
Proceedings of NAACL-HLT 2016, pages 109–115,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Question Answering over Knowledge Base using Factual Memory Networks

Sarthak Jain
Department of Computer Engineering

Delhi Technological University
DL, India

successar@gmail.com

Abstract

In the task of question answering, Memory
Networks have recently shown to be quite ef-
fective towards complex reasoning as well as
scalability, in spite of limited range of topics
covered in training data. In this paper, we
introduce Factual Memory Network, which
learns to answer questions by extracting and
reasoning over relevant facts from a Knowl-
edge Base. Our system generate distributed
representation of questions and KB in same
word vector space, extract a subset of initial
candidate facts, then try to find a path to an-
swer entity using multi-hop reasoning and re-
finement. Additionally, we also improve the
run-time efficiency of our model using various
computational heuristics.

1 Introduction

Open-domain question answering (Open QA) is
a longstanding problem that has been studied for
decades. Early systems took an information retrieval
approach, where question answering is reduced to
returning passages of text containing an answer as
a substring. Recent advances in constructing large-
scale knowledge bases (KBs) have enabled new sys-
tems that return an exact answer from a KB.

A key challenge in Open QA is to be robust to
the high variability found in natural language and
the many ways of expressing knowledge in large-
scale KBs. Another challenge is to link the natural
language of questions with structured semantics of
KBs. In this paper, we present a novel architecture
based on memory networks (Bordes et al., 2015) that
can be trained end-to-end using (question, answer)

pairs as training set, instead of strong supervision in
the form of (question, associated facts in KB) pairs.

The major contributions of this paper are two-
fold: first, we introduce factual memory networks,
which are used to answer questions in natural lan-
guage (e.g “Where was Bill Gates born?”) using
facts stored in the form of (subject, predicate, object)
triplets in a KB (e.g (’Bill Gates’, ’place of birth’,
’Seattle’)). We evaluate our system against current
baselines on various benchmark datasets. Since KBs
can be extremely large, making it computationally
inefficient to search over all entities and paths, our
second goal of this paper is to increase the efficiency
of our model in terms of various performance mea-
sures and provide better coverage of relevant facts,
by intelligently selecting which nodes to expand.

2 Related Work

The state-of-the-art methods for QA over a knowl-
edge base can be classified into three classes: se-
mantic parsing, information retrieval and embedding
based.

Semantic parsing (Cai and Yates, 2013; Berant
et al., 2013; Kwiatkowski et al., 2013; Berant and
Liang, 2014; Fader et al., 2014) based approaches
aim to learn semantic parsers which parse natural
language questions into logical forms and then query
knowledge base to lookup answers. Even though
these approaches are difficult to train at scale be-
cause of the complexity of their inference, they tend
to provide a deep interpretation of the question.

Information retrieval based systems retrieve a set
of candidate answers and then conduct further analy-
sis to rank them. Their main difference lies in select-

109

ing correct answers from the candidate set. Yao and
Van Durme (2014) used rules to extract question fea-
tures from dependency parse of questions, and used
relations and properties in the retrieved topic graph
as knowledge base features.

Embedding based approaches (Bordes et al.,
2014b; Bordes et al., 2014a) learn low-dimensional
vectors for words and knowledge base constitutes,
and use the sum of these vectors to represent ques-
tions and candidate answers. However, simple vec-
tor addition ignores word order information and
higher order n-grams. For example, the question
representations of “who killed A?” and “who A
killed?” are same in the vector addition model.
(Bordes et al., 2015) used strong supervision sig-
nal in form of supporting facts for a question during
training to improve their performance.

3 Preprocessing KB and Questions

3.1 Processing FREEBASE

Freebase : Freebase (Bollacker et al., 2008) is a
huge and freely available database of factual infor-
mation, organized as triplets (subject Entity, Rela-
tionship, object Entity). All Freebase entities and
relationships are typed and the lexicon for types and
relationships is closed. Each entity has an internal
id and a set of alternative names (called aliases, e.g.
JFK for John Kennedy) that can refer to that entity
in text.

The overall structure of Freebase is a hypergraph,
in which more than two entities can be linked to-
gether in a n-ary fact. The underlying triple stor-
age involves dummy entities to represent such facts,
effectively making actual entities involved linked
through paths of length 2, instead of 1. For exam-
ple, a statement like “A starred as character B in
movie C” is represented in Freebase as (A, ’star-
ring’, dummy entity), (dummy entity, ’movie’, C),
(dummy entity, ’character’, B), where dummy entity
has same internal id in all three facts.

To obtain direct links between entities in such
cases, we modify these facts by removing the
dummy entities and using the second relationship
as the relationship for the new condensed facts. In
our example, we condense aforementioned facts into
two : (A, ’character’, B) and (A, ’movie’, C). Also,
we label these condensed facts as siblings of each

other. Therefore, (A, ’character’, B) is sibling of
(A, ’movie’, C) and vice versa. Moving forward, we
use the term ’fact’ to refer to a triplet in Freebase,
containing actual entities only (no dummy entities).

After above preprocessing, we represent each en-
tity and relationship in KB as a vector ∈ Rd. Each
such entity/relationship vector is computed as the
average of its word vectors, where each word vector
∈ Rd. In case of entities, we also include word vec-
tors of all its aliases when calculating the average.
Such a scheme has the additional advantage that we
can benefit from pre-trained unsupervised word vec-
tors (e.g. from Word2Vec), which in general capture
some distributional syntactic and semantic informa-
tion.

3.2 Processing Question
Let a question be given as sequence of words
(x1, x2, . . . , x|q|). Each word xi mapped to its word
vector. We experimented with two different ways
to compose the question embedding q out of these
word-vectors:

Bag-of-words (BOW): It is sum of individual
word vectors i.e. q =

∑|q|
i=1 xi.

Position Encoding (PE): This heuristic take in
account order of words in the question. The em-
bedding is of form q =

∑|q|
i=1 li � xi where �

is an element-wise multiplication. For each i, li
is a column vector ∈ Rd with the structure lij =
min(i×d

j×|q| ,
j×|q|
i×d), where d is the dimension of the

embedding and j runs from 1 to d. This type of
function ensures that initial part of summed vector
is weighed higher for initial word vectors and vice
versa. Thus, a statement like ’Who is parent of
Darth Vader?’ will map to a different embedding
than statement like ’Who is Darth Vader parent of?’.

4 Model Description

4.1 Fact Extraction
To begin, we generate an initial list of facts (called
candidate fact list) which is fed as input to our net-
work. To generate this list, we match all possible n-
grams of words of the question to aliases of Freebase
entities and discard all n-grams (and their matched
entities) that are a subsequence of another n-gram.
All facts having one of the remaining entities as sub-
ject are added to candidate fact list.

110

4.2 Factual Memory Network
A L-Hop Factual Memory Network consists of L
Computation Layers C1 . . . CL connected one after
another in a linear chain, and an Output Function.
The initial Computation Layer C1 takes as input the
candidate fact list (from previous step) and the initial
question embedding (from Section 3.2). The Output
Function takes as input the output of final Compu-
tation Layer CL and generates a list of answers (in
form of Freebase entities). Layer Ci takes as input
the output of layer Ci−1.

4.2.1 Computation Layer
A Computation layer accesses two inputs : 1) a

fact list (our ’memory’) F = {f1 . . . f|F |}, where
each fact f is of form (s,R, o), s and o being the en-
tity vectors and R the relationship vector, 2) a ques-
tion embedding q ∈ Rd. For each fact f ∈ F , we
calculate an unnormalised score g(f) and a normal-
ized score h(f).

We visualize a fact f = (s,R, o) as a question-
answer pair with (s,R) forming the question and o
the answer. Therefore, g(f) calculates similarity be-
tween the given question embedding and a hypothet-
ical question of form q′ = (s,R).

g(f) = qT (s+R) (1)

For example, given a question q = “Where was Bill
Gates born?” and a fact f = (’Bill Gates’, ’place of
birth’, ’Seattle’), g(f) will compute similarity be-
tween the question q and a hypothetical question q′

of form “Bill Gates place of birth?”.
In case a fact f has some siblings b1, b2, . . . , bk

(Section 3.1), we re-calculate its g(f) as follows:

g(f) = average(g(f), g(b1), g(b2), . . . , g(bk)) (2)

where g(f) on RHS is calculated using Eq.(1). For
each sibling bi, we calculate g(bi) using Eq.(1), but
with bi’s subject replaced by its object in the for-
mula.

Continuing with example in Section 3.1, if f =
(A,’character’,B) and b1 = (A,’movie’,C) is sibling
of f , then this kind of processing is helpful in an-
swering questions like “What character does A play
in movie C?”, where fact f alone would not be
enough to answer the question. Thus, above pro-
cessing corresponds to a hypothetical question of
form “A character C movie ?” for the fact f .

The normalized score h(f) for a fact f is calcu-
lated using softmax function over all facts to deter-
mine their relative importance.

h(f) =
exp(g(f))∑

f ′∈F exp(g(f ′))
(3)

Next we modify the fact list and the question em-
bedding on basis of above calculated scores.

Step 1. Fact Pruning: We choose a threshold
value ε and remove facts from fact list with h(f) <
ε. We found in our experiments that setting ε =
maxf ′∈F h(f)

2 gives best results. Performing pruning
seems to remove non-relevant facts from subsequent
computation, significantly improving our response
time and allowing us to explore larger search space
around the subgraphs of our question entities.

Step 2. The question embedding is modified as
follows:

q′ = q +
∑
f∈F

h(f)(s+R) (4)

Each such modification allows us to incorporate
knowledge gathered (in form of hypothetical ques-
tions (s,R), weighted by their relevance h) at a par-
ticular layer about the question and pass it on to sub-
sequent layer.

Step 3. Fact Addition: For each object entity o
belonging to a fact f , we find all the facts (o,R′, o′)
connected to it in KB and assign a score h(f)q′T (o+
R′) to each of them. If the new fact’s score is > ε, it
is added to the fact list, effectively increasing path-
length of our search space by 1.

The modified fact list along with the new question
embedding(q′) form the outputs of this layer, which
are fed as input to next Computation Layer or the
Output function.

4.2.2 Output Function
Output Function takes as input the output of fi-

nal Computation Layer CL (i.e. its output fact list
and q′) and calculate scores h(f). The answer set is
formed by the object entity of highest scoring fact
as well as object entities of all those facts that have
same s and R as the highest scoring fact.

This simple heuristic can increase utility of our
model when there are multiple correct answers for
a question. For example, a question like ’Who is

111

Anakin Skywalker father of?’ has more than one an-
swer entities i.e. [’Leia Organa’, ’Luke Skywalker’],
and they are all linked by same s (’Anakin Sky-
walker’) and R (’children’) in Freebase. Of course,
this follows the assumption that all such facts sur-
vive till this stage and atleast one of them is highest
scoring fact.

4.3 Training Objectives
Let the QA training set D be set of question-answer
pairs (q, A), where q is the question with list of cor-
rect answers A, e.g. (q = ’Who is Anakin Skywalker
father of?’,A = [’Leia Organa’, ’Luke Skywalker’]).
To train our parameters, we minimize the following
loss function:

LQA =
∑
(q,A)

L∑
n=1

n

L
‖|Fn|

∑
a∈A

a− |A|
∑
f∈Fn

h(f).o‖2

(5)
Here n refers to n-th Computation Layer in our net-
work (with Fn as its input fact list) and L is total
number of Computation layers/hops in the network.
This loss function defines the degree to which the
object entities in fact list of a given layer are near
to given answer list, weighted by h(f), by taking
pairwise difference between entities in answer list
and objects in fact list. It was observed that mini-
mizing this function gives higher weights to facts in
which object entities are similar to answer entities as
well as allow our network to generate shorter paths
to reach answers from the question.

Paraphrasing Loss: Following previous work
such as (Fader et al., 2013; Bordes et al., 2015), we
also use the question paraphrases dataset WikiAn-
swers1 to generalize for words and question patterns
which are unseen in the training set of question-
answer pairs. We minimize hinge loss so that a ques-
tion and its paraphrases should map to similar rep-
resentations. For the paraphrase dataset P of set of
tuples (p, p′) where p and p′ are paraphrases of each
other, the loss is defined as:

LPP =
∑
(p,p′)

max{0, 0.1− pT p′ + pT p′′} (6)

where p′′ is random example in P that is not a para-
phrase of p and 0.1 is the margin hyper-parameter.

1http://knowitall.cs.washington.edu/paralex/

Backpropagation is used to calculate gradients
while Adagrad was used to perform optimisation us-
ing max-norm regularisation. At each time step, a
sample is drawn from either P with probability 0.25
or D with probability 0.75. If sample from P is
chosen, gradient of LPP is calculated. Otherwise,
gradient of LQA is calculated. The only parameters
optimised in our model are the word vectors.

5 Experimental Setup

5.1 Baselines

We evaluate our model on following datasets:
WebQuestions2: This dataset, introduced in (Be-

rant et al., 2013), contains 5,810 question-answer
pairs where answer can be a list of entities, simi-
lar to (q, A) pairs described before. It was created
by crawling questions through the Google Suggest
API, and then obtaining answers using Amazon Me-
chanical Turk. WebQuestions is built on Freebase
since all answers are defined as Freebase entities.

On WebQuestions, we evaluate against follow-
ing baselines : (Berant et al., 2013; Berant and
Liang, 2014; Yih et al., 2015) (semantic parsing
based methods), (Fader et al., 2013) (uses a pattern
matching scheme), (Bordes et al., 2014b; Bordes et
al., 2014a; Bordes et al., 2015) (Embedding based
approaches). Results of the baselines have been ex-
tracted from respective papers, except for (Berant et
al., 2013; Berant and Liang, 2014) where we use the
code provided by the author to replicate the results2.

We compare our system in terms of F1 score as
computed by the official evaluation script 2 (Berant
et al., 2013), which is the average, over all test ques-
tions, of the F1-score of the sets of predicted an-
swers.

SimpleQuestions3:The SimpleQuestions dataset,
introduced in (Bordes et al., 2015), consists of a to-
tal of 108,442 questions written in natural language
by human English-speaking annotators each paired
with a corresponding Freebase fact. Our model only
use the answer entity during the training, instead of
whole fact. For example, {q = ’Which forest is Fires
Creek in?’, Fact = ’(fires creek, contained by, nan-
tahala national forest)’} could be data point in Sim-
pleQuestions but we only use {q = ’Which forest is

2www-nlp.stanford.edu/software/sempre/
3fb.ai/babi

112

Fires Creek in?’, A = [’nantahala national forest’]}
for training.

On SimpleQuestions, we evaluate against previ-
ous result (Bordes et al., 2015) in terms of path-level
accuracy, in which a prediction is correct if the sub-
ject and the relationship of highest scoring fact were
correctly retrieved by the system.

5.2 Experimental Setup

The current dump of Freebase data was down-
loaded4 and processed as described before. Our data
contained 1.9B triplets. We used following splits of
each evaluation dataset for training, validation and
testing, same as (Bordes et al., 2015).
WebQuestions (WQ) : [3000, 778, 2032]
SimpleQuestions (SQ) : [75910, 10845, 21687]
We also train on automatic questions generated from
the KB, which are essential to learn embeddings for
the entities not appearing in either WebQuestions or
SimpleQuestions. We generated one training ques-
tion per fact following the same process as that used
in (Bordes et al., 2014a).

The embedding dimension d was chosen 64 and
max-norm cutoff was chosen as 4 using validation
dataset. We pre-train our word vectors using method
described by (Wang et al., 2014) to initialize our em-
beddings.

We experimented with variations of our model
on both test sets. Specifically, we analyze the ef-
fect of question encoding (PE vs BOW), number of
Hops and inclusion of pruning/fact-additions (P/FA)
in our model. In subsequent section, the word ’sig-
nificant’ implies that the results were statistically
significant (p < 0.05) with paired T-test

6 Results

The results of our experiments are presented in Ta-
ble 1. It shows that our best model outperforms
considered baselines by about 3% in case of We-
bQuestions and even comparable to previous results
in case of SimpleQuestions. Note that the best per-
forming system for SimpleQuestions used strong su-
pervision (question with supporting fact) while our
model used only answer entities associated with a
question for training.

4https://developers.google.com/freebase/data

Setup WQ SQ
F1 Acc

Random Guess 1.9 4.9
(Berant et al., 2013) 31.3 n/a

(Bordes et al., 2014a) 39.2 n/a
(Berant and Liang, 2014) 39.9 n/a

(Yih et al., 2015) 52.5 n/a
(Bordes et al., 2015) 42.2 63.9

PE + 3-Hop 55.6 59.7
BOW + 3-Hop 48.5 54.6

PE + 2-Hop 53.8 57.3
PE + 1-Hop 47.9 55.2

without P/FA 44.3 53.8
Table 1: Results on Evaluation datasets. Acc = Accuracy

We also give the performance for the variations of
our model. Position Encoding improves our perfor-
mance by 7% on WQ and by 5% on SQ, validating
our choice of heuristic. Also, most answers in both
datasets can be found within path length of two from
candidate fact list, thus a 3-Hop network shows only
2% improvement over 2-Hop network.

WQ SQ
Top-2 70.1 68.7
Top-3 76.4 74.5
Top-5 80.3 77.6

Top-10 88.9 85.2
Table 2: Top-K results of our best model on each test set

Top-K Performance: In Table 2, we present the
top-k results on both datasets. A large majority of
questions can be answered from the top two or three
candidates. By providing these alternative results
(in addition to the top-ranked candidate) to the user,
many questions can be answered correctly.

6.1 Efficiency and Error Analysis
Efficiency: All experiments for this paper were
done on an Intel Core i5 CPU @ 2.60GHz, 8GB
RAM with average HDD Access time of 12.3 ms.
We calculated the Average Response time / Query
(ART/Q), defined as average time taken by the sys-
tem from input of query till the generation of an-
swer list, including both computational and search-
and-access time for KB. ART/Q for 1, 2 and 3 Hop
Networks was 200, 350 and 505 ms respectively.
Also the training time (including time to search for

113

hyper-parameters) for each of these networks was
740, 1360 and 2480 min respectively.

The major bottleneck in ART/Query for our net-
work was the search-and-access of large amount of
KB Data, therefore we implemented efficient search
procedures using Prefix Trees for String Matching
and pipelined different stages of the model using
multi-threading (i.e. Fact Extraction, Computation
and Back-Propagation were performed on individual
threads) to improve our response and training time.

Effect of Pruning/Fact-Additions : From Table
1, we can see that pruning and fact-additions have
significantly improved scores on all datasets. We
analyzed 200 random data points from set of exam-
ples that were correctly answered only when P/FA
was used (for each test set). In 97.5% of these sam-
ples, we observed that pruning allowed our model to
remove spurious facts generated during initial fact
extraction, making soft-max calculation in Eq. (3)
more robust.

We also observed that the set of correctly an-
swered questions using model without P/FA was
proper subset of one with P/FA on each evaluation
dataset, signifying that if relevant facts were scored
higher in previous Computation layers, their scores
are not reduced as more facts are added in subse-
quent layers. Removing pruning alone didn’t im-
prove our performance by more than 0.4% on any
dataset while exponentially increasing the response
time, signifying that pruning itself didn’t remove rel-
evant/correct fact in majority of examples.

On the computational end, we tried to determine
the effect of pruning on our model response time
(excluding search and access time). Including prun-
ing improved our ART/Q by approximately 44%
during test phase and by 21% during training phase
for our 3 Hop network.

Manual Error Analysis : We sampled 100 ex-
amples from each test set to identify major sources
of errors made by our model. Following classes of
errors were determined :

Complex Questions (55%) : These types of
questions involved temporal or superlative qualifier
like ’first’, ’after’, ’largest’, etc. This problem oc-
curred in both test sets. We may be able to solve this
problem using small set of rules for comparison on
final answer set or better semantic representations
for numerical values and qualifiers.

Question Ambiguity (20%) : This error class
contains those questions that may have ambiguity
in their interpretation. For example, a question
like ’Where is shakira from?’ generated answer as
’place of birth’ (Baranquilla) while ground truth is
’nationality’ (Colombia). This occurred mostly in
WebQuestions dataset.

Ground truth Inconsistency (10%) : This type
of error occurred when ground truth differed from
correct entity present in Freebase KB (even though
both are correct in many cases). For example, the
question ’Where did eleanor roosevelt died?’ have
ground truth as ’New York City’ whereas KB deliv-
ers the entity ’Manhattan’, even though both are en-
tities in Freebase. It occurred only in WebQuestions
dataset.

Miscellaneous (15%) : This error class con-
tains bad entity/relationship extraction (for exam-
ple, mapping Anakin Skywalker to Darth Vader),
bad question/answer pairs (e.g. q = ”what time does
american horror story air?” A = [Tom Selleck]), Ty-
pos in Question, etc.

7 Conclusion

This paper presents a Factual Memory Network
model that aims to perform question-answering us-
ing facts from Knowledge bases like Freebase. The
system uses a multi-hop neural network that can
perform reasoning over facts generated from named
entities in a given question as well as traverse the
knowledge graph to include more information.

In future, we hope to extend our system so that it
can work better with n-ary relations present in Free-
base to deal with qualifiers, improve entity disam-
biguation mechanism in our model as well as in-
clude a mechanism to involve user interaction with
system to improve our rates. Another goal is to add
support for KBs with noisy data generated through
automated relation extraction from unstructured data
(for example OLLIE, etc) as well as for unstructured
sources of knowledge (like Wikipedia) in our model,
to extend and improve its utility.

References

Hannah Bast and Elmar Haussmann. 2015. More accu-
rate question answering on freebase. In Proceedings

114

of the 24th ACM International on Conference on In-
formation and Knowledge Management, pages 1431–
1440.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics, pages 1415–1425.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 1247–1250.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014a. Question answering with subgraph embed-
dings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 615–620.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014b. Open question answering with weakly super-
vised embedding models. In Machine Learning and
Knowledge Discovery in Databases, pages 165–180.
Springer.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075.

Qingqing Cai and Alexander Yates. 2013. Seman-
tic parsing freebase: Towards open-domain semantic
parsing. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 1: Pro-
ceedings of the Main Conference and the Shared Task:
Semantic Textual Similarity, pages 328–338.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Ques-
tion answering over freebase with multi-column con-
volutional neural networks. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics, pages 260–269.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
1535–1545.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics,
pages 1608–1618.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1156–1165.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1545–1556.

Thomas Lin, Oren Etzioni, et al. 2012. Entity linking
at web scale. In Proceedings of the Joint Workshop
on Automatic Knowledge Base Construction and Web-
scale Knowledge Extraction, pages 84–88.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. Transactions of the Association for Computa-
tional Linguistics, 2:377–392.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems,
pages 926–934.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in
Neural Information Processing Systems, pages 2431–
2439.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly em-
bedding. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2014.
Memory networks. arXiv preprint arXiv:1410.3916.

Min-Chul Yang, Nan Duan, Ming Zhou, and Hae-
Chang Rim. 2014. Joint relational embeddings for
knowledge-based question answering. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, pages 645–650.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Association for Computational Linguis-
tics (ACL).

115

