ( i.e., the golden target sentences); And
the discriminator makes efforts to discriminate
the machine-generated sentences from human-
translated ones. The two sub models play
a mini-max game and achieve the win-win
situation when they reach a Nash Equilibri-
um. Additionally, the static sentence-level
BLEU is utilized as the reinforced objective
for the generator, which biases the generation
towards high BLEU points. During training,
both the dynamic discriminator and the stat-
ic BLEU objective are employed to evaluate
the generated sentences and feedback the eval-
uations to guide the learning of the generator.
Experimental results show that the proposed
model consistently outperforms the traditional
RNNSearch and the newly emerged state-of-
the-art Transformer on English-German and
Chinese-English translation tasks.

1 Introduction

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014) which directly lever-
ages a single neural network to transform the
source sentence into the target sentence, has drawn
more and more attention in both academia and in-
dustry (Shen et al., 2015; Wu et al., 2016; Johnson
et al., 2016; Gehring et al., 2017; Vaswani et al.,
2017). This end-to-end NMT typically consists of
two sub neural networks. The encoder network
reads and encodes the source sentence into the
context vector representation; and the decoder net-
work generates the target sentence word by word

based on the context vector. To dynamically gen-
erate a context vector for a target word being gen-
erated, the attention mechanism which enables the
model to focus on the relevant words in the source-
side sentence is usually deployed. Under the
encoder-decoder framework, many variants of the
model structure, such as convolutional neural net-
work (CNN) and recurrent neural network (RN-
N) are proposed (Bahdanau et al., 2014; Gehring
et al., 2017). Recently, (Gehring et al., 2017)
propose the Transformer, the first sequence trans-
duction model based entirely on attention, achiev-
ing state-of-the-art performance on the English-
German and English-French translation tasks. De-
spite its success, the Transformer, similar to tradi-
tional NMT models, is still optimized to maximize
the likelihood estimation of the ground word (M-
LE) at each time step. Such an objective poses a
hidden danger to NMT models. That is, the model
may generate the best candidate word for the cur-
rent time step yet a bad component of the whole
sentence in the long run. Minimum risk training
(MRT) (Shen et al., 2015) is proposed to alleviate
such a limitation by adopting the sequence level
objective, i.e., the sentence-level BLEU, for tra-
ditional NMT models. Yet somewhat improved,
this objective still does not guarantee the transla-
tion results to be natural and sufficient. Since the
BLEU point is computed as the geometric mean
of the modified n-gram precisions (Papineni et al.,
2002), almost all of the existing objectives es-
sentially train NMT models to generate sentences
with n-gram precisions as high as possible (MLE
can be viewed to generate sentences with high 1-
gram precisions). While n-gram precisions largely
tell the good sentence apart from the bad one, it
is widely acknowledged that higher n-gram preci-
sions do not guarantee better sentences (Callison-
Burch and Osborne, 2006; Chatterjee et al., 2007).
Additionally, the manually defined objective, i.e.,
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the n-gram precision, is unable to cover all crucial
aspects of the data distribution and NMT models
may be trained to generate suboptimal sentences
(Luc et al., 2016).

In this paper, to address the limitation men-
tioned above, we borrow the idea of generative ad-
versarial training from computer vision (Goodfel-
low et al., 2014; Denton et al., 2015) to directly
train the NMT model generating sentences which
are hard to be discriminated from human transla-
tions. The motivation behind is that while we can
not manually define the data distribution of gold-
en sentences comprehensively, we are able to uti-
lize a discriminative network to learn automatical-
ly what the golden sentences look like. Following
this motivation, we build a conditional sequence
generative adversarial net where we jointly train
two sub adversarial models: A generator gener-
ates the target-language sentence based on the in-
put source-language sentence; And a discrimina-
tor, conditioned on the source-language sentence,
predicts the probability of the target-language sen-
tence being a human-generated one. During the
training process, the generator aims to fool the
discriminator into believing that its output is a
human-generated sentence, and the discriminator
makes efforts not to be fooled by improving its
ability to distinguish the machine-generated sen-
tence from the human-generated one. This kind
of adversarial training achieves a win-win situa-
tion when the generator and discriminator reach a
Nash Equilibrium (Zhao et al., 2016; Arora et al.,
2017; Guimaraes et al., 2017). Besides generat-
ing the desired distribution, we also want to di-
rectly guide the generator with a static and spe-
cific objective, such as generating sentences with
high BLEU points. To this end, the smoothed
sentence-level BLEU (Nakov et al., 2012) is uti-
lized as the reinforced objective for the generator.
During training, we employ both the dynamic dis-
criminator and the static BLEU objective to evalu-
ate the generated sentences and feedback the eval-
uations to guide the learning of the generator. In
summary, we mainly make the following contribu-
tions:

• To the best of our knowledge, this work is a-
mong the first endeavors to introduce the gen-
erative adversarial training into NMT. We di-
rectly train the NMT model to generate sen-
tences which are hard to be discriminated
from human translations. The proposed mod-

el can be applied to any end-to-end NMT sys-
tems.

• We conduct extensive experiments on
English-German and Chinese-English trans-
lation tasks and we test two different NMT
models, the traditional RNNSearch (Bah-
danau et al., 2014) and the state-of-the-art
Transformer. Experimental results show that
the proposed approach consistently achieves
great success.

• Last but not least, we propose the smoothed
sentence-level BLEU as the static and spe-
cific objective for the generator which biases
the generation towards achieving high BLEU
points. We show that the proposed approach
is a weighted combination of the naive GAN
and MRT.

2 Background and Related Work

2.1 RNNSearch and Transformer

The RNNSearch is the traditional NMT model
which has been widely explored. We follow the
de facto standard implementation by (Bahdanau
et al., 2014). The encoder is a bidirectional gat-
ed recurrent units that encodes the input sequence
x = (x1, . . . , xm) and calculates the forward se-
quence of hidden states (

−→
h1, . . . ,

−→
hm), and a back-

ward sequence of hidden states (
←−
h1, . . . ,

←−
hm). The

final annotation vector hj is calculated by con-
catenating

−→
hj and

←−
hj . The decoder is a recurren-

t neural network that predicts a target sequence
y = (y1, . . . , yn). Each word yi is predicted on
a recurrent hidden state si, the previously predict-
ed word yi−1 and a context vector ci. The ci is
computed as a weighted sum of the encoded anno-
tations hj . The weight aij of each annotation hj
is computed by the attention mechanism, which
models the alignment between yi and xj .

The Transformer, recently proposed by
(Vaswani et al., 2017), achieves state-of-the-art
results on both WMT2014 English-German and
WMT2014 English-French translation tasks. The
encoder of Transformer is composed of a stack
of six identical layers. Each layer consists of a
multi-head self-attention and a simple position-
wise fully connected feed-forward network.
The decoder is also composed of a stack of six
identical layers. In addition to the two sub-layers
in each encoder layer, the decoder inserts a third
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sub-layer, which performs multi-head attention
over the output of the encoder stack. The Trans-
former can be trained significantly faster than
architectures based on recurrent or convolutional
layers since it allows for significantly more
parallelization.

2.2 Generative adversarial nets

Generative adversarial network, has enjoyed great
success in computer vision and has been wide-
ly applied to image generation (Zhu et al., 2017;
Radford et al., 2015). The conditional generative
adversarial nets (Gauthier, 2014) apply an exten-
sion of generative adversarial network to a con-
ditional setting, which enables the networks to
condition on some arbitrary external data. Some
recent works have begun to apply the genera-
tive adversarial training into the NLP area: (Chen
et al., 2016) apply the idea of generative adversar-
ial training to sentiment analysis and (Zhang et al.,
2017) use the idea to domain adaptation tasks. For
sequence generation problem, (Yu et al., 2016)
leverage policy gradient reinforcement learning to
back-propagate the reward from the discrimina-
tor, showing presentable results for poem gener-
ation, speech language generation and music gen-
eration. Similarly, (Zhang et al., 2016) generate
the text from random noise via adversarial train-
ing. A striking difference from the works men-
tioned above is that, our work is in the conditional
setting where the target-language sentence is gen-
erated conditioned on the source-language one. In
parallel to our work, (Li et al., 2017) propose a
similar conditional sequence generative adversar-
ial training for dialogue generation. They use a
hierarchical long-short term memory (LSTM) ar-
chitecture for the discriminator. In contrast to their
approach, we apply the CNN-based discriminator
for the machine translation task. Furthermore, we
propose to utilize the sentence-level BLEU as the
specific objective for the generator. Detailed train-
ing strategies for the proposed model and exten-
sive quantitative results are reported. We noticed
that (Wu et al., 2017) is exploring the potential of
GAN in NMT too. There are some differences
in training strategies and experimental settings be-
tween (Wu et al., 2017) and this work. And the
most significant difference is that we propose a
novel BLEU-reinforced GAN for NMT 1.

1The previous presentation of this work can be found at
https://arxiv.org/abs/1703.04887

3 The Approach

3.1 Model overview
In this section, we describe the architecture of
the proposed BLEU reinforced conditional se-
quence generative adversarial net (referred to as
BR-CSGAN) in detail. The sentence generation
process is viewed as a sequence of actions that are
taken according to a policy regulated by the gen-
erator. In this work, we take the policy gradient
training strategies following (Yu et al., 2016). The
whole architecture of the proposed model is de-
picted in figure 1. The model mainly consists of
three sub modules:

Generator Based on the source-language sen-
tences, the generator G aims to generate target-
language sentences indistinguishable from human
translations.

Discriminator The discriminator D, condi-
tioned on the source-language sentences, tries to
distinguish the machine-generated sentences from
human translations. D can be viewed as a dynam-
ic objective since it is updated synchronously with
G.

BLEU objective The sentence-level BLEU Q
serves as the reinforced objective, guiding the gen-
eration towards high BLEU points. Q is a static
function which will not be updated during train-
ing.

3.2 Generator
Resembling NMT models, the generator G defines
the policy that generates the target sentence y giv-
en the source sentence x. The generator takes
exactly the same architecture with NMT models.
Note that we do not assume the specific architec-
ture of the generator. To verify the effectiveness of
the proposed method, we take two different archi-
tectures for the generator, the RNNSearch 2 and
Transformer 3.

3.3 Discriminator
Recently, the deep discriminative models such
as the CNN and RNN have shown a high per-
formance in complicated sequence classification
tasks. Here, the discriminator is implemented
based on the CNN architecture.

Since sentences generated by the generator have
variable lengths, the CNN padding is used to trans-
form the sentences to sequences with fixed length

2https://github.com/nyu-dl/dl4mt-tutorial
3https://github.com/tensorflow/tensor2tensor
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Figure 1: The Illustration of the proposed BR-CSGAN.
Left: D is trained over the real sentence pairs translated
by the human and the generated sentence pairs by G.
Note that D is a conditional discriminator. Right: G
is trained by police gradient where the final reward is
provided by D and Q.

T , which is the maximum length set for the output
of the generator. Given the source-language se-
quence x1, . . . , xT and target-language sequence
y1, . . . , yT , we build the source matrix X1:T and
target matrix Y1:T respectively as:

X1:T = x1;x2; . . . ;xT (1)

and
Y1:T = y1; y2; . . . ; yT (2)

where xt, yt ∈ Rk is the k-dimensional word em-
bedding and the semicolon is the concatenation
operator. For the source matrix X1:T , a kernel
wj ∈ Rl×k applies a convolutional operation to
a window size of l words to produce a series of
feature maps:

cji = ρ(BN(wj ⊗Xi:i+l−1 + b)) (3)

where ⊗ operator is the summation of element-
wise production and b is a bias term. ρ is a non-
linear activation function which is implemented as
ReLu in this paper. Note that the batch normaliza-
tion (Ioffe and Szegedy, 2015) which accelerates
the training significantly, is applied to the input of
the activation function (BN in equation 3). To get
the final feature with respect to kernel wj , a max-
over-time pooling operation is leveraged over the
feature maps:

c̃j = max{cj1, . . . , cjT−l+1} (4)

We use various numbers of kernels with different
window sizes to extract different features, which
are then concatenated to form the source-language
sentence representation cx. Identically, the target-
language sentence representation cy can be ex-
tracted from the target matrix Y1:T . Finally, given
the source-language sentence, the probability that

the target-language sentence is being real can be
computed as:

p = σ(V [cx; cy]) (5)

where V is the transform matrix which transforms
the concatenation of cx and cy into a 2-dimension
embedding and σ is the logistic function.

3.4 BLEU objective
We apply the smoothed sentence-level BLEU as
the specific objective for the generator. Given
the generated sentence yg and the the ground true
sentence yd, the objective Q calculates a reward
Q(yg, yd), which measures the n-gram precisions
of the generated sentence yg. Identical to the out-
put of the discriminator, the Q(yg, yd) also ranges
from zero to one, which makes it easier to fuse Q
and D.

3.5 Policy Gradient Training
Following (Yu et al., 2016), the objective of the
generator G is defined as to generate a sequence
from the start state to maximize its expected end
reward. Formally, the objective function is com-
puted as:

J(θ) =
∑
Y1:T

Gθ(Y1:T |X) ·RGθD,Q(Y1:T−1, X, yT , Y ∗)

where θ represents the parameters in G, Y1:T =
y1, . . . , yT indicates the generated target se-
quence, X is the source-language sentence, Y ∗

represents the ground true target sentence. RGθD,Q
is the action-value function of a target-language
sentence given the source sentence X , i.e. the ex-
pected accumulative reward starting from the state
(Y1:T−1, X), taking action yT , and following the
policy Gθ. To estimate the action-value function,
we consider the estimated probability of being re-
al by the discriminator D and the output of the
BLEU objective Q as the reward:

RGθD,Q(Y1:T−1, X, yT , Y ∗) =

λ(D(X,Y1:T )− b(X,Y1:T )) + (1− λ)Q(Y1:T , Y
∗)

where b(X,Y) denotes the baseline value to reduce
the variance of the reward. Practically, we take
b(X,Y) as a constant, 0.5 for simplicity. And the
λ is a hyper-parameter. The question is that, giv-
en the source sequence, D only provides a reward
value for a finished target sequence. If Y1:T is not a
finished target sequence, the value of D(X,Y1:T )
makes no sense. Therefore, we cannot get the
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action-value for an intermediate state directly. To
evaluate the action-value for an intermediate state,
the Monte Carlo search under the policy of Gθ
is applied to sample the unknown tokens. Each
search ends until the end of sentence token is sam-
pled or the sampled sentence reaches the maxi-
mum length. To obtain more stable reward and re-
duce the variance, we represent an N-time Monte
Carlo search as:

{Y 1
1:T1

, . . . , Y N
1:TN
} = MCGθ((Y1:t, X), N)

where Ti represents the length of the sen-
tence sampled by the i’th Monte Carlo search.
(Y1:t, X) = (y1, . . . , yt, X) is the current state
and Y N

t+1:TN
is sampled based on the policy Gθ.

The discriminator provides N rewards for the
sampled N sentences respectively. The final re-
ward for the intermediate state is calculated as the
average of the N rewards. Hence, for the target
sentence with the length T , we compute the re-
ward for yt in the sentence level as:

RGθD,Q(Y1:t−1, X, yT , Y ∗) =




1
N

N∑
n=1

λ(D(X,Y n
1:Tn

)− b(X,Y n
1:Tn

)) + (1− λ)Q(Y1:Tn , Y ∗) t < T

λ(D(X,Y1:t)− b(X,Y1:t)) + (1− λ)Q(Y1:t, Y
∗) t = T

Using the discriminator as a reward function can
further improve the generator iteratively by dy-
namically updating the discriminator. Once we get
more realistic generated sequences, we re-train the
discriminator as:

min−EX,Y ∈Pdata [logD(X,Y )]− EX,Y ∈G[log(1−D(X,Y ))]

After updating the discriminator, we are ready to
re-train the generator. The gradient of the objec-
tive function J(θ) w.r.t the generator’s parameter
θ is calculated as:

∇J(θ) = 1
T

T∑
t=1

∑
yt

RGθD,Q(Y1:t−1, X, yT , Y ∗) · ∇θ(Gθ(yt|Y1:t−1, X))

= 1
T

T∑
t=1

Eyt∈Gθ [R
Gθ
D,Q(Y1:t−1, X, yT , Y ∗) · ∇θ log p(yt|Y1:t−1, X)]

3.6 Training strategies
GANs are widely criticized for its unstable train-
ing since the generator and discriminator need to
be carefully synchronized. To make this work eas-
ier to reproduce, this paper gives detailed strate-
gies for training the proposed model.

Firstly, we use the maximum likelihood estima-
tion to pre-train the generator on the parallel train-
ing set until the best translation performance is
achieved. Then, generate the machine-generated

sentences by using the generator to decode the
training data. We simply use the greedy sam-
pling method instead of the beam search method
for decoding. Next, pre-train the discriminator
on the combination of the true parallel data and
the machine-generated data until the classification
accuracy achieves at ξ. Finally, we jointly train
the generator and discriminator. The generator is
trained with the policy gradient training method.
However, in our practice, we find that updating
the generator only with the simple policy gradient
training leads to unstableness. To alleviate this is-
sue, we adopt the teacher forcing approach which
is similar to (Lamb et al., 2016; Li et al., 2017).
We directly make the discriminator to automati-
cally assign a reward of 1 to the golden target-
language sentence and the generator uses this re-
ward to update itself on the true parallel example.
We run the teacher forcing training for one time
once the generator is updated by the policy gra-
dient training. After the generator gets updated,
we use the new stronger generator to generate η
more realistic sentences, which are then used to
train the discriminator. Following (Arjovsky et al.,
2017), we clamp the weights of the discriminator
to a fixed box ( [−ε,ε] ) after each gradient update.
We perform one optimization step for the discrim-
inator for each step of the generator. In our prac-
tice, we set ξ as 0.82, η as 5000, ε as 1.0 and the
N for Monte Carlo search as 20.

4 Experiments and Results

We evaluate our BR-CSGAN on English-German
and Chinese-English translation tasks and we test
two different architectures for the generator, the
traditional RNNSearch and the newly emerged
state-of-the-art Transformer.

4.1 Data sets and preprocessing

English-German: For English-German translation,
we conduct our experiments on the publicly avail-
able corpora used extensively as benchmark for N-
MT systems, WMT’14 En-De. This data set con-
tains 4.5M sentence pairs 4. Sentences are en-
coded using byte-pair encoding (Sennrich et al.,
2015), which has a shared source-target vocabu-
lary of about 37000 tokens. We report results on
newstest2014. The newstest2013 is used as vali-
dation.

4http://nlp.stanford.edu/projects/nmt
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Model
Chinese-English English-German

NIST03 NIST04 NIST05 average newstest2014

RNNSearch (Bahdanau et al., 2014) 33.93 35.67 32.24 33.94 21.2
Transformer (Vaswani et al., 2017) 42.23 42.17 41.02 41.80 27.30
RNNSearch+BR-CSGAN(λ = 1.0) 35.21 36.51 33.45 35.05 22.1
RNNSearch+BR-CSGAN(λ = 0.7) 35.97 37.32 34.03 35.77 22.89
RNNSearch+BR-CSGAN(λ = 0) 34.57 35.93 33.07 34.52 21.75

Transformer+BR-CSGAN(λ = 1.0) 42.67 42.79 41.54 42.30 27.75
Transformer+BR-CSGAN(λ = 0.8) 43.01 42.96 41.86 42.61 27.92
Transformer+BR-CSGAN(λ = 0) 42.41 42.74 41.29 42.14 27.49

Table 1: BLEU score on Chinese-English and English-German translation tasks. The hyper-parameter λ is selected
according to the development set. For the Transformer, following (Vaswani et al., 2017), we report the result of a
single model obtained by averaging the 5 checkpoints around the best model selected on the development set.

Chinese-English: For Chinese-English transla-
tion, our training data consists of 1.6M sentence
pairs randomly extracted from LDC corpora 5.
Both the source and target sentences are encod-
ed with byte-pair encoding and the tokens in the
source and target vocabulary is about 38000 and
34000 respectively 6. We choose the NIST02 as
the development set. For testing, we use NIST03,
NIST04 and NIST05 data sets.

To speed up the training procedure, sentences of
length over 50 words are removed when we con-
duct experiments on the RNNSearch model. This
is widely used by previous works (Ranzato et al.,
2015; Shen et al., 2015; Yang et al., 2016).

4.2 Model parameters and evaluation
For the Transformer, following the base model in
(Vaswani et al., 2017), we set the dimension of
word embedding as 512, dropout rate as 0.1 and
the head number as 8. The encoder and decoder
both have a stack of 6 layers. We use beam search
with a beam size of 4 and length penalty α = 0.6.
For the RNNSearch, following (Bahdanau et al.,
2014), We set the hidden units for both encoders
and decoders as 512. The dimension of the word
embedding is also set as 512. We do not apply
dropout for training the RNNSearch. During test-
ing, we use beam search with a beam size of 10
and length penalty is not applied.

All models are implemented in TensorFlow
(Abadi et al., 2015) and trained on up to four K80
GPUs synchronously in a multi-GPU setup on a

5LDC2002L27, LDC2002T01, LDC2002E18, LD-
C2003E07, LDC2004T08, LDC2004E12, LDC2005T10

6When doing BPE for Chinese, we need to do word seg-
mentation first and the following steps are the same with BPE
for English.

single machine 7. We stop training when the mod-
el achieves no improvement for the tenth evalu-
ation on the development set. BLEU (Papineni
et al., 2002) is utilized as the evaluation metric.
We apply the script mteval-v11b.pl to evaluate the
Chinese-English translation and utilize the script
multi-belu.pl for English-German translation 8.

4.3 Main results
The model of RNNSearch is optimized with the
mini-batch of 64 examples. It takes about 30
hours to pre-train the RNNSearch on the Chinese-
English data set and 46 hours on the English-
German data set. During generative adversarial
training, it takes about 35 hours on the Chinese-
English data set and about 50 hours on the
English-German data set. For the Transformer,
each training batch contains a set of sentence
pairs containing approximately 25000 source to-
kens and 25000 target tokens. On the Chinese-
English data set, it takes about 15 hours to do pre-
training and 20 hours to do generative adversarial
training. On the English-German data set, it takes
about 35 hours for the pre-training and 40 hours
for the generative adversarial training.

Table 1 shows the BLEU score on Chinese-
English and English-German test sets. On the
RNNSearch model, the naive GAN (i.e., the line
of RNNSearch+BR-CSGAN (λ=1) in table 1)
achieves improvement up to +1.11 BLEU points
averagely on Chinese-English test sets and +0.9
BLEU points on English-German test set. Armed

7The code we used to train and evaluate our models can
be found at https://github.com/ZhenYangIACAS/NMT GAN

8https://github.com/moses-
smt/mosesdecoder/blob/617e8c8/scripts/generic/multi-
bleu.perl;mteval-v11b.pl
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with the BLEU objective, the BR-CSGAN (the
line of RNNSearch+BR-CSGAN (λ=0.7)) leads
to more significant improvements, +1.83 BLEU
points averagely on Chinese-English translation
and +1.69 BLEU points on English-German trans-
lation. We also test the translation performance
when the RNNSearch is only guided by the stat-
ic BLEU objective (the line of RNNSearch+BR-
CSGAN (λ=0)), and we only get +0.58 BLEU
points improvement on Chinese-English transla-
tion and +0.55 BLEU points improvement on
English-German. Experiments on the Transformer
show the same trends. While the Transformer has
achieved state-of-the-art translation performances,
our approach still achieves +0.81 BLEU points
improvement on Chinese-English translation and
+0.62 BLEU points improvement on English-
German.

These results indicate that the proposed BR-
CSGAN consistently outperforms the baselines
and it shows better translation performance than
the naive GAN and the model guided only by the
BLEU objective.

5 Analysis

5.1 Compared with MRT
We show that MRT (Shen et al., 2015) is an ex-
treme case of our approach. Considering a sen-
tence pair (x, y), the training objective of MRT is
calculated as

Ĵ(θ′) =
∑

ys∈S(x)
p(ys|x; θ′)∆(ys, y)

where ∆(ys, y) is a loss function (i.e., the
sentence-level BLEU used in this paper) that mea-
sures the discrepancy between a predicted trans-
lation ys and the training example y, S(x) repre-
sents the set which contains all of the predictions
given the input x, and θ′ is the parameters of the N-
MT model. Unfortunately, this objective is usually
intractable due to the exponential search space. To
alleviate this problem, a subset of the search space
is sampled to approximate this objective. In this
paper, when we set λ as zero, the objective for the
proposed BR-CSGAN comes to

J(θ)λ=0 =
∑

Y1:T

Gθ(Y1:T |X) ·Q(Y1:T , Y
∗)

where the Q(Y1:T , Y
∗) is also a loss function be-

tween the predicted translation Y1:T and the train-
ing example Y ∗. It is easy to be found that, under

this condition (i.e., λ set as zero), the proposed
BR-CSGAN optimizes almost the same objective
with MRT. The only difference is that the rein-
forcement learning procedure is utilized in BR-
CSGAN to maximize the total reward and M-
RT instead applies random sampling to approx-
imate the risk. Actually, the BR-CSGAN is a
weighted sum of the naive GAN (λ=1) and MRT
(λ=0), and it incorporates the advantages of the t-
wo approaches. Specifically, compared to naive
GAN which is trained without specific objective
guidance, BR-CSGAN utilizes the BLEU objec-
tive to guide the generator to generate sentences
with higher BLEU points. And compared to M-
RT which is trained only with the static objective,
the BR-CSGAN applies a dynamic discriminator
which updates synchronously with the generator,
to feedback the dynamic rewards for the genera-
tor. Table 2 compares the translation performance
between the MRT and BR-CSGAN on Chinese-
English and English-German translation tasks. We
only conduct experiments on the RNNSearch be-
cause we only get the open-source implementa-
tion of MRT on the RNNSearch 9. Results show
that the proposed BR-CSGAN consistently out-
performs the MRT on the Chinese-English and
English-German translations.

Model
Chinese-English English-German

average newstest2014

RNNSearch 33.94 21.2
MRT (Shen et al., 2015) 34.64 21.6
BR-CSGAN(λ = 0.7) 35.77 22.89

Table 2: BLEU score on Chinese-English and English-
German translation tasks for MRT and BR-CSGAN.

5.2 When to stop pre-training

The initial accuracy ξ of the discriminator which
is viewed as a hyper-parameter, can be set care-
fully during the process of pre-training. A nat-
ural question is that when shall we end the pre-
training. Do we need to pre-train the discriminator
with the highest accuracy? To answer this ques-
tion, we test the impact of the initial accuracy of
the discriminator. We pre-train five discriminators
which have the accuracy as 0.6, 0.7, 0.8, 0.9 and
0.95 respectively. With the five discriminators, we
train five different BR-CSGAN models (with the
generator as RNNSearch and λ set as 0.7) and test

9The open-source implementation can be found at: http-
s://github.com/EdinburghNLP/nematus

1352



0 2 4 6 8 10 12 14 16 18
Test step

5

10

15

20

25

30

35

40

B
LE

U

0.6-acc
0.7-acc
0.8-acc
0.9-acc
0.95-acc

Figure 2: BLEU score on the development set for the
BR-CSGAN where the discriminators have differen-
t initial accuracy. ”0.6-acc” means the initial accura-
cy is 0.6. We report the results on the Chinese-English
translation tasks. RNNSearch is taken as the generator.

their translation performances on the development
set at regular intervals. Figure 2 reports the results
and we can find that the initial accuracy of the dis-
criminator shows great impacts on the translation
performance of the proposed BR-CSGAN. From
figure 2, we show that the initial accuracy of the
discriminator needs to be set carefully and either
it is too high (0.9 and 0.95) or too low (0.6 and
0.7), the model performs badly 10. This suggests
that it is important for the generator and discrim-
inator to keep a balanced relationship at the be-
ginning of the generative adversarial training. If
the discriminator is too strong, the generator is al-
ways penalized for its bad predictions and gets no
idea about right predictions. Hence, the generator
is discouraged all the time and the performance
gets worse and worse. On the other hand, if the
discriminator is too weak, the discriminator is un-
able to give right guidance for the generator, i.e.
the gradient direction for updating the generator is
random. Empirically, we pre-train the discrimina-
tor until its accuracy reaches around 0.8.

5.3 Sample times for Monto Carol search
We are also curious about how the sample times
N for Monte Carlo search affects the translation
performance. Intuitively, if N is set as a smal-
l number, the intermediate reward for each word
may be incorrect since there is a large variance
for the Monto Carol search when the sample time
is too small. And if otherwise, the computation

10To make the illustration simple and clear, we only depict
the results when the RNNSearch acts as the generator.

N NIST02 NIST03 NIST04 NIST05

0 36.87 33.93 35.67 32.24
5 - - - -
10 - - - -
15 37.34 34.91 36.09 33.45
20 38.58 35.97 37.32 34.03
25 38.65 36.04 37.52 33.91
30 38.74 36.01 37.54 33.76

Table 3: The translation performance of the BR-
CSGAN with different N for Monte Carlo search. ”-”
means that the proposed model shows no improvement
than the pre-trained generator or it can not be trained
stably. With N set as 0, it is referred to as the pre-
trained generator. Similarly, we only report results on
the RNNSearch and λ is set as 0.7.

shall be very time consuming because we need
to do much more sampling. Therefore, there is
a trade-off between the accuracy and computa-
tion complexity here. We investigate this prob-
lem on the Chinese-English translation task. Table
3 presents the translation performance of the BR-
CSGAN on the test sets when the N are set from
5 to 30 with interval 5. From table 3, the proposed
model achieves no improvement than the baseline
(i.e., the pre-trained generator) when N are set
less than 15 and the BLEU scores are not reported
on the table. As a matter of fact, the translation
performance of the model gets worse and worse.
We conjecture that the approximated reward is far
from the expected reward due to the large variance
when N is set too small, and gives wrong gradi-
ent directions for model updating. Since the train-
ing for GAN is not stable, the wrong gradient di-
rection exacerbates the unstableness and results in
the BLEU getting worse and worse. With the in-
creasing of N , the translation performance of the
model gets improved. However, with N set larger
than 20, we get little improvement than the model
with N set as 20 and the training time exceeds our
expectation.

6 Conclusion and Future Work

In this work, we propose the BR-CSGAN which
leverages the BLEU reinforced generative adver-
sarial net to improve the NMT. We show that the
proposed approach is a weighted combination of
the naive GAN and MRT. To verify the effec-
tiveness of our approach, we test two differen-
t architectures for the generator, the traditional
RNNSearch and the state-of-the-art Transformer.
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Extensive experiments on Chinese-English and
English-German translation tasks show that our
approach consistently achieves significant im-
provements. In the future, we would like to
try multi-adversarial framework which consists of
multi discriminators and generators for GAN.
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