
Proceedings of NAACL-HLT 2016, pages 102–108,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Phylogenetic simulations over constraint-based grammar formalisms

Andrew Lamont and Jonathan North Washington
Indiana University

{alamont,jonwashi}@indiana.edu

Abstract

Computational phylogenetics has been shown
to be effective over grammatical characteris-
tics. Recent work suggests that constraint-
based formalisms are compatible with such an
approach (Eden, 2013). In this paper, we re-
port on simulations to determine how useful
constraint-based formalisms are in phyloge-
netic research and under what conditions.

1 Introduction

Popular computational methods for phylogenetic re-
search (estimating the evolutionary histories of lan-
guages) primarily involve comparisons over cognate
sets (Nichols and Warnow, 2008). Recent works
(Dunn et al., 2005; Longobardi and Guardiano,
2009) indicate that comparing sets of grammatical
parameters can be effective as well. However, gen-
erating a large number of meaningful parameters re-
mains a formal obstacle. In this paper we argue
that constraint-based grammar formalisms may be
exploited for parameter generation, and explore to
what extent such research is feasible.

Because the use of constraint-based grammars in
phylogenetics is relatively novel, we do not know
a posteriori how many constraints and how many
languages must be considered for a computational
approach to be successful. If a minimum threshold
is established that is methodologically prohibitive
(e.g. if such systems were only accurate given a set
of 1,000 languages), we can abandon this approach
as infeasible. By initially experimenting with simu-
lated data, we establish a footing for future empirical
studies.

In this paper, we report on simulations which con-
sistently outperform two baseline models. Signifi-
cantly, these results obtained with a modest number
of constraints c ≥ 4 and languages l ≥ 4.

1.1 Grammatical parameters in phylogenetics

Longobardi and Guardiano (2009) argue that gram-
matical features, such as whether a language ex-
presses a pre- or postpositional genitive, if chosen
carefully, present certain advantages over lexically-
based comparisons in phylogenetic work. Grammat-
ical parameters comprise a universal set of discrete
options applicable to any set of languages, espe-
cially within frameworks such as Principle and Pa-
rameters (Chomsky, 1981). Using grammatical fea-
tures for phylogenetic work can be a way to avoid
any difficulties associated with the collection and
identification of cognate sets.

However, unlike cognate sets, there is no a pri-
ori assumption that correspondences between pa-
rameter settings are meaningful genetically. Instead,
meaningful correspondence derives from the low
probability that two languages match in a number
of parameter settings by chance. Successful work
therefore depends on the construction of a large set
of grammatical parameters; larger sets are predicted
to produce more accurate results.

1.2 Constraint-based grammar formalisms

In constraint-based theories of grammar like Opti-
mality Theory (OT) (Prince and Smolensky, 2004),
input-output relations are determined by the interac-
tion of conflicting violable constraints.

To take a common example from phonology, a
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language may require that all syllables are open,
deleting consonants that would otherwise surface in
coda position. In an OT analysis of such a lan-
guage, the constraint NOCODA, which prohibits co-
das, dominates the constraint MAX, which prohibits
deletion (written NOCODA� MAX). This encodes
that satisfying NOCODA is more important than sat-
isfying MAX, though there may be additional inter-
acting constraints complicating the analysis.

In an OT framework, the set of constraints, CON,
is assumed to be universal—its members typically
being grounded in typological and psycholinguistic
data. Differences between grammars are encoded
as different language-specific rankings of the con-
straint set.

OT is most often used in phonology, but has been
applied widely in various linguistic sub-disciplines,
including syntax, sociolinguistics, and semantics
(McCarthy, 2008). Constraint-based frameworks
can therefore encode diverse grammatical phenom-
ena with minimal representation, a constraint rank-
ing being simply a directed acyclic graph over CON.

With the exception of Eden (2013), constraint-
based phylogenetic research has not yet, to our
knowledge, been attempted. It remains an open
question whether such a representation is useful in
phylogenetics and if so, under what conditions.

1.3 Parameterizing CON

Following Longobardi and Guardiano’s (2009) para-
metric approach, we adapt constraint rankings into
binary pseudo-parameters, decomposing language-
specific rankings into vectors of pairwise dominance
relations (Antilla and Cho, 1998):

R(C1, C2) =
{

1 if C1 � C2

0 otherwise

That is, for every pair of constraints C1, C2, R re-
turns a binary value corresponding to whether C1

dominates C2 directly or transitively.1 An example
of a constraint ranking and its corresponding R val-
ues is shown is shown in Figure 1.

1When R(C1, C2) returns 0, it ambiguously encodes either
a non-relation between C1 and C2 or the dominance relation
C2 � C1. However, because R is not a symmetric relation,
this ambiguity is resolved when one considers R(C2, C1). Ad-
ditionally, two constraints C1, C2 are unranked relative to one
another if R(C1, C2) = R(C2, C1) = 0—i.e., there is no dom-
inance relation, direct or transitive, between C1 and C2.

C1 � C2 � C3

C1 C2 C3

C1 0 1 1
C2 0 0 1
C3 0 0 0

R(C1, C1) = 0
R(C1, C2) = 1
R(C1, C3) = 1
R(C2, C1) = 0
R(C2, C2) = 0
R(C2, C3) = 1
R(C3, C1) = 0
R(C3, C2) = 0
R(C3, C3) = 0

Figure 1: A constraint ranking, its representation as
a matrix, and as a set of binary pseudo-parameters.

We consider these to be pseudo-parameters be-
cause certain constraint pairs may only interact
under very specific circumstances or not at all.
The ranking of NOCODA and MAX, for exam-
ple, is meaningful under a large number of cir-
cumstances: R(NOCODA, MAX) corresponds to
whether a grammar deletes consonants that would
otherwise surface in coda position. The ranking of
NOCODA and MAX-VOICE (which prohibits delet-
ing a voice feature), on the other hand, is less
meaningful because these constraints are not ex-
pected to conflict directly (deleting a voice feature
does not create an open syllable, and therefore can-
not avoid a violation of NOCODA). Nevertheless,
R(NOCODA, MAX-VOICE) may be determined via
transitivity. R values therefore range from represen-
tations of a language’s grammatical characteristics
to higher-level artifacts of the theory as applied to
its grammar. Weighting R values accordingly may
be a fruitful topic for future research.

Pseudo-parameters pose certain advantages. For
a set of n constraints, the size of the corresponding
set of pseudo-parameters is on the order of n2. This
dramatically increases the number of comparisons
one is able to make between languages with a mod-
est number of empirically motivated constraints, as
compared to a parameter set tout court. Because
constructing a set of constraints or parameters is tax-
ing, an approach that maximizes the impact of each
additional constraint is advantageous. With pseudo-
parameters, constraint n + 1 contributes n points of
comparison, whereas parameter n + 1 contributes
only 1 point of comparison.

A theory-internal advantage of this approach is
that it faithfully represents even complex constraint
rankings. Some models of OT allow for constraints
to be unranked. The pseudo-parameter representa-
tion handles unranked constraints without issue, thus
allowing wide theoretical coverage.
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2 Related Work

Computational phylogenetic systems have taken a
diverse set of inputs. Subgroup classification us-
ing cognate comparisons has been used by Ringe et
al. (2002) for Indo-European (IE) and Bowern and
Atkinson (2012) for Pama-Nyungan, among others.
Both syntactic and phonological grammatical-level
information have also been used effectively for com-
putational phylogenetics.

Longobardi and Guardiano (2009) used sixty-
three binary syntactic parameters for a phylogeny of
twenty-two IE languages and six non-IE languages.
Their generated trees largely agreed with the histor-
ical relations determined by traditional comparative
linguistic methods. In a second experiment using fif-
teen languages for which lexical data were available,
they found large overlap between trees generated us-
ing syntactic parameters and lexical data.

Eden (2013) replicated this study using thirteen
typologically grounded parameters related to phono-
logical stress over nineteen of the languages used
by Longobardi and Guardiano (2009) as well as
an additional five, demonstrating that the grammat-
ical parameters need not be limited to the domain
of syntax. A second experiment using phonotactic
constraints over six languages yielded more vari-
able results than the first experiment. The con-
straints used were generated by a phonotactic con-
straint learner (Hayes and Wilson, 2008), which dif-
fers from classic OT in several key regards: in this
model, constraints are language-specific; constraints
are weighted probabilistically, not ranked; and con-
straints only reference surface forms, not input-
output relations. To utilize a single constraint set, the
one hundred thirteen highest-weighted constraints
that were persistently generated by the phonotactic
learner across the six languages were chosen and
reweighted in each language. Each language there-
fore had a grammar consisting of the same set of
constraints. The rankings of these constraints were
compared using Spearman’s correlation coefficient.

Eden’s (2013) study broke ground in using
constraint-based grammars; however, there were
certain limitations. The phonotactic learner re-
quires a representative input corpus of at least
3,000-6,000 words, impeding the incorporation of
under-resourced languages. Further, the generated

constraint set is problematically language-specific.
Only one constraint generated for English, for ex-
ample, was active in the other five languages.

Our approach diverges from Eden’s (2013)
theory-internally and in scope. We assume an
a priori universal constraint set, and our pseudo-
parameter approach allows for constraints to be un-
ranked relative to one another. We could in princi-
ple measure inter-language distance with rank cor-
relations over topologically sorted constraint rank-
ings, but unranked constraints are predicted to lead
to highly variable results. Because our experiments
in this study are over simulated languages, we are
not limited by available linguistic descriptions.

3 Method

To investigate whether constraint-based formalisms
are useful in phylogenetic work and under what as-
sumptions, we conducted a large number of simula-
tions following the procedure described by Nichols
and Warnow (2008):

1. Produce a model tree T ;
2. T evolves from the root, producing a set of

leaves S;
3. S is used as input to the phylogeny estimation

procedure, producing T ′;
4. T ′ is compared to T to calculate error.
Simulations varied with respect to the number of

constraints, the size of S, and the rate of evolution.2

3.1 Model Tree

In these simulations, CON is defined as a set of c
constraints C1, C2, . . . , Cc. The model tree T (gold
standard) is initialized with a root-node language
consisting of a randomly generated full ranking of
CON such that every constraint is ranked relative to
every other constraint: C(1) � C(2) � . . . � C(c).
For c constraints, there are c! possible full rankings.
From this root-node, T evolves into a larger tree.

3.2 Tree Evolution

In our simulations, language change is modeled by
constraint reranking (Cho, 1998), although this over-
simplifies the complex processes observed in actual

2Our code and full numerical results are available at
https://github.com/lmaoaml/recon.
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data.3 T evolves accordingly. At each evolution-
ary step, a leaf language either randomly changes
or splits into two daughter languages inheriting the
same constraint ranking according to the branching
probability b.4 The lower b is, the more changes
on average a language will undergo before branch-
ing. A change entails either the addition or removal
of a domination relation between two random con-
straints. Evolution continues until T contains a pre-
determined minimum number of leaves.

3.3 Phylogeny Estimation

The constraint rankings of the languages in the set
of leaves S are decomposed into pseudo-parameter
vectors. Inter-language distance is calculated by tak-
ing the Euclidean distance between vectors. We use
Euclidean distance because it has been reported to
perform well among fifteen vector similarity mea-
sures of typological distance (Rama and Prasanth,
2012), and our initial experiments found no major
differences between measures. The inter-language
distances serve as input to the phylogeny estimation
procedure.

Because tree evolution in our model proceeds ac-
cording to a lexical clock (i.e., changes accumu-
late over time)—or more precisely a grammatical
clock—we use the Unweighted Pair Group Method
with Arithmetic mean (UPGMA), a hierarchical
clustering method that utilizes the average distance
between clusters, as a phylogeny estimation pro-
cedure (Nichols and Warnow, 2008). For speed,
we use the implementation in fastcluster (Müllner,
2013) with average linkage. The result of phylogeny
estimation is a binary tree T ′, which is compared to
T to measure accuracy.

3.4 Evaluation

Because we have access to T , the gold standard
tree, we diverge from the partially qualitative eval-
uations of Longobardi and Guardiano (2009) and
Eden (2013) and adopt a purely quantative evalua-
tion metric based on precision and recall (van Rijs-
bergen, 1979). As in standard precision and recall,
we measure the proportion of correct items relative

3See Holt (2015) for an overview of approaches to language
change in OT.

4T is limited to binary branching for simplicity, but this is
not a necessary assumption for the methodology.

to T ′ and T respectively. We define correct items
to be matching subtrees rooted by internal nodes as
shown in Figure 2. Two subtrees are counted as
matching if they dominate the same set of leaves.

A

a

L1 L2

. . .

B

. . . b

L1 L2

Figure 2: Subtree a in A matches subtree b in B.

T ′ is then compared against two null hypothesis
baseline trees, BF and BR.

BF is a flat tree composed of a single internal
node dominating the entire set of languages S as in
Figure 3. BF encodes the empirical null hypothesis
that S contains no subgroups.

BF

L1 . . . Ln

Figure 3: A random baseline tree BF with n leaves

BR is a randomly constructed binary tree encod-
ing the null hypothesis that the phylogeny estimation
procedure does not outperform chance groupings.

Precision and recall are calculated between T and
the three test trees. We consider an experiment suc-
cessful when T ′ is more accurate than BF and BR.

4 Results

Simulations were run across a wide range of set-
tings. The number of constraints ranged exponen-
tially from 2 to 64. The number of languages like-
wise ranged exponentially from 2 to 128. For each
setting pair, we report precision and recall for BF ,
BR, and T ′ averaged over 1,000 independent itera-
tions. Simulations were run with branching prob-
ability b set to 0.1, 0.01, and 0.001, as shown in
Figure 4. Low branching probabilities yield more
differences even between closely related languages
(in the authors’ opinion, this more accurately reflects
actual language data).

Overall, the simulations were successful, albeit
modestly. T ′ had a higher recall than BF and a
higher precision and recall than BR in all cases ex-
cept simulations with 2 constraints and 4 languages.
The margin between T ′ and BR is promising - it
indicates that this method can yield positive results.
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(a) precision at b = 0.1
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(b) recall at b = 0.1
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(c) precision at b = 0.01
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(d) recall at b = 0.01
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(e) precision at b = 0.001
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(f) recall at b = 0.001

Figure 4: Precision and recall of BF (—), BR (—), and T ′ (—) with b = 0.1, b = 0.01, and b = 0.001.
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5 Discussion

With 2 languages, as modeled in Figure 5, all hy-
potheses have perfect precision and recall. For T ′

and BR, because the order of the leaves does not
matter, there is only one way to group 2 languages.
Similarly, because there is not additional internal
structure, BF has perfect recall. Trivially, BF al-
ways has perfect precision because the entire tree is
the only subtree it identifies.

A

L1 L2

Figure 5: A tree A with two leaf nodes

As is expected, neither BF nor BR are affected
by the number of constraints or b. However, as the
number of languages increases, the probability that
BR correctly identifies substructure decreases.

The accuracy of T ′ does interact with the numbers
of constraints and languages as well as with b.

There is an overall trend that T ′ is more accurate
with larger numbers of constraints, in accordance
with the trend that phylogenetic algorithms’ perfor-
mances correlate with the amount of available data.
This is especially clear when b = 0.001. Extend-
ing this method to real language data is expected to
produce more accurate results with a larger number
of constraints; however, this effect plateaus. Even
with as few as eight constraints, our method scores
around .100 higher precision and recall than BR.
Ranking a set of eight constraints is within the scope
of typical OT analyses.

The accuracy of T ′ negatively correlates with b,
indicating that more grammatical distance is useful.
This makes sense, as innovative traits passed down
through subtrees aid in grouping.

Both precision and recall of T ′ decrease as the
number of languages increases. We expect recall to
decrease as the number of subtrees in T increases,
which is the case with BF . Likewise, with more
possible subtrees, the clustering algorithm makes
more mistakes, leading to lower precision. These
mistakes may additionally follow from the cluster-
ing method. With a large number of languages,
the diversity within clusters may be especially large,
leading to similar average distances between clus-
ters, which can result in unpredictable performance

of the linkage function. However, the effect of
number of languages is not more pronounced with
smaller values of b. With smaller b, there are more
changes to the languages and we might expect more
diversity. If this is an effect of the algorithm, we ex-
pect more error high in the tree than at the leaf level.
It would be worthwhile to experiment with different
linkage functions at different levels in the tree.

Our method assumes that all constraint rerank-
ings are equally likely, which is not the case in
real languages; e.g., phonological evolution is fre-
quently shaped by phonetic biases. Given that our
method was successful, we anticipate that incorpo-
rating known diachronic biases will radically im-
prove performance on natural language data.

6 Conclusion and Future Work

Our method yielded positive results for the simula-
tions reported on in this paper. This suggests that
constraint-based formalisms may be used success-
fully in computational phylogenetics, though this
remains to be verified with natural language data.
These experiments serve to establish a baseline for
the use of constraint-based grammars in phyloge-
netic research. We believe that the results show
promise for the addition of constraint-based research
to the phylogenetic toolkit, though additional work
is required to fully understand its usefulness.

In the future, we plan to examine the effect of
different clustering algorithms, and extend this ap-
proach to actual language data. One propitious do-
main is the phonology of stress, because a large
number of languages have already been analysed us-
ing a set of 14 core constraints (Kager, 1999). Fur-
thermore, it presents an opportunity to compare di-
rectly a constraint-based approach with a paramet-
ric approach, such as Eden’s (2013) phylogenetic re-
sults based on stress parameters.
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