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Abstract

Building curious machines that can answer as
well as ask questions is an important challenge
for AI. The two tasks of question answering
and question generation are usually tackled
separately in the NLP literature. At the same
time, both require significant amounts of su-
pervised data which is hard to obtain in many
domains. To alleviate these issues, we pro-
pose a self-training method for jointly learning
to ask as well as answer questions, leveraging
unlabeled text along with labeled question an-
swer pairs for learning. We evaluate our ap-
proach on four benchmark datasets: SQUAD,
MS MARCO, WikiQA and TrecQA, and show
significant improvements over a number of es-
tablished baselines on both question answer-
ing and question generation tasks. We also
achieved new state-of-the-art results on two
competitive answer sentence selection tasks:
WikiQA and TrecQA.

1 Introduction

Question Answering (QA) is a well-studied prob-
lem in NLP which focuses on answering questions
using some structured or unstructured sources of
knowledge. Alongside question answering, there
has also been some work on generating ques-
tions (QG) (Heilman, 2011; Du et al., 2017; Tang
et al., 2017) which focuses on generating ques-
tions based on given sources of knowledge.

QA and QG are closely related1 tasks. However,
NLP literature views the two as entirely separate
tasks. In this paper, we explore this relationship
between the two tasks by jointly learning to gen-
erate as well as answer questions. An improved
ability to generate as well as answer questions will
help us build curious machines that can interact
with humans in a better manner. Joint modeling of

1We can think of QA and QG as inverse of each other.

QA and QG is useful as the two can be used in con-
junction to generate novel questions from free text
and then answers for the generated questions. We
use this idea to perform self-training (Nigam and
Ghani, 2000) and leverage free text to augment the
training of QA and QG models.

QA and QG models are typically trained on
question answer pairs which are expensive to ob-
tain in many domains. However, it is cheaper
to obtain large quantities of free text. Our self-
training procedure leverages unlabeled text to
boost the quality of our QA and QG models. This
is achieved by a careful data augmentation proce-
dure which uses pre-trained QA and QG models to
generate additional labeled question answer pairs.
This additional data is then used to retrain our QA
and QG models and the procedure is repeated.

This addition of synthetic labeled data needs
to be performed carefully. During self-training,
typically the most confident samples are added to
the training set (Zhu, 2005) in each iteration. We
use the performance of our QA and QG models
as a proxy for estimating the confidence value of
the questions. We describe a suite of heuristics
inspired from curriculum learning (Bengio et al.,
2009) to select the questions to be generated and
added to the training set at each epoch. Curricu-
lum learning is inspired from the incremental na-
ture of human learning and orders training sam-
ples on the easiness scale so that easy samples can
be introduced to the learning algorithm first and
harder samples can be introduced successively.
We show that introducing questions in increasing
order of hardness leads to improvements over a
baseline that introduces questions randomly.

We use a seq2seq model with soft attention
(Sutskever et al., 2014; Bahdanau et al., 2014)
for QG and a neural model inspired from Atten-
tive Reader (Hermann et al., 2015; Chen et al.,
2016) for QA. However, these can be any QA
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and QG models. We evaluate our approach on
four datasets: SQUAD, MS MARCO, WikiQA and
TrecQA. We use a corpus of English Wikipedia
as unlabeled text. Our experiments show that
the self-training approach leads to significant im-
provements over a number of established ap-
proaches in QA and QG on these benchmarks. On
the two answer sentence selection QA tasks: (Wik-
iQA and TrecQA), we obtain state-of-the-art.

2 Problem Setup

In this work, we focus on the task of machine com-
prehension where the goal is to answer a question
q based on a passage p. We model this as an an-
swer sentence selection task i.e., given the set of
sentences in the passage p, the task is to select
the sentence s ∈ p that contains the answer a.
Treating QA as an answer sentence selection task
is quite common in literature (e.g. see Yu et al.,
2014). We model QG as the task of transforming
a sentence in the passage into a question. Previ-
ous work in QG (Heilman and Smith, 2009) trans-
forms text sentences into questions via some set of
manually engineered rules. However, we take an
end-to-end neural approach.

Let D0 be a labeled dataset of (passage, ques-
tion, answer) triples where the answer is given by
selecting a sentence in the passage. We also as-
sume access to unlabeled text T which will be
used to augment the training of the two models.

3 The Question Answering Model

Since we model QA as the task of selecting an an-
swer sentence from the passage, we treat each sen-
tence in the corresponding passage as a candidate
answer for every input question.

We employ a neural network model inspired
from the Attentive Reader framework proposed in
Hermann et al. (2015); Chen et al. (2016). We
map all words in the vocabulary to correspond-
ing d dimensional vector representations via an
embedding matrix E ∈ Rd×V . Thus, the input
passage p can be denoted by the word sequence
{p1, p2, . . . p|p|} and the question q can similarly
be denoted by the word sequence {q1, q2, . . . q|q|}
where each token pi ∈ Rd and qi ∈ Rd.

We use a bi-directional LSTM (Graves et al.,
2005) with dropout regularization as in Zaremba
et al. (2014) to encode contextual embeddings of

each word in the passage:

~ht = LSTM1

(
pt, ~ht−1

)
, ~ht = LSTM2

(
pt, ~ht+1

)

The final contextual embeddings ht are given by
concatenation of the forward and backward pass
embeddings: ht = [~ht; ~ht]. Similarly, we use an-
other bi-directional LSTM and encode contextual
embeddings of each word in the question.

Then, we use attention mechanism (Bahdanau
et al., 2014) to compute the alignment distribution
a based on the relevance among passage words
and the question: ai = softmax

(
qTWhi

)
. The

output vector o is a weighted combination of all
contextual embeddings: o =

∑
i
aihi. Finally, the

correct answer a∗ among the set of candidate an-
swers A is given by: a∗ = argmax

a∈A
wTo.

We learn the model by maximizing the log-
likelihood of correct answers. Given the training
set {p(i),q(i),a(i)}Ni=1, the log-likelihood is:

LQA =
N∑

i=1

logP
(
a(i)|p(i),p(i); θ

)

Here, θ represents all the model parameters to be
estimated.

4 The Question Generation Model

We use a seq2seq model (Sutskever et al., 2014)
with soft attention (Bahdanau et al., 2014) as our
QG model. The model transduces an input se-
quence x to an input sequence y. Here, the in-
put sequence is a sentence in the passage and
the output sequence is a generated question. Let
x = {x1, x2, . . . , x|x|}, y = {y1, y2, . . . , y|y|}
and Y be the space of all possible output ques-
tions. Thus, we can represent the QG task as find-
ing ŷ ∈ Y such that: ŷ = argmax

y
P (y|x).

Here, P (y|x) is the conditional probability of a
question sequence y given input sequence x.
Decoder: Following Sutskever et al. (2014), the
conditional factorizes over token level predictions:

P (y|x) =
|y|∏

t=1

P (yt|y<t,x)

Here, y<t represents the subsequence of words
generated prior to the time step t. For the decoder,
we again follow Sutskever et al. (2014):

P (yt|y<t,x) = softmax
(
Wtanh

(
Wt[h

(d)
t ; ct]

))
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Here, h(d)
t is the decoder RNN state at time step

t, and ct is the attention based encoding of the in-
put sequence x at decoding time step t (described
later). Also W and Wt are model parameters
to be learned. We use an LSTM with dropout
(Zaremba et al., 2014) as the decoder RNN. The
LSTM generates the new decoder state h

(d)
t given

the representation of previously generated word
yt1 obtained using a look-up dictionary, and the
previous decoder state h

(d)
t−1.

Encoder: We use a bi-directional LSTM (Graves
et al., 2005) with attention mechanism as our sen-
tence encoder. We use two LSTM’s: one that
makes a forward pass in the sequence and another
that makes a backward pass as in the QA model
described earlier. We use dropout regularization
for LSTMs as in Zaremba et al. (2014) in our
implementation. The final context dependent to-
ken representation h

(e)
t is the concatenation of the

forward and backward pass token representations:

h
(e)
t = [~h

(e)
t ; ~h

(e)

t ]. To obtain the final context de-
pendent token representation cj at the decoding
time step j, we take a weighted average over to-

ken representations: c
(d)
j =

|x|∑
i=1

aijh
(e)
i . Follow-

ing Bahdanau et al. (2014), the attention weights
aij are calculated by bilinear scoring followed by
softmax normalization:

aij =

exp

(
h
(e)
j

T
W h

(d)
i

)

∑
i′
exp

(
h
(e)
j

T
W h

(d)
i′

)

Learning and Inference: We train the en-
coder decoder framework by maximizing data log-
likelihood on a large training set with respect to all
the model parameters θ. Let {x(i),y(i)}Ni=1 be the
training set. The log-likelihood can be written as:

LQG =

N∑

i=1

logP
(
y(i)|x(i); θ

)

=
N∑

i=1

|y(i)|∑

j=1

logP
(
y
(i)
j |x(i),y

(i)
<j ; θ

)

We use beam search for inference. As in previous
works, we introduce a <UNK> token to model
rare words during decoding. These <UNK> to-
kens are finally replaced by the token in the input
sentence with the highest attention score.

5 Self-training Framework for Joint
Training of QA and QG models

In our self-training framework, we are given
unlabeled text in addition to the labeled pas-
sages, question and answer pairs. Self-training
(Yarowsky, 1995; Riloff et al., 2003), also known
as self-teaching, is one of the earliest techniques
for using unlabeled data along with labeled data to
improve learning. During self-training, the learner
keeps on labeling unlabeled examples and retrain-
ing itself on an enlarged labeled training set. We
extend self-training to jointly learn two models
(namely, QA and QG) iteratively. The QA and
QG models are first trained on the labeled corpus.
Then, the QG model is used to create more ques-
tions from the unlabeled text corpus and the QA
model is used to answer these newly created ques-
tions. These new questions (carefully selected by
an oracle – details later) and the original labelled
data is then used to (stochastically) update these
two models. This procedure can be repeated as
long as both the two models continue to improve.

Algorithm 1: Self-training QA and QG.
1 θ

(0)
qa ← Train initial QA model.

2 θ
(0)
qg ← Train initial QG model.

3 Init: i = 0
4 while performance on dev set rises do
5 CQi ← Set of candidate questions generated using

our QG model θ(i)qg from the unlabeled text T
which are not in D.

6 Qi ← k ×mi questions drawn from CQi using
our question selector oracleQS.

7 Ai ← Set of answers to questions Qi obtained
using our QA model θ(i)qa.

8 Let Di be the set of chosen questions Qi and
answers Ai.

9 Subsample S1 ⊂ Di of size k1 and S2 ⊂ D0 of
size k2. Let S = S1 ∪ S2

10 θ
(i+1)
qa ← Update QA model on S.

11 θ
(i+1)
qg ← Update QG model on S.

12 i++
13 end

Algorithm 1 describes the procedure in detail.
In each succesive iteration, we allow the addi-
tion of more questions than that introduced in
the previous iteration by a multiplicative factor.
This sheme adds fewer questions initially when
the QA and QG models are weak and more ques-
tions thereafter when the two models have (hope-
fully) improved. We found that this scheme works
better in practice than addiing a fixed number of
questions in each iteration. The two models are

631



updated on a subsample of the newly generated
datapoints and original unlabelled data.

Self-training has been seldom used in NLP.
Most prominently, it has been used for WSD
(Yarowsky, 1995), noun learning (Riloff et al.,
2003) and AMR parsing and generation (Konstas
et al., 2017). However, it has not been explored in
this way for QA and QG.

5.1 The Question Selection Oracle

A key challenge in self-training is selecting which
unlabeled data sample to label (iwhich generated
questions to add to the training set). The self-
training process may erroneously generate some
bad or incorrect questions which can sidetrack the
learning process. Thus, we implement a question
selection oracle which determines which questions
to add among the potentially very large set of ques-
tions generated by the QG model in each iteration.

Traditional wisdom in self-training (Yarowsky,
1995; Riloff et al., 2003) advises selecting a subset
of questions on which the models have the highest
confidence. We experiment with this idea, propos-
ing multiple self-training oracles which introduce
questions in the order of how confident the QA and
QG models are on the new potential question:

• QG: The QG oracle introduces the question
in the order of how confident the QG model is
on generating the question. This is calculated
by a number of heuristics (described later).

• QA: The QA oracle introduces the question
in the order of how confident the QA model
is on answering the question. This too is cal-
culated by some heuristics (described later).

• QA+QG: The QA+QG oracle introduces a
question when both QA and QG models are
confident about the question. The oracle
computes the minimum confidence of the QA
and QG models for a question and introduces
questions which have the the highest mini-
mum confidence score.

Our question selection heurisitcs are based on
the ideas of curriculum learning and diversity:

1. Curriculum learning (Bengio et al., 2009;
Sachan and Xing, 2016a) requires ordering
questions on the easiness scale, so that easy
questions can be introduced to the learning
algorithm first and harder questions can be

introduced successively. The main challenge
in learning the curriculum is that it requires
the identification of easy and hard questions.
In our setting, such a ranking of easy and
hard questions is difficult to obtain. A human
judgement of ‘easiness’ of a question might
not correlate with what is easy for our algo-
rithms in its feature and hypothesis space. We
explore various heuristics that define a mea-
sure of easiness and learn the ordering by se-
lecting questions using this measure.

2. A number of cognitive scientists (Cantor,
1946) argue that alongside curriculum learn-
ing, it is important to introduce diverse (even
if sometimes hard) samples. Inspired by this,
we introduce a measure of diversity and show
that we can achieve further improvements by
coupling the curriculum learning heuristics
with a measure for diversity.

Curriculum Learning: Studies in cognitive sci-
ence (Skinner, 1958; Peterson, 2004; Krueger and
Dayan, 2009) have shown that humans learn much
better when the training examples are not ran-
domly presented but organized in increasing or-
der of difficulty. In the machine learning commu-
nity, this idea was introduced with the nomencla-
ture of curriculum learning (Bengio et al., 2009),
where a curriculum is designed by ranking sam-
ples based on manually curated difficulty mea-
sures. A manifestation of this idea is self-paced
learning (SPL) (Kumar et al., 2010; Jiang et al.,
2014, 2015) which selects samples based on the
local loss term of the sample. We extend this idea
and explore the following heuristics for our vari-
ous oracles:
1) Greedy Optimal (GO): The simplest greedy
heuristic is to pick a question q which has the min-
imum expected effect on the QA and QG models.
The expected effect on adding q can be written as:

∑

a∈A
p(a∗ = a)E[LQA/QG]

Here, LQA/QG is LQA, LQG or min (LQA,LQG)
depending on which oracle we are using. p(a∗ =
a) can be estimated by computing the scores of
each of the answer candidates for q and normaliz-
ing them. E[LQA/QG] can be estimated by retrain-
ing the model(s) after adding this question.
2) Change in Objective (CiO): Choose question
q that causes the smallest increase in LQA/QG. If
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there are multiple questions with the smallest in-
crease in objective, pick one of them randomly.
3) Mini-max (M2): Choose question q that mini-
mizes the expected risk when including the ques-
tion with the answer candidate a that yields the
maximum error.

q̂ = argmin
q

max
a∈A
LQA/QG

4) Expected Change in Objective (ECiO): In
this greedy heuristic, we pick a question q which
has the minimum expected effect on the model.
The expected effect can be written as:

∑

a

p(a∗ = a)× E
[
LQA/QG

]

Here, p(a∗ = a) can again be achieved by com-
puting the scores of each of the answer candidates
for q and normalizing them and E

[
LQA/QG

]
can

be estimated by evaluating the model.
5) Change in Objective-Expected Change in
Objective (CiO - ECiO): We pick a question q
which has the minimum value of the difference
between the change in objective and the expected
change in objective described above. Intuitively,
the difference represents how much the model is
surprised to see this new question.
Time Complexity: GO and CiO require updating
the model, M2 and ECiO require performing in-
ference on candiate questions, and CiO - ECiO re-
quires retraining as well as inference. Thus, M2

and ECiO are computationally most efficient.
Ensembling: We introduce an ensembling strat-
egy that combines the heuristics into an ensem-
ble. We tried two ensembling strategies. The first
strategy computes the average score over all the
heuristics for all potential (top-K in beam) ques-
tions and picks questions with the highest average.
The second strategy uses minimum instead of the
average. Minimum works better than average in
practice and we use it in our experiments. The use
of minimum is inspired by agreement-based learn-
ing (Liang et al., 2008), a well-known extension of
self-training which uses multiple views of the data
(described using different feature sets or models)
and adds new unlabeled samples to the training set
when multiple models agree on the label.
Diversity: The strategy of introducing easy ques-
tions first and then gradually introducing harder
questions is intuitive as it allows the learner to im-
prove gradually. Yet, it has one key deficiency.
With curriculum learning, by focusing on easy

questions first, our learning algorithm is usually
not exposed to a diverse set of questions. This
is particularly a problem for deep-learning ap-
proaches that learn representations during the pro-
cess of learning. Hence, when a harder question
arrives, it can be difficult for the learner to ad-
just to the new question as the current represen-
tation may not be appropriate for the new level
of question difficulty. We tackle this by introduc-
ing an explore and exploit (E&E) strategy. E&E
ensures that while we still select easy questions
first, we also want to make our selection as di-
verse as possible. We define a measure for di-
versity as the angle between the question vectors:
∠qi,qj = Cosine−1

(
|qiqj |
||qi||||qj ||

)
. E&E picks the

question which optimizes a convex combination
(tuned on the dev set) of the curriculum learning
objective and sum of angles between the candidate
questions and the questions in the training set.

6 Experiments

Implementation Details: We perform the same
preprocessing on all the text. We lower-case all
the text. We use NLTK for word tokenization.
For training our neural networks, we only keep
the most frequent 50k words (including entity and
placeholder markers), and map all other words to a
special <UNK> token. We choose word embed-
ding size d = 100, and use the 100-dimensional
pretrained GloVe word embeddings (Pennington
et al., 2014) for initialization. We set k, m, k1
and k2 (hyperparameters for self-training) by grid
search on a held-out development set.
Datasets: We report our results on four datasets:
SQUAD (Rajpurkar et al., 2016), MS MARCO
(Nguyen et al., 2016), WikiQA (Yang et al., 2015)
and TrecQA (Wang et al., 2007). SQUAD is a
cloze-style reading comprehension dataset with
questions posed by crowd workers on a set of
Wikipedia articles, where the answer to each ques-
tion is a segment of text from the corresponding
reading passage. MS MARCO contains questions
which are real anonymized queries issued through
Bing or Cortana and the documents are related
web pages which may or help answer the question.
WikiQA is also a datset of queries taken from Bing
query logs. Based on user clicks, each query is
associated with a Wikipedia page. The summary
paragraph of the page is taken as candidate answer
sentences, with labels on whether the sentence is a
correct answer to the question provided by crowd
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SQUAD MS MARCO WikiQA TrecQA
Train Dev Test Train Dev Test Train Dev Test Train Dev Test

#Questions 82,326 4,806 5,241 87,341 5,273 5,279 1,040 140 293 1,229 82 100
#Question-Answer Pairs 676,193 39,510 42,850 440,573 26,442 26,604 20,360 2,733 6,165 53,417 1,148 1,517

Table 1: Statistics of the four datasets used in evaluating our QA and QG models.

workers. Finally, TrecQA is a QA answer sentence
selection dataset from the TREC QA track.

While WikiQA and TrecQA are directly answer
sentence selection tasks, the other two are not.
Hence, we treat the SQUAD and MS MARCO tasks
as the answer sentence selection task assuming a
one to one correspondence between answer sen-
tences and annotated correct answer spans. Note
that only a very small proportion of answers (<
0.2% in training set) span two or more sentences.
Since SQUAD and MS MARCO have a hidden test
set, we only use the training and development sets
for our evaluation purposes and we further split the
provided development set into a dev and test set.
This is also the data analysis setting used in pre-
vious works (Du et al., 2017; Tang et al., 2017).
In fact, we use the same setting as in Tang et al.
(2017) for comparison. The statistics of the four
datasets and the respective train, dev and test splits
are given in Table 1. For WikiQA and TrecQA
datasets, we use the standard data splits. We use
a large randomly subsampled corpus of English
Wikipedia and use the first paragraph of each doc-
ument as unlabeled text for self-training.
Evaluation Metrics: Following Tang et al.
(2017), we evaluate our QA system with three
standard evaluation metrics: Mean Average Pre-
cision (MAP), Mean Reciprocal Rank (MRR) and
Precision@1 (P@1). For QG, we follow Du et al.
(2017) and use automatic evaluation metrics from
MT and summarization: BLEU-4 (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014)
and RougeL (Lin, 2004) to measure the overlap be-
tween generated and ground truth questions.
Baselines: For SQUAD and MS MARCO datasets,
we use four QA baselines that have been used
in previous works (Tang et al., 2017). The first
two baselines, WordCnt and NormWordCnt, have
been taken from Yang et al. (2015) and Yin
et al. (2015), and are based on simple word over-
lap which have been shown to be strong base-
lines. These compute word co-occurrence be-
tween a question sentence and the candidate an-
swer sentence. While WordCnt uses unnormalized
word co-occurrence, NormWordCnt uses normal-
ized word co-occurrence. The third and fourth
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Figure 1: MAP for our best self-trained QA model
(with 10,000 Wikipedia paragraphs) without any cur-
riculum learning (i.e. candidate questions are added
randomly) vs epochs.

baselines are CDSSM (Shen et al., 2014) and
ABCNN (Yin et al., 2015) which use a neural
network approach to model semantic relatedness
of sentence pairs. For the WikiQA and TrecQA
dataset, we report results of various existing state-
of-the-art approaches on the two datasets2.

For QG, we compare our model against the fol-
lowing four baselines used in previous work (Du
et al., 2017). The first baseline is a simple IR base-
lines taken from Rush et al. (2015) which gener-
ates questions by memorizing them from the train-
ing set and uses edit distance (Levenshtein, 1966)
to calculate distance between a question and the
input sentence. The second baseline is a MT sys-
tem – MOSES (Koehn et al., 2007) which mod-
els question generation as a translation task where
raw sentences are treated as source texts and ques-
tions are treated as target texts. The third baseline,
DirectIn, uses the longest sub-sentence of the in-
put sentence (using a set of simple sentence split-
ters) as the question. The fourth baseline, H&S
is a rule-based overgenerate-and-rank system pro-
posed by Heilman and Smith (2010).
The Question Selection Oracle: The first ques-
tion we wish to answer is: Is careful question se-
lection even necessary? To answer this, we plot
MAP scores for our best QA model (QA+QG, En-
semble+E&E) when we do not have a curriculum
learning based oracle (i.e. an oracle which picks
questions to be added to the dataset randomly) in
Figure 1 as a function of epochs. We observe that

2https://aclweb.org/aclwiki/Question_
Answering_(State_of_the_art)
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Figure 2: MAP for the best models for the three or-
acles: QA, QG and QA+QG. Also on the same plot,
MAP when we have no curriculum learning.

SQUAD MS MARCO
MAP MRR P@1 MAP MRR P@1

WordCnt 0.396 0.401 0.179 0.809 0.817 0.689
NormWordCnt 0.422 0.429 0.203 0.871 0.879 0.796
CDSSM 0.443 0.449 0.228 0.798 0.804 0.672
ABCNN 0.469 0.477 0.263 0.869 0.875 0.784
Tang et al. (2017) 0.484 0.491 0.275 0.864 0.872 0.781
Ens+E&E(0) 0.471 0.478 0.263 0.858 0.865 0.774
Ens+E&E(100) 0.524 0.493 0.273 0.881 0.890 0.799
Ens+E&E(1000) 0.537 0.502 0.284 0.885 0.895 0.801
M2 0.489 0.490 0.268 0.860 0.872 0.785
ECiO 0.498 0.494 0.273 0.877 0.886 0.793
GO 0.506 0.495 0.274 0.879 0.889 0.793
CiO 0.511 0.498 0.277 0.879 0.890 0.795
CiO-ECiO 0.517 0.500 0.280 0.881 0.892 0.798
Ensemble 0.539 0.504 0.284 0.886 0.895 0.800
Ens+E&E(10000) 0.539 0.507 0.289 0.889 0.896 0.801

Table 2: Performance of our models and QA baselines
on SQUAD and MS MARCO datasets. Shaded part of
the table shows results of various question selection
heuristics when 10000 Wiki paragraphs are used as un-
labeled data.

the MAP score degrades instead of improving with
time. This supports our claim that we need to aug-
ment the training set by a more careful procedure.

We also plot MAP scores for our best QA model
(Ensemble+E&E) when we use various question
selection oracles as a function of the amount of
unlabeled data in Figure 2. We can observe that
when we do not have a curriculum learning based
oracle, the MAP score degrades by having more
and more unlabeled data. We also observe that
the QA+QG oracle performs better than QA and
QG which confirms that the best oracle is one that
selects questions in increasing degree of hardness
in terms of both question answering and question
generation. This holds for all the experimental set-
tings. Thus we only show results for the QA+QG
strategies in our future experiments.
Evaluating Question Answering: First, we eval-
uate our models on the question answering task.
Ensemble+E&E(K) is the variant where we per-
form self-training using K Wikipedia paragraphs.
Hence, Ensemble+E&E(0) is the variant of our

MAP MRR
CNN (Yang et al., 2015) 0.665 0.652
APCNN (Santos et al., 2016) 0.696 0.689
NASM (Miao et al., 2016) 0.707 0.689
ABCNN (Yin et al., 2015) 0.702 0.692
KVMN (Miller et al., 2016) 0.707 0.727
Wang et al. (2016b) 0.706 0.723
Wang et al. (2016a) 0.734 0.742
Wang and Jiang (2016) 0.743 0.755
Tang et al. (2017) 0.700 0.684
Ensemble+E&E(0) 0.691 0.675
Ensemble+E&E(100) 0.718 0.719
Ensemble+E&E(1000) 0.734 0.733
M2 0.719 0.704
ECiO 0.721 0.708
GO 0.725 0.710
CiO 0.727 0.719
CiO-ECiO 0.734 0.724
Ensemble 0.743 0.743
Ensemble+E&E(10000) 0.754 0.753

Table 3: Performance of our models and the QA base-
lines on the WikiQA dataset. Shaded part of the table
shows the effect of various question selection heuris-
tics when 10000 Wikipedia paragraphs are used as un-
labeled data. Our model achieves the state-of-the-art.

MAP MRR
He and Lin (2016) 0.758 0.822
He et al. (2015) 0.762 0.830
Tay et al. (2017) 0.770 0.825
Rao et al. (2016) 0.780 0.834
Ensemble+E&E(0) 0.742 0.813
Ensemble+E&E(100) 0.776 0.831
Ensemble+E&E(1000) 0.783 0.836
M2 0.759 0.816
ECiO 0.762 0.822
GO 0.759 0.823
CiO 0.762 0.826
CiO-ECiO 0.767 0.830
Ensemble 0.789 0.843
Ensemble+E&E(10000) 0.798 0.854

Table 4: Performance of our models and the QA base-
lines on the TrecQA dataset. Shaded part of the table
shows the effect of various question selection heuris-
tics when 10000 Wikipedia paragraphs are used as un-
labeled data. Our model achieves the state-of-the-art.

model without any self-training. We vary K to
see the impact of the size of unlabeled Wikipedia
paragraphs on the self-training model.

Table 2 shows the results of the QA evaluations
on the SQUAD and MS MARCO datasets. We can
observe that our QA model has competetive or
better performance over all the baselines on both
datasets in terms of all the three evaluation met-
rics. When we incorporate ensembling or diver-
sity, we see a further improvement in the result.

Tables 3 and 4 show results of QA evaluations
on the WikiQA and TrecQA datasets, respectively.
We can again observe that our QA model is com-
petitive to all the baselines. When we introduce
ensembling and diversity while jointly learning the
QA and QG models, we see incremental improve-
ments. In both these answer sentence selection
tasks, our approach achieves new state-of-the-art.
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SQUAD MS MARCO WikiQA TrecQA
B M R B M R B M R B M R

IR 1.07 7.77 20.85 0.81 5.42 15.78 0.93 6.89 19.98 0.83 5.73 16.34
MOSES 0.31 10.49 17.88 0.27 9.74 15.82 0.32 10.26 17.27 0.29 9.86 17.02
DirectIn 11.25 14.91 22.51 10.82 13.35 20.38 10.94 14.18 22.01 9.59 12.21 19.76
H&S 11.23 16.00 31.03 10.16 15.07 30.00 10.35 15.30 30.72 9.19 12.72 23.38
Tang et al. (2017) 5.03 - - 9.31 - - 3.15 - - - - -
Du et al. (2017) 12.28 16.62 39.75 - - - - - - - - -
Ens.+E&E(0) 12.31 16.67 39.78 11.14 15.60 37.26 11.38 16.08 38.42 10.96 14.25 27.27
Ens.+E&E(100) 14.14 18.70 42.46 13.25 17.10 40.28 13.10 17.00 40.93 11.63 15.05 29.07
Ens.+E&E(1000) 14.27 18.78 42.93 13.61 17.87 41.23 13.22 18.34 42.72 12.24 15.93 30.26
M2 12.46 16.95 40.27 11.56 15.93 38.32 11.83 16.84 39.26 11.52 16.42 28.92
ECiO 12.79 17.40 40.92 12.11 16.32 38.86 12.14 17.04 39.82 11.67 16.59 29.12
GO 13.12 17.73 41.24 12.75 16.66 39.47 12.56 17.62 40.31 11.61 16.52 29.10
CiO 13.59 17.94 41.57 13.00 16.83 40.02 12.88 18.13 40.97 11.97 16.68 29.89
CiO-ECiO 13.97 18.18 41.90 13.41 17.16 40.65 13.22 18.34 41.28 12.24 16.65 29.63
Ensemble 14.37 18.57 42.73 13.56 17.40 40.92 14.26 18.91 43.26 13.32 16.76 30.12
Ens.+E&E(10000) 14.28 18.79 42.97 13.74 17.89 41.07 15.26 19.45 44.77 14.87 16.88 31.91

Table 5: Performance (B: BLEU4, M: METEOR, and R: ROUGE) of our model variants and various QG baselines
on SQUAD, MS MARCO and WikiQA datasets. The shaded part of the table shows the effect of various question
selection heuristics when 10000 Wikipedia paragraphs are used as unlabeled data. The performance numbers for
Tang et al. (2017) and Du et al. (2017) were not reported for all the settings.

Evaluating Question Generation: Table 5 shows
the results for QG on the four datasets on each
of the three evaluation metrics on all the four
datasets. We can observe that the QG model de-
scribed in our paper performs much better than all
the baselines. We again observe that self-training
while jointly training the QA and QG models leads
to even better performance. These results show
that self-training and leveraging the relationship
between QA and QG is very useful for boosting
the performance of the QA and QG models, while
additionally only using cheap unlabeled data.

Human Evaluations: We asked two people not
involved with this research to evaluate 1000 (ran-
domly selected) questions generated by our best
QG model and our best performing baseline (Du
et al., 2017) on SQUAD for fluency and correct-
ness on a scale of 1 to 5. The raters were also
shown the passage sentence used to generate the
question. The raters were blind to which system
produced which question. The Pearson correla-
tion between the raters’ judgments was r = 0.89
for fluency and r = 0.78 for correctness. In our
analyses, we used the averages of the two raters’
judgments. The evaluation showed that our sys-
tem generates questions that are more fluent and
correct than those by the baseline. The mean flu-
ency rating of our best system was 4.15 compared
to 3.35 for the baseline, a difference which is sta-
tistically significant (t-test, p < 0.001).
Evaluating the Question Selection Oracle: As
discussed earlier, the choice of which subset of
questions to add to our labeled dataset while self-
training is important. To evaluate the various
heuristics proposed in our paper, we show the ef-
fect of the question selection oracle on the final

QA and QG performance in Tables 2, 3, 4 and 5.
These comparisions are shown in the shaded grey
portions of the tables for self-training with 10,000
Wikipedia paragraphs as unlabeled data.

We can observe that all the proposed heuristics
(and ensembling and diversity strategies) lead to
improvements in the final performance of both QA
and QG. The heuristics arranged in increasing or-
der of performance are: M2, ECiO, GO, CiO and
CiO-ECiO. While the choice of which heuristic to
pick seems to make a lesser impact on the final
performance, we do see a much more significant
performance gain by ensembling to combine the
various heuristics and using E&E to incorporate
diversity. The incorporatation of diversity is im-
portant because the neural network models which
learnt latent representions of data usually find it
hard to adjust to new level of difficulty of ques-
tions as the current representation may not be ap-
propriate for the new level of difficulty.
Low data scenarios: A key advantage of our self-
training approach is that it can leverage unlabeled
text, and thus requires less labeled data. To test
this, we plot MAP for our best self-training model
and various QA baselines as we vary the propor-
tion of labeled training set in Figure 3. However,
we keep the unlabeled text fixed (10K Wikipedia
paragraphs). We observe that all the baselines sig-
nificantly drop in performance as we reduce the
proportion of labeled training set. However, the
drop happens at a much slower rate for our self-
trained model. Thus, we can conclude that our ap-
proach requires less labeled data as compared to
the baselines.
Does more unlabeled text always help?: An-
other important question is: Does more unlabeled
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Figure 3: MAP for the best self-training model and QA
baselines as we vary the proportion of labeled training
set but keep the unlabeled text fixed (10K Wikipedia
paragraphs).

text always improve our models? Will the perfor-
mance improve if we add more and more unsuper-
vised data during self-training. According to our
results in Tables 2, 3, 4 and 5, the answer is ”prob-
ably yes”. As we can observe from these tables,
the performance of the QA and QG models im-
proves as we increase K, the size of the unsuper-
vised data during training of the various Ensem-
ble+E&E(K) models. Having said that, we do see
a tapering effect on the performance results, so it is
clear that the performance will be capped by some
upper-bound and we will need better ways of mod-
eling language and meaning to make progress.

7 Related Work

Our work proposes an approach for joint model-
ing QA and QG. While QA has recieved a lot
of attention from the research community with
large scale community evaluations such as NTCIR,
TREC, CLEF spurring progress, the focus on QG
is much more recent. Recently, there has been a
renewed interest in reading comprehensions (also
known as machine comprehension – a nomencla-
ture popularized by Richardson et al. (2013)). Var-
ious approaches (Sachan et al., 2015; Wang et al.,
2015; Sachan and Xing, 2016b; Sachan et al.,
2016; Narasimhan and Barzilay, 2015) have been
proposed for solving this task. After the release of
large benchmarks such as SQUAD, MS MARCO
and WikiQA, there has been a surge in interest
on using neural network or deep-learning models
for QA (Yin et al., 2015; Seo et al., 2016; Shen
et al., 2016; Chen et al., 2017; Liu et al., 2017;
Hu et al., 2017). In our work, we deal with the
answer sentence selection task and adapt the At-
tentive Reader framework proposed in Hermann

et al. (2015); Chen et al. (2016) as our base model.
While, all these models were trained on question
answer pairs, we propose a self-training solution
to additionally leverage unsupervised text.

Similarly, there have been works on QG.
Traditionally, rule based approaches with post-
processing (Woo et al., 2016; Heilman and Smith,
2009, 2010) were the norm in QG. However, re-
cent papers build on neural network approaches
such as seq2seq (Du et al., 2017; Tang et al.,
2017; Zhou et al., 2017), CNNs and RNNs (Duan
et al., 2017) for QG. We also choose the seq2seq
paradigm in our work. However, we leverage un-
supervised text in contrast to these models.

Finally, some very recent works have concur-
rently recognized the relationship between QA
and QG and have proposed joint training (Tang
et al., 2017; Wang et al., 2017) for the two. Our
work differs from these as we additionally pro-
pose self-training to leverage unlabeled data to
improve the two models. Self-training has sel-
dom been used in NLP. Most prominently, they
have been used for word sense disambiguation
(Yarowsky, 1995), noun learning (Riloff et al.,
2003) and recently, AMR parsing and generation
(Konstas et al., 2017). However, it has not been
explored in this way for QA and QG.

An important decision in the workings of our
self-training algorithm was the question selection
using curriclum learning. While curriculum learn-
ing has seldom been used in NLP, we draw some
ideas for curriculum learning from Sachan and
Xing (2016a) who conduct a case study of curricu-
lum learning for question answering. However,
their work focuses only on QA and not QG.

8 Conclusion

We described self-training algorithms for jointly
learning to answer and ask questions while lever-
aging unlabeled data. We experimented with neu-
ral models for question answering and question
generation and various careful strategies for ques-
tion filtering based on curriculum learning and di-
versity promotion. This led to improved perfor-
mance for both question answering and question
generation on multiple datasets and new state-of-
the-art results on WikiQA and TrecQA datasets.
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