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Abstract
Creole languages do not fit into the tradi-
tional tree model of evolutionary history be-
cause multiple languages are involved in their
formation. In this paper, we present several
statistical models to explore the nature of cre-
ole genesis. After reviewing quantitative stud-
ies on creole genesis, we first tackle the ques-
tion of whether creoles are typologically dis-
tinct from non-creoles. By formalizing this
question as a binary classification problem, we
demonstrate that a linear classifier fails to sep-
arate creoles from non-creoles although the
two groups have substantially different distri-
butions in the feature space. We then model
a creole language as a mixture of source lan-
guages plus a special restructurer. We find a
pervasive influence of the restructurer in cre-
ole genesis and some statistical universals in
it, paving the way for more elaborate statisti-
cal models.

1 Introduction

While most linguistic applications of computational
phylogeny rely on lexical data (Gray and Atkinson,
2003; Bouckaert et al., 2012), there is a growing
trend to make use of typological data (Tsunoda et
al., 1995; Dunn et al., 2005; Teh et al., 2008; Longo-
bardi and Guardiano, 2009; Murawaki, 2015). One
advantage of typological features over lexical traits
(cognates) is that they allow us to compare an ar-
bitrary pair of languages even if they do not share
enough cognates. For this reason, they have the
potential of uncovering external relations involving
language isolates and tiny language families such as
Ainu, Basque, and Japanese.

However, our understanding of typological
changes is far from satisfactory in at least two re-
spects. First, typological changes are less intuitive
than the birth and death of a lexical trait. Mod-
eling word-order change with a single transition
matrix (Maurits and Griffiths, 2014), for example,
appears to be an oversimplification because some
complex mechanisms must be hidden behind the
changes (Murawaki, 2015).

The second point, the main focus of this paper, is
that it is not clear whether typological data fit into
the traditional tree model for a group of languages,
which has long been used as the default choice to
summarize evolutionary history (Schleicher, 1853).
To be precise, regardless of whether typological fea-
tures are involved, linguists have viewed the tree
model with suspicion. A central problem of the tree
model is its assumption that after a branching event,
two resultant languages evolve completely indepen-
dently. However, linguists have noted that horizon-
tal contact is a constitutive part of evolutionary his-
tory. Various models for contact phenomena have
been proposed to address this problem, including
the wave theory (Schmidt, 1872) and the gravity
model (Trudgill, 1974). As for linguistic typology,
areal linguistics has worked on the diffusion of typo-
logical features across languages within a geograph-
ical area (Campbell, 2006).

In this paper, we study creole languages as an ex-
treme case of non-tree-like evolution (Wardhaugh
and Fuller, 2015). A creole is developed as a re-
sult of intense contact between multiple languages:
typically one socioculturally dominant language (su-
perstrate) and several low-prestige languages (sub-
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strates). Superstrates are also known as lexifiers be-
cause the lexicon of a creole is largely derived from
its superstrate. In spite of this, the grammar of a cre-
ole is drastically different from that of its lexifier. It
is often said that creole grammars are simpler than
non-creole ones although it is not easy to measure
grammatical simplicity.

Creoles are not irrelevant to historical linguistics
because some have speculated about the plausibil-
ity of creole status for Middle English (Bailey and
Maroldt, 1977) and (pre-)Old Japanese (Kawamoto,
1974; Akiba-Reynolds, 1984; Kawamoto, 1990)
while they have been criticized harshly by others.

This controversy can only be settled by fully
understanding creole genesis, or the question of
how creoles emerge, which also remains unre-
solved (Wardhaugh and Fuller, 2015). One theory
called the gradualist hypothesis suggests their staged
development from pidgin languages. A pidgin arises
when speakers of different languages with no com-
mon language try to have a makeshift conversation,
which results in a drastic simplification of grammar
called pidgin formation. A pidgin is then acquired
by children as their first language and is transformed
into a fully functional language. This process of
grammatical elaboration is known as creole forma-
tion.

We follow Bakker, Daval-Markussen and col-
leagues in taking data-driven approaches to this
problem (Bakker et al., 2011; Daval-Markussen and
Bakker, 2012; Daval-Markussen, 2013). They ar-
gue that creoles are typologically distinct from non-
creoles. They compare four theories of creole gene-
sis:

1. Superstratist. The lexifier plays a major role in
creole genesis.

2. Substratist. Substrates do, instead of the lexi-
fier.

3. Feature pool. Both the lexifier and substrates,
but nothing else, provide a feature pool from
which each feature value of a creole is selected.

4. Universalist. Innate ability of humans to cre-
ate language is emphasized. The hypothetical
linguistic universals for creole formation are
called restructuring universals.
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Figure 1: NeighborNet graph of creoles (c), lexifiers
(L), substrates (S) and other non-creole languages
(X). A language type (c/L/S/X) is followed by a
three-letter language code. The bottom-up cluster-
ing (i.e., basically tree-building) method produced a
cluster of creoles on the right. We reproduced Fig-
ure 5 of Daval-Markussen and Bakker (2012) using
their online supplementary materials.

To test these explanations, they apply Neighbor-
Net (Bryant and Moulton, 2004), a bottom-up,
distance-based clustering method developed in the
field of computational biology. By demonstrating
that, as in Figure 1, creoles form a cluster distin-
guishable from lexifiers, substrates and other non-
creole languages, they argue for the universalist po-
sition and for creole distinctiveness.

However, we find both theoretical and method-
ological problems in their discussion. Theoreti-
cally, the synchronic question of creole distinctive-
ness is confused with the diachronic question of
creole genesis. If creoles are distinct from non-
creoles, then something specific to creoles (e.g., re-
structuring universals) would play a role, but not
vice versa. It is logically possible that even with
restructuring universals, creoles are indistinguish-
able from (a subgroup of) non-creoles. Methodolog-
ically speaking, NeighborNet does not straightfor-
wardly explain fundamentally non-tree-like evolu-
tion because it does assume tree-like evolution even
though it represents conflicting signals with reticu-
lations.

We begin by addressing the question of creole
(non-)distinctiveness. Whether one is distinct from
another is straightforwardly formalized as a binary
classification problem. We show that an SVM clas-
sifier fails to separate creoles from non-creoles. Fol-
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Figure 2: Schematic comparison of two approaches
to creole genesis.

lowing a practice in population genetics, we visu-
alize the data using principal component analysis
(PCA). The result suggests that although creoles
have a substantially different distribution from non-
creoles, they nevertheless overlap.

Next, we propose to model creole genesis with
mixture models. In this approach, a creole is
stochastically generated by mixing its lexifier, sub-
strate(s) plus a special restructurer. Conceptually,
this is the opposite of the tree model, as illustrated
in Figure 2. Specifically, we present two Bayesian
models. The first one considers one mixing pro-
portion per creole, and the other decomposes the
proportions into per-feature and per-creole factors.
Our experimental results suggest that the restruc-
turer dominates creole genesis, dismissing the su-
perstratist, substratist and feature pool theories. We
also find some statistical universals in the restruc-
turer although we refrain from identifying them as
restructuring universals. In this way, we represent a
first step toward understanding the complex process
of creole genesis through statistical models.

2 Related Work

2.1 Population Genetics

Like Bakker, Daval-Markussen and col-
leagues (Bakker et al., 2011; Daval-Markussen
and Bakker, 2012; Daval-Markussen, 2013), we
borrow ideas from computational biology. For rea-
sons unknown to us, they chose clustering models
that basically assume tree-like evolution (Saitou and
Nei, 1987; Bryant and Moulton, 2004). However,
creole genesis is more comparable to models that
explicitly take into account genetic admixture (i.e.,
contact phenomena). See Jones et al. (2015), for
example, to take a look at standard practices in

population genetics.
Population genetic analysis of genotype data (bi-

nary sequences comparable to sets of linguistic fea-
tures) can be grouped into two types: population-
level and individual-level analysis. Populations,
such as Sardinian, Yoruba and Japanese, are pre-
defined sets of individuals. Population-level analysis
utilizes genetic variation within a population (Patter-
son et al., 2012). From a modeling point of view,
languages are more comparable to individuals. Al-
though a language is spoken by a population, no lin-
guistic data available are comparable to a set of in-
dividuals.

Individual-level analysis, where population labels
are used only for the purpose of visualization, is of-
ten done using PCA and admixture analysis. PCA is
used for dimensionality reduction: by selecting the
first two principal components, high-dimensional
sequences are projected onto an informative two-
dimensional diagram (Patterson et al., 2006).

Admixture analysis (Pritchard et al., 2000;
Alexander et al., 2009) closely resembles topic
models, most notably Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), in NLP. It assumes that
each individual is a mixture of K ancestral compo-
nents (i.e., topics). One difference is that while each
LDA topic is associated with a single word distribu-
tion (K distributions in total), each SNP (i.e., feature
type) has its own distribution (K × J distributions
in total for sequences with length J).

2.2 Linguistic Typology and Non-tree-like
Evolution

Like lexical data, typological features are usually an-
alyzed with a tree model, but Reesink et al. (2009)
are a notable exception. They applied admixture
analysis to Australian and Papuan languages, for
which tree-building techniques had not been suc-
cessful. They related inferred ancestral components
to putative prehistoric dispersals and contacts.

Independently of biologically-inspired studies,
Daumé III (2009) incorporated linguistic areas into
a phylogenetic tree. In his Bayesian generative
model, each feature of a language has a latent vari-
able which determines whether it is derived from an
areal cluster or the tree. Thus his model can be seen
as a mixture model.
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(a) Both. (b) Creoles. (c) Non-creoles.

Figure 3: PCA of creoles (red squares) and non-creoles (green circles) with explained variance in the labels
of the axes. (a) Scatterplot of both types of languages. (b) Kernel density estimates (KDEs) of creoles. (c)
KDEs of non-creoles.

3 Data and Preprocessing

We used the online edition1 of the Atlas of Pidgin
and Creole Language Structures (APiCS) (Michaelis
et al., 2013), a database of pidgin and creole lan-
guages. It was larger than the datasets of Bakker et
al. (2011). As of 2015, it contained 76 languages
(104 varieties). It was essentially a pidgin-and-
creole version of the online edition2 of the World At-
las of Language Structures (WALS) (Haspelmath et
al., 2005), but it contained sociolinguistic features,
phonological inventories and example texts in addi-
tion to typological features.

As APiCS did not mark creoles, we used the so-
ciolinguistic feature “Ongoing creolization of pid-
gins” as a criterion to select creoles. Specifically,
we filtered out languages whose feature value was
neither “Not applicable (because the language is not
a pidgin)” nor “Widespread.”

In APiCS, 48 out of 130 typological features were
mapped to WALS features. We used these features
to combine creoles from APiCS with non-creoles
from WALS. Since the WALS database was sparse,
we selected languages for which at least 30% of the
features were present. As a result, we obtained 64
creoles and 541 non-creoles.

We imputed missing data using the R package
missMDA (Josse et al., 2012). It handled miss-
ing values using multiple correspondence analy-

1http://apics-online.info/
2http://wals.info/

sis (MCA). Specifically, we used the imputeMCA
function to predict missing feature values.

When investigating creole distinctiveness, we
used binary representations of features. Using a one-
of-K encoding scheme, we transformed 48 categor-
ical features into 220 binary features.

Our mixture models require each creole to be as-
sociated with a lexifier and substrate(s). Unfortu-
nately, APiCS described these languages in an ob-
scure way (and many of them are indeed not fully
resolved). We had no choice but to manually select
several modern languages as proxies for them. For
simplicity, we chose only one substrate per creole,
but it is not difficult to extend our model for multiple
substrates. We are aware that these are oversimplifi-
cation, but we believe they would be adequate for a
proof-of-concept demonstration.

4 Creole Non-distinctiveness

4.1 Binary Classification

To determine whether creoles are distinct from non-
creoles, we apply a linear SVM classifier to the ty-
pological data. Here, linearity is assumed for two
reasons. First, since the supposed distinctiveness
is explained by restructuring universals, there is no
way for creoles to have an XOR-like distribution.
Second, Daval-Markussen (2013) claims that as few
as three features are sufficient to distinguish creoles
from non-creoles. If this is correct, it is expected
that given 48 categorical features, even a simple lin-
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System
C NC

Reference C 54 10
NC 7 534

Table 1: Confusion matrix of binary classification.
C stands for creoles and NC for non-creoles.

ear classifier can work nearly perfectly.
The classifier is trained to classify whether a given

language, represented by binarized features, is a cre-
ole (+1) or non-creole (−1). We use 5-fold cross
validation with grid search to tune hyperparameters.

In our experiments, the accuracy, recall, preci-
sion and F1-measure were 97.2%, 88.5%, 84.4%
and 86.4%, respectively. Table 1 shows the con-
fusion matrix. We can see that the classifier failed
to separate creoles from non-creoles. Although the
classifier worked well, borderline cases remained.

4.2 PCA

For exploratory analysis and visualization, we ap-
plied PCA to creoles and non-creoles, again repre-
sented by binarized features. Figure 3 depicts the
scatterplot of the first two principal components. We
can see that creoles were characterized by quite a
different distribution from that of non-creoles. The
creoles were concentrated on the lower center while
most non-creoles belonged to one of two clusters in
the middle. However, the distribution of creoles did
overlap with that of non-creoles.

Having a closer look at the diagram, we found
that Negerhollands (Dutch), Cape Verdean Creole
of Brava (Portuguese) and Vincentian Creole (En-
glish) were among the most “typical” creoles (lex-
ifiers in parentheses). Tok Pisin (English) and Bis-
lama (English) were at the periphery of the cluster.
The outliers on the upper left included Korlai (Por-
tuguese) while Kikongo-Kituba (Bantu) lay on the
upper right.

On the other hand, “creole-like” non-creoles in-
cluded Chontal Maya (a Mayan language of Mex-
ico), Mussau (an Oceanic language of Papua New
Guinea),3 Catalan and other European languages.
The non-creole cluster on the middle left consisted
of Japanese, Kannada, Maltese and others. An-

3Interestingly, Mussau is noted for contact-induced
changes (Brownie, 2012).

other non-creole cluster on the middle right included
Swahili, Hawaiian and Khmer. The creoleless upper
central area was occupied by Lalo (Sino-Tibetan),
Maninka (Western) (Mande in West Africa), Salt-
Yui (Trans-New Guinea) among others.

5 Mixture Models for Creole Genesis

5.1 Basic Idea

Forsaking the quest for synchronic distinctiveness,
we take a more direct approach to the diachronic
question of creole genesis. Since multiple languages
are involved in creole genesis, it is reasonable to
apply a mixture model. We assume that a creole
is stochastically generated by mixing three sources:
(1) a lexifier, (2) a substrate and (3) a global restruc-
turer. Under this assumption, the main question is
with what proportions these sources are mixed.

An unusual property of our model as a mixture
model is that not only outcomes (creoles) but most
sources (lexifiers and substrates) are observed. We
only need to infer the restructurer. Thus another
question is what the restructurer looks like.

Note that our model is constructed such that it
does not commit to a particular theory of creole gen-
esis. If the superstratist theory is correct, then lex-
ifiers would dominate the inferred mixing propor-
tions. The same is true of the substratist theory. Sim-
ilarly, the feature pool theory entails that the restruc-
turer only occupies negligible portions. Also note
that even if the restructurer plays a significant role, it
does not necessarily imply the universalist position.
The restructurer is a set of catch-all feature distri-
butions for those which are explained neither by the
lexifier nor by the substrate (that is why we avoid
calling it restructuring universals). In order for it to
be linguistic universals, it must show some consis-
tent patterns in its distributions.

5.2 MONO Model

Our idea is materialized in two Bayesian genera-
tive models. The first one, called MONO, is similar
to the STRUCTURE algorithm of admixture analy-
sis (Pritchard et al., 2000).4

4As seen in Section 2.1, MONO is more similar to STRUC-
TURE than to LDA in that each feature type has its own distri-
butions. The difference is that while STRUCTURE infers all K
global components, MONO always has one global component
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Every language in the model is represented by
a sequence of categorical features. The number of
possible values varies among feature types. For fea-
ture j of creole i, the latent assignment variable zi,j

determines from which source the feature is derived,
a lexifier (L), a substrate (S) or the restructurer (R).
Each creole i is associated a priori with a lexifier
and a substrate. Let yi,j,L and yi,j,S be the values of
feature j of creole i’s lexifier and substrate, respec-
tively. If the source is the lexifier (or substrate), the
creole simply copies yi,j,L (or yi,j,S). For the sake of
uniformity, we can think of a lexifier (or substrate)
as a set of feature distributions each of which con-
centrates all probability mass on its observed value
(i.e., the δ function). The remaining source, the re-
structurer, is a set of categorical feature distributions
each of which is drawn from a Dirichlet prior.

The assignment variable zi,j is generated from θi,
which in turn is generated from a Dirichlet prior.
θi = (θi,L, θi,S, θi,R) is the parameter of a categor-
ical distribution which specifies the mixing propor-
tion of the three sources for creole i.5

More concretely, the generative story of MONO is
as follows:

1. For each feature type j ∈ {1, · · · , J} of the
restructurer:

(a) draw a distribution from a symmetric
Dirichlet distribution ϕj ∼ Dir(βj)

2. For each creole i ∈ {1, · · · , N}:

(a) draw a mixing proportion from a symmet-
ric Dirichlet distribution θi ∼ Dir(αi)

(b) then for each feature type j ∈ {1, · · · , J}:
i. draw a topic assignment zi,j ∼

Categorical(θi)
ii. draw a feature value

xi,j ∼


δ(yi,j,L) if zi,j = L
δ(yi,j,S) if zi,j = S
Categorical(ϕj) if zi,j = R

As usual, we marginalize out ϕj and θi us-
ing conjugacy of Dirichlet and categorical distribu-
tions (Griffiths and Steyvers, 2004). We use Gibbs
and two local, observed components.

5By letting another categorical distribution subdivide θi,S,
we can incorporate multiple substrates into the model.

sampling to infer zi,j , whose probability conditioned
on the rest is proportional to

(
αi + c

−(i,j)
i,L

)
I(xi,j = yi,j,L) if zi,j = L(

αi + c
−(i,j)
i,S

)
I(xi,j = yi,j,S) if zi,j = S(

αi + c
−(i,j)
i,R

) βj+c
−(i,j)
R,j,xi,j

Bj+c
−(i,j)
R,j,∗

if zi,j = R

(1)

where I is an indicator function, Bj =
∑

βj , c
−(i,j)
i,k

is the number of assignments for creole i, except
zi,j , whose values are k, and c

−(i,j)
R,j,l is the number

of observed features for feature type j, except xi,j ,
that is derived from the restructurer and has l as its
value. Intuitively, the first term gives priority to the
source from which many other features of creole i
are derived. The second term concerns how likely
the source generates the feature value. For the lexi-
fier or the substrate, it is 1 only if the source shares
the same feature value with the creole; otherwise 0.
To tune hyperparameters αi and βj , we set a vague
gamma prior Gamma(1, 1) and sample these pa-
rameters using slice sampling (Neal, 2003).

5.3 FACT Model
It is said that some features are more easily bor-
rowed than others (Matras, 2011). For creoles, some
seems to reflect substrate influence on phonology
while reduced inflections might be attributed to the
restructurer. Inspired by these observations, we ex-
tend the MONO model such that some feature types
can have strong connections to particular sources.
We call this extended model FACT.

To do this, we decomposes the mixing propor-
tions into per-feature and per-creole factors. We ap-
ply additive operations to these factors in log-space
in a way similar to the Sparse Additive Generative
model (Eisenstein et al., 2011). As a result of this
extension, every feature j of creole i has its own
mixing proportion, θi,j = (θi,j,L, θi,j,S, θi,j,R):

θi,j,k =
exp(mj,k + ni,k)∑
k exp(mj,k + ni,k)

, (2)

where mj,k is a factor specific to feature type j and
ni,k is the one specific to creole i. To penalize ex-
treme values, we put Laplacian priors on mj,k and
ni,k, with mean 0 and scale γ.

To sum up, the generative story of FACT is as fol-
lows:
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Sources
Model L S R
MONO 16.6% 9.3% 74.1%

FACT

Combined 17.6% 6.0% 76.4%
Per-feature 22.5% 6.8% 70.8%
Per-creole 25.0% 20.4% 54.6%

Table 2: Summary of mixing proportions. The arith-
metic mean of 50 samples after 5,000 iterations,
with an interval of 100 iterations.

1. For each feature type j ∈ {1, · · · , J}:

(a) draw ϕj ∼ Dir(βj)
(b) for each source k ∈ {L, S, R}:

i. draw mj,k ∼ Laplace(0, γ)

2. For each creole i ∈ {1, · · · , N}:

(a) for each source k ∈ {L, S, R}:
i. draw ni,k ∼ Laplace(0, γ)

(b) then for each feature j ∈ {1, · · · , J}:
i. normalize mj,k and ni,k to obtain θi,j

(Equation (2))
ii. draw a topic assignment zi,j ∼

Categorical(θi,j)
iii. draw xi,j as in MONO

ϕj is integrated out as before, but the conjugacy no
longer holds for θi,j .

For inference, a modification is needed to infer
zi,j : the first term αi + c

−(i,j)
i,k of Equation (1) is re-

placed with θi,j,k. mj,k and ni,k are sampled using
the Metropolis algorithm, with a Gaussian proposal
distribution centered at the previous value. Hyper-
parameter γ is set to 10.

5.4 Results

Table 2 summarizes mixing proportions. For
MONO and FACT (combined), we use a fraction
of assignment variables pointing to a particular
souce. Per-feature and per-creole factors are con-
verted into probabilities as follows: per-feature pro-
portions ϕ̃j = (ϕ̃j,L, ϕ̃j,S, ϕ̃j,R), where ϕ̃j,k =

exp(mj,k)∑
k exp(mj,k) . Similarly, per-creole proportions θ̃i =

(θ̃j,L, θ̃j,S, θ̃j,R), where θ̃i,k = exp(ni,k)∑
k exp(ni,k) .

We can see that the overwhelming majority of
features were derived from the restructurer both in

Figure 4: Mixing proportions of MONO pro-
jected onto a simplex. Each point denotes a cre-
ole. It is the parameter of the posterior predic-
tive distribution of an assignment variable: θ̃i =
(αi+ci,L

Z ,
αi+ci,S

Z ,
αi+ci,R

Z ), where the normalizer
Z =

∑
k αi + ci,k. One sample after 10,000 iter-

ations.

MONO and FACT (combined). The restructurer was
followed by lexifiers, and substrates were the least
influential.6 These results can be interpreted as
counter-evidence to the superstratist, substratist and
feature pool theories.

MONO and FACT (combined) exhibited similar
patterns. When the mixing proportions are decom-
posed into per-feature and per-creole factors, per-
creole factors exhibited less uneven distributions
than per-feature factors. This implies heterogeneous
behavior of features in creole genesis. Table 3 lists
top-5 feature types for each source.

Figure 4 plots creoles on a simplex of mixing pro-
portions in MONO. Creoles scattered across the sim-
plex but leaned toward the restructurer. This implies
that a lexifier cannot be mixed with substrates with-
out interference from the restructurer.

Compared with MONO, FACT tended to push
points to the edges of the simplex. This can be con-
firmed in Figure 5. In particular, Figure 5(c) is di-
rectly comparable to Figure 4. It is possible that
halfway points in MONO were artifacts of its limited
expressive power.

Table 4 lists the top-10 feature type-value pairs
that were derived from the restructurer. In other
words, we stochastically removed the influence of
the lexifiers and substrates from creole data. These
features can be regarded as (statistical) universals

6The substrates would probably occupy a larger portion if
multiple substrates are incorporated in future work.
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Source Ratio Feature type

Lexifier

100.0% Order of Adposition and Noun Phrase
100.0% Order of Relative Clause and Noun

99.9% Applicative Constructions
99.5% The Prohibitive
98.2% Alignment of Case Marking of Full Noun Phrases

Substrate

84.9% Order of Genitive and Noun
56.6% Tone
54.9% Order of Subject, Object and Verb
26.5% Pronominal and Adnominal Demonstratives
24.0% Relativization on Subjects

Restructurer

100.0% Intensifiers and Reflexive Pronouns
100.0% Numeral Classifiers
100.0% Suppletion According to Tense and Aspect
100.0% Expression of Pronominal Subjects
100.0% Polar Questions

Table 3: Top-5 feature types for each source according to per-feature factors of FACT. The arithmetic mean
of 50 samples after 5,000 iterations, with an interval of 100 iterations.

(a) Combined. (b) Per-feature factors. (c) Per-creole factors.

Figure 5: Mixing proportions of FACT projected onto a simplex. One sample after 10,000 iterations. (a)
J ×N points for combined mixing proportions θi,j . (b) J points for per-feature factors ϕ̃j as in Table 2. (c)
N points for per-creole factors θ̃i.

although our model leaves the possibility that they
were not restructuring universals. To answer this
question, we need to break down the restructurer by
types of linguistic universals.

Among the 10 feature type-value pairs, only four
apply to Japanese (Negative Indefinite Pronouns and
Predicate Negation, Intensifiers and Reflexive Pro-
nouns, Alignment of Case Marking of Pronouns,
and Order of Numeral and Noun). For reference,
English has seven. Combined with the PCA analysis
in Section 4.2, this suggests that Japanese is a very
non-creole-like language. However, we are unsure if
the possibility of creole status for (pre-)Old Japanese
is completely rejected. This question might be an-

swered if we figure out how long it takes to make
creole-like traits disappeared.

It is often said that creoles have SVO word order.
According to APiCS, the number of creoles with
SVO order was 61 (exclusive) and 71 (exclusive plus
shared) in the 76 language dataset. However, this
feature value only gained the ratio of 67.3%. This is
mainly because SVO is the word order of most lex-
ifiers, but it can also be attributed to data represen-
tation: since WALS did not allow multi-valued fea-
tures (e.g., SVO and SOV), some creoles with multi-
ple word orders were mapped to a separate category
“No dominant order,” underestimating the influence
of SVO.
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Ratio Feature type Feature value
91.2% Numeral Classifiers Absent
74.3% Gender Distinctions in Independent Personal Pronouns No gender distinctions
72.3% Negative Indefinite Pronouns and Predicate Negation Predicate negation also present
70.5% Occurrence of Nominal Plurality All nouns, always optional
69.7% Intensifiers and Reflexive Pronouns Identical
68.4% Distributive Numerals No distributive numerals
67.2% Expression of Pronominal Subjects Obligatory pronouns in subject position
66.9% Politeness Distinctions in Pronouns No politeness distinction
66.6% Alignment of Case Marking of Pronouns Nominative - accusative (standard)
66.3% Order of Numeral and Noun Numeral-Noun

Table 4: Top-10 features derived from the restructurer in FACT. The ratio of the feature type-value pair (j, l)
is defined as |{(i |xi,j = l, zi,j = R}| /N . The arithmetic mean of 50 samples after 5,000 iterations, with
an interval of 100 iterations.

5.5 Discussion

The main contribution of our work is the introduc-
tion of mixture models to creole studies. This is,
however, only the first step toward understanding
the complex process of creole genesis by means of
statistical modeling. Better data are needed with
respect to proxies for substrates, missing values,
multi-valued features among others.

With better data, more elaborate models could un-
cover the detailed process of creole genesis. Our
models mix several sources in one step, but we may
want to model the staged development of pidgin for-
mation and creole formation. As a result of contin-
ued influence from its superstrate, a creole might un-
dergo decreolization. It is argued that pidgins them-
selves have several development stages, from each
of which creoles can emerge (Mühlhäusler, 1997).
Hopefully, these hypotheses could be tested with
statistical models.

Our finding that the restructurer plays a dominant
role in creole genesis has a negative implication for
tree-based inference of language relationships. If
most features of a language come from nowhere, we
are unable to trace its origin back into the deep past.
In the meanwhile, it has been argued that creole gen-
esis only occurred in modern and early-modern, ex-
ceptional circumstances and cannot be responsible
for most historical changes. Thus identifying the so-
cial conditions under which creoles arise (Tria et al.,
2015) is another research direction to be explored.

6 Conclusion

In this paper, we present several statistical mod-
els of linguistic typology to answer questions con-
cerning creole genesis. First, we formalized creole
(non-)distinctiveness as a binary classification prob-
lem. Second, we propose to model creole genesis
with mixture models, which makes more sense than
tree-building techniques.

Recent studies on linguistic applications of com-
putational phylogeny have been heavily influenced
from computational biology. They often depend
on ready-to-use software packages developed in
that field. We observe that, as a result, linguistic
phenomena that lack exact counterparts in biology
tend to be left untouched. In this paper, we have
hopefully demonstrated that computational linguists
could fill the gap.
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wandtschaftsverhältnisse der indogermanischen
Sprachen. Hermann Böhlau. (in German).
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