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Abstract

We explore the consequences of representing
token segmentations as hierarchical structures
(trees) for the task of Multiword Expression
(MWE) recognition, in isolation or in com-
bination with dependency parsing. We pro-
pose a novel representation of token segmen-
tation as trees on tokens, resembling depen-
dency trees. Given this new representation,
we present and evaluate two different archi-
tectures to combine MWE recognition and de-
pendency parsing in the easy-first framework:
a pipeline and a joint system, both taking ad-
vantage of lexical and syntactic dimensions.
We experimentally validate that MWE recog-
nition significantly helps syntactic parsing.

1 Introduction

Lexical segmentation is a crucial task for natural
language understanding as it detects semantic units
of texts. One of the main difficulties comes from
the identification of multiword expressions [MWE]
(Sag et al., 2002), which are sequences made of mul-
tiple words displaying multidimensional idiomatic-
ity (Nunberg et al., 1994). Such expressions may ex-
hibit syntactic freedom and varying degree of com-
positionality, and many studies show the advantages
of combining MWE identification with syntactic
parsing (Savary et al., 2015), for both tasks (Wehrli,
2014). Indeed, MWE detection may help parsing,
as it reduces the number of lexical units, and in turn
parsing may help detect MWEs with syntactic free-
dom (syntactic variations, discontinuity, etc.).

In the dependency parsing framework, some pre-
vious work incorporated MWE annotations within

syntactic trees, in the form of complex subtrees ei-
ther with flat structures (Nivre and Nilsson, 2004;
Eryiğit et al., 2011; Seddah et al., 2013) or deeper
ones (Vincze et al., 2013; Candito and Constant,
2014). However, these representations do not cap-
ture deep lexical analyses like nested MWEs. In
this paper, we propose a two-dimensional repre-
sentation that separates lexical and syntactic layers
with two distinct dependency trees sharing the same
nodes1. This representation facilitates the annota-
tion of complex lexical phenomena like embedding
of MWEs (e.g. I will (take a (rain check))). Given
this representation, we present two easy-first depen-
dency parsing systems: one based on a pipeline ar-
chitecture and another as a joint parser.

2 Deep Segmentation and Dependencies

This section describes a lexical representation able
to handle nested MWEs, extended from Constant
and Le Roux (2015) which was limited to shallow
MWEs. Such a lexical analysis is particularly rele-
vant to perform deep semantic analysis.

A lexical unit [LU] is a subtree of the lexical seg-
mentation tree composed of either a single token unit
or an MWE. In case of a single token unit, the sub-
tree is limited to a single node. In case of an MWE,
the subtree is rooted by its leftmost LU, from which
there are arcs to every other LU of the MWE. For
instance, the MWE in spite of made of three single
token units is a subtree rooted by in. It comprises
two arcs: in→ spite and in→ of. The MWE make

1This is related to the Prague Dependency Treebank (Hajič
et al., 2006) which encodes MWEs in tectogrammatical trees
connected to syntactic trees (Bejček and Straňák, 2010).
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Figure 1: Deep segmentation of Los Angeles Lakers made a big deal out of it represented as a tree.
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Figure 2: Shallow segmentation of Los Angeles Lakers made a big deal out of it represented as a tree.

big deal is more complex as it is formed of a single
token unit make and an MWE big deal. It is repre-
sented as a subtree whose root is make connected to
the root of the MWE subtree corresponding to big
deal. The subtree associated with big deal is made
of two single token units. It is rooted by big with
an arc big → deal. Such structuring allows to find
nested MWEs when the root is not an MWE itself,
like for make big deal. It is different for the MWE
Los Angeles Lakers comprising the MWE Los Ange-
les and the single token unit Lakers. In that case, the
subtree has a flat structure, with two arcs from the
node Los, structurally equivalent to in spite of that
has no nested MWEs. Therefore, some extra infor-
mation is needed in order to distinguish these two
cases. We use arc labels.

Labeling requires to maintain a counter l in or-
der to indicate the embedding level in the leftmost
LU of the encompassing MWE. Labels have the
form sublmwe for l ≥ 0. Let U = U1...Un be
a LU composed of n LUs. If n = 1, it is a sin-
gle token unit. Otherwise, subtree(U, 0), the lexical
subtree2 for U is recursively constructed by adding

arcs subtree(U1, l+1) sublmwe−−−−−→ subtree(Ui, 0) for
i 6= 1. In the case of shallow representation, every
LUs of U are single token units.

Once built the LU subtrees (the internal depen-
dencies), it is necessary to create arcs to connect
them and form a complete tree : that we call ex-

2The second argument l corresponds to the embedding level.

ternal dependencies. LUs are sequentially linked
together: each pair of consecutive LUs with roots
(wi,wj), i < j, gives an arc wi

lex−−→ wj . Figure 1
and Figure 2 respectively display the deep and shal-
low lexical segmentations of the sentence The Los
Angeles Lakers made a big deal out of it.

For readibility, we note mwe for sub0mwe and
submwe for sub1mwe.

3 Multidimensional Easy-first Parsing

3.1 Easy-first parsing

Informally, easy-first proposed in Goldberg and El-
hadad (2010) predicts easier dependencies before
risky ones. It decides for each token whether it must
be attached to the root of an adjacent subtree and
how this attachment should be labeled3. The order in
which these decisions are made is not decided in ad-
vance: highest-scoring decisions are made first and
constrain the following decisions.

This framework looks appealing in order to test
our assumption that segmentation and parsing are
mutually informative, while leaving the exact flow
of information to be learned by the system itself: we
do not postulate any priority between the tasks nor
that all attachment decisions must be taken jointly.
On the contrary, we expect most decisions to be
made independently except for some difficult cases
that need both lexical and syntactic knowledge.

We now present two adaptations of this strategy to
3Labels are an extension to Goldberg and Elhadad (2010)
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build both lexical and parse trees from a unique se-
quence of tokens4. The key component is to use fea-
tures linking information from the two dimensions.

3.2 Pipeline Architecture

In this trivial adaptation, two parsers are run sequen-
tially. The first one builds a structure in one dimen-
sion (i.e. for segmentation or syntax). The second
one builds a structure in the other dimension, with
the result of the first parser available as features.

3.3 Joint Architecture

The second adaptation is more substantial and takes
the form of a joint parsing algorithm. This adap-
tation is provided in Algorithm 1. It uses a single
classifier to predict lexical and syntactic actions. As
in easy-first, each iteration predicts the most cer-
tain head attachment action given the currently pre-
dicted subtrees, but here it may belong to any di-
mension. This action can be mapped to an edge in
the appropriate dimension via function EDGE. Func-
tion score(a,i) computes the dot-product of feature
weights and features at position i using surrounding
subtrees in both dimensions5.

Algorithm 1 Joint Easy-first parsing
1: function JOINT EASY-FIRST PARSING(w0...wn)
2: Let A be the set of possible actions
3: arcss,arcsl := (∅, ∅)
4: hs,hl := w0 . . . wn, w0 . . . wn

5: while |hl| > 1 ∨ |hs| > 1 do
6: â, î := argmaxa∈A,i∈[|hd|] score(a,i)
7: (par, lab, child, dim) := EDGE((hs, hl), â, î)
8: arcsdim := arcsdim ∪ (par, lab, child)
9: hdim := hdim\{child}

10: end while
11: return (arcsl, arcss)
12: end function
13: function EDGE((hs, hl), (dir, lab, dim), i)
14: if dir =← then . we have a left edge
15: return (hdim[i], lab, hdim[i + 1], dim)
16: else
17: return (hdim[i + 1], lab, hdim[i], dim)
18: end if
19: end function

We can reuse the reasoning from Goldberg and
Elhadad (2010) and derive a worst-case time com-

4It is straightforward to add any number of tree structures.
5Let us note that the algorithm builds projective trees for

each dimension, but their union may contain crossing arcs.

English French
Corpus EWT FTB Sequoia
# words 55,590 564,798 33,829
# MWE labels 4,649 49,350 6,842
ratio 0.08 0.09 0.20
MWE rep. shallow+ shallow deep

Table 1: Datasets statistics. The first part describes the number

of words in training sets with MWE label ratio. shallow+ refers

to a shallow representation with enriched MWE labels indicat-

ing the MWE strength (collocation vs. fixed).

plexity of O(n log n), provided that we restrict fea-
ture extraction at each position to a bounded vicinity.

4 Experiments

4.1 Datasets

We used data sets derived from three different ref-
erence treebanks: English Web Treebank (Linguis-
tic Data Consortium release LDC2012T13)[EWT],
French treebank (Abeillé et al., 2003) [FTB], Se-
quoia Treebank (Candito and Seddah, 2012) [Se-
quoia]. These treebanks have MWE annotations
available on at least a subpart of them. For EWT,
we used the STREUSLE corpus (Schneider et al.,
2014b) that contains annotations of all types of
MWEs, including discontiguous ones. We used the
train/test split from Schneider et al. (2014a). The
FTB contains annotations of contiguous MWEs. We
generated the dataset from the version described in
Candito and Constant (2014) and used the shallow
lexical representation, in the official train/dev/test
split of the SPMRL shared task (Seddah et al.,
2013). The Sequoia treebank contains some limited
annotations of MWEs (usually, compounds having
an irregular syntax). We manually extended the cov-
erage to all types of MWEs including discontiguous
ones. We also included deep annotation of MWEs
(in particular, nested ones). We used a 90%/10%
train/test split in our experiments. Some statistics
about the data sets are provided in table 4.1. Tokens
were enriched with their predicted part-of-speech
(POS) and information from MWE lexicon6 lookup
as in Candito and Constant (2014).

6We used the Unitex platform (www-igm.univ-mlv.
fr/˜unitex/ for French and the STREUSLE corpus web
site (www.ark.cs.cmu.edu/LexSem/) for English.
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4.2 Parser and features

Parser. We implemented our systems by modify-
ing the parser of Y. Goldberg7 also used as a base-
line. We trained all models for 20 iterations with
dynamic oracle (Goldberg and Nivre, 2013) using
the following exploration policy: always choose an
oracle transition in the first 2 iterations (k = 2), then
choose model prediction with probability p = 0.9.

Features. One-dimensional features were taken
directly from the code supporting Goldberg and
Nivre (2013). We added information on typograph-
ical cues (hyphenation, digits, capitalization, . . . )
and the existence of substrings in MWE dictionaries
in order to help lexical analysis. Following Constant
et al. (2012) and Schneider et al. (2014a), we used
dictionary lookups to build a first naive segmenta-
tion and incorporate it as a set of features. Two-
dimensional features were used in both pipeline and
joint strategies. We first added syntactic path fea-
tures to the lexical dimension, so syntax can guide
segmentation. Conversely, we also added lexical
path features to the syntactic dimension to provide
information about lexical connectivity. For instance,
two nodes being checked for attachment in the syn-
tactic dimension can be associated with information
describing whether one of the corresponding node is
an ancestor of the other one in the lexical dimension
(i.e. indicating whether the two syntactic nodes are
linked via internal or external paths).

We also selected automatically generated features
combining information from both dimensions. We
chose a simple data-driven heuristics to select com-
bined features. We ran one learning iteration over
the FTB training corpus adding all possible combi-
nations of syntactic and lexical features. We picked
the templates of the 10 combined features whose
scores had the greatest absolute values. Although
this heuristics may not favor the most discriminant
features, we found that the chosen features helped
accuracy on the development set.

4.3 Results

For each dataset, we carried out four experiments.
First we learned and ran independently two distinct

7We started from the version available at the time
of writing at https://bitbucket.org/yoavgo/
tacl2013dynamicoracles

baseline easy-first parsers using one-dimensional
features: one producing a lexical segmentation, an-
other one predicting a syntactic parse tree. We also
trained and ran a joint easy-first system predict-
ing lexical segmentations and syntactic parse trees,
using two-dimensional features. We also experi-
mented the pipeline system for each dimension, con-
sisting in applying the baseline parser on one dimen-
sion and using the resulting tree as source of two-
dimensional features in a standard easy first parser
applied on the other dimension. Since pipeline ar-
chitectures are known to be prone to error propaga-
tion, we also run an experiment where the pipeline
second stage is fed with oracle first-stage trees.

Results on the test sets are provided in table 2,
where LAS and UAS are computed with punctua-
tion. Overall, we can see that the lexical information
tends to help syntactic prediction while the other
way around is unclear.

Syntactic Lexical
Model UAS LAS UAS LAS F1 (Pr / Rc)

FTB
Distinct 87.44 85.09 96.69 94.75 79.47 (81.18/77.83)
Pipeline 87.74 85.39† 96.74 94.83 79.82 (81.56/78.15)
–oracle trees 88.96 86.98† 97.89 96.62† 87.27 (87.78/86.76)
Joint 87.69 85.32† 96.79 94.89 80.11 (82.51/77.85)
Le Roux et al. (2014) CRF 80.49
Le Roux et al. (2014) combination 82.44
Candito and Constant (2014) graph-based parsing + CRF

89.24 86.97 78.60
Sequoia

Distinct 84.88 81.74 89.70 85.00 67.60 (73.56/62.53)
Pipeline 85.91 82.84† 89.57 84.70 67.04 (72.24/62.53)
–oracle trees 85.95 83.05† 90.03 85.64† 69.36 (75.23/64.34)
Joint 86.19 82.99† 89.32 84.76 68.58 (72.75/64.86)

EWT
Distinct 87.45 83.91 93.96 90.75 53.93 (66.42/45.39)
Pipeline 88.45 84.76† 94.02 90.80 53.19 (68.09/43.64)
–oracle trees 88.20 84.76† 94.23 91.09 55.05 (71.15/44.89)
Joint 87.98 84.24 93.72 90.49 51.20 (64.64/42.39)
Schneider et al. (2014a) Baseline 53.85 (60.99/48.27)
Schneider et al. (2014a) Best (oracle POS and clusters) 57.71 (58.51/57.00)

Table 2: Results on our three test sets. Statistically significant

differences (p-value < 0.05) from the corresponding “distinct”

setting are indicated with †. Rows -oracle trees are the same as

pipeline but using oracle, instead of predicted, trees.

5 Discussion

The first striking observation is that the syntactic di-
mension does not help the predictions in the lexi-
cal dimension, contrary to what could be expected.
In practice, we can observe that variations and dis-
continuity of MWEs are not frequent in our data
sets. For instance, Schneider et al. (2014a) notice
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that only 15% of the MWEs in EWT are discontigu-
ous and most of them have gaps of one token. This
could explain why syntactic information is not use-
ful for segmentation. On the other hand, the lexical
dimension tends to help syntactic predictions. More
precisely, while the pipeline and the joint approach
reach comparable scores on the FTB and Sequoia,
the joint system has disappointing results on EWT.
The good scores for Sequoia could be explained by
the larger MWE coverage.

In order to get a better intuition on the real impact
of each of the three approaches, we broke down the
syntax results by dependency labels. Some labels
are particularly informative. First of all, the preci-
sion on the modifier label mod, which is the most
frequent one, is greatly improved using the pipeline
approach as compared with the baseline (around 1
point). This can be explained by the fact that many
nominal MWEs have the form of a regular noun
phrase, to which its internal adjectival or preposi-
tional constituents are attached with the mod label.
Recognizing a nominal MWE on the lexical dimen-
sion may therefore give a relevant clue on its cor-
responding syntactic structure. Then, the dep cpd
connects components of MWE with irregular syntax
that cannot receive standard labels. We can observe
that the pipeline (resp. the joint) approach clearly
improves the precision (resp. recall) as compared
with the baseline (+1.6 point). This means that the
combination of a preliminary lexical segmentation
and a possibly partial syntactic context helps im-
proving the recognition of syntax-irregular MWEs.
Coordination labels (dep.coord and coord) are par-
ticularly interesting as the joint system outperforms
the other two on them. Coordination is known to
be a very complex phenomenon: these scores would
tend to show that the lexical and syntactic dimen-
sions mutually help each other.

When comparing this work to state-of-the-art sys-
tems on data sets with shallow annotation of MWEs,
we can see that we obtain MWE recognition scores
comparable to systems of equivalent complexity
and/or available information. This means that our
novel representation which allows for the annotation
of more complex lexical phenomena does not dete-
riorate scores for shallow annotations.

gold distinct pipeline joint
Label count recall prec. recall prec. recall prec.
mod 7782 80.39 78.18 80.62 79.13 80.94 78.68
obj.p 6247 96.86 96.43 96.70 96.56 96.69 96.44
det 5269 97.67 97.89 97.70 97.76 97.76 97.72
ponct 4682 71.94 71.98 72.32 72.57 72.53 72.35
dep 3350 84.66 83.98 84.72 83.35 84.90 83.67
suj 2044 90.66 92.93 91.39 92.70 91.39 93.49
obj 1716 88.29 87.98 88.69 87.52 88.11 88.52
dep cpd 1604 84.66 87.84 86.28 87.54 85.10 89.39
root 1235 92.23 92.23 92.79 92.79 92.96 92.96
dep.coord 931 83.89 83.80 83.46 84.73 83.46 85.48
coord 832 58.77 59.27 60.10 60.39 59.98 60.71
aux.tps 516 97.09 99.40 97.67 99.41 97.29 99.41
a obj 398 75.13 77.06 73.37 79.56 73.62 78.98
obj.cpl 367 83.11 83.79 84.20 84.20 84.74 83.83
ats 345 79.71 83.33 79.42 82.78 79.42 83.03
mod.rel 334 70.96 76.21 70.36 73.90 68.26 73.55
de obj 329 75.08 74.62 76.60 77.30 75.38 76.07
p obj 268 58.58 79.70 61.19 79.61 60.45 80.60
aff 245 84.90 79.09 86.53 79.70 88.57 78.06
aux.pass 242 95.04 95.44 94.63 95.02 94.21 95.00
ato 30 33.33 83.33 40.00 85.71 43.33 86.67
arg 22 50.00 68.75 59.09 65.00 59.09 59.09
aux.caus 21 85.71 94.74 85.71 94.74 85.71 94.74
comp 11 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Results on FTB development set, broken down by de-

pendency labels. Scores correspond to recall and precision.

6 Conclusions and Future Work

In this paper we presented a novel representation
of deep lexical segmentation in the form of trees,
forming a dimension distinct from syntax. We ex-
perimented strategies to predict both dimensions in
the easy-first dependency parsing framework. We
showed empirically that joint and pipeline process-
ing are beneficial for syntactic parsing while hardly
impacting deep lexical segmentation.

The presented combination of parsing and seg-
menting does not enforce any structural constraint
over the two trees8. We plan to address this issue in
future work. We will explore less redundant, more
compact representations of the two dimensions since
some annotations can be factorized between the two
dimensions (e.g. MWEs with irregular syntax) and
some can easily be induced from others (e.g. se-
quential linking between lexical units).
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