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Abstract

There is a significant gap between the per-
formance of a coreference resolution system
on gold mentions and on system mentions.
This gap is due to the large and unbalanced
search space in coreference resolution when
using system mentions. In this paper we show
that search space pruning is a simple but effi-
cient way of improving coreference resolvers.
By incorporating our pruning method in one
of the state-of-the-art coreference resolution
systems, we achieve the best reported over-
all score on the CoNLL 2012 English test set.
A version of our pruning method is available
with the Cort coreference resolution source
code.

1 Introduction

Coreference resolution is the task of clustering refer-
ring expressions in a text so that each resulting clus-
ter represents an entity. It is a very challenging task
in natural language processing and it is still far from
being solved, i.e. the best reported overall CoNLL
score on the CoNLL 2012 English test set is 63.39
(Wiseman et al., 2015).

Text spans referring to an entity are called men-
tions. Mentions are the primary objects in a corefer-
ence resolution system. As with most previous work
on coreference resolution, we only consider men-
tions that are noun phrases. However, not all of the
noun phrases are mentions. A noun phrase may not
refer to any entity at all. The pronoun it in the sen-
tence it is raining is an example of a non-referential
noun phrase. Noun phrases which do refer to an en-
tity (mentions) can be further divided into two cat-

egories: mentions referring to entities which only
appear once in the discourse (i.e. singletons), and
mentions realizing entities that have been referred
to more than once in the text (i.e. coreferent men-
tions). Henceforth, we refer to both singletons and
non-referential phrases as non-coreferent mentions.
A large number of mentions that appear in a text
are non-coreferent. For instance, more than 80%
of mentions are singletons in the OntoNotes English
development set (Marneffe et al., 2015).

The latent ranking model is the best perform-
ing model for coreference resolution to date (Wise-
man et al., 2015; Martschat and Strube, 2015). If
we use gold mentions, the latent ranking model of
Martschat and Strube (2015) achieves an overall
score of 80% on the CoNLL 2012 English test set.
This result shows that once we have the ideal pruned
search space, the ranking model with the current set
of features is reasonably capable of finding corre-
sponding entities of mentions. The substantial gap
(17%) between the results of the gold mentions and
system mentions implies that search space pruning
is a promising direction for further improvements in
coreference resolution.

Marneffe et al. (2015) examine different search
space pruning methods that exist for coreference res-
olution. Among those, anaphoricity detection is the
most popular method (e.g. Ng and Cardie (2002),
Denis and Baldridge (2007), Ng (2009), Zhou and
Kong (2009), Durrett and Klein (2013), Martschat
and Strube (2015), Wiseman et al. (2015), Peng et al.
(2015), and Lassalle and Denis (2015)), while sin-
gleton detection is a more recent method (Recasens
et al., 2013; Ma et al., 2014; Marneffe et al., 2015).
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Anaphoricity detection examines whether a
phrase is anaphoric. Singleton detection examines
whether a phrase belongs to a coreference chain re-
gardless of being anaphor or antecedent. There-
fore, anaphoricity detection only prunes the search
space of anaphors while singleton detection prunes
the search space of both anaphors and antecedents.

Except for Clark and Manning (2015), all of
the state-of-the-art coreference resolvers explicitly
model anaphoricity detection (Martschat and Strube,
2015; Wiseman et al., 2015; Peng et al., 2015).
Therefore, modeling search space pruning as single-
ton detection can provide additional information for
the state-of-the-art coreference resolution systems.

In this paper we propose a simple but efficient sin-
gleton detection model. We first perform intrinsic
evaluations and show that our simple model signifi-
cantly improves the state-of-the-art results in single-
ton detection by a large margin. We then evaluate
our singleton model extrinsically on coreference res-
olution showing that search space pruning improves
different coreference resolution models.

2 Simple but Efficient Singleton Detection

In this section we show that pruning the coreference
resolution search space is not a very difficult task.
By using a simple set of features and a standard
classifier, we achieve new state-of-the-art results for
classifying coreferent and non-coreferent mentions.

Unlike Marneffe et al. (2015) who use both sur-
face (i.e. part-of-speech and n-gram based) features
and a large number (123) of carefully designed lin-
guistic features, we select a simple and small set of
shallow features:

1. lemmas of all words included in the mention;

2. lemmas of the two previous/next words be-
fore/after the mention;

3. part-of-speech tags of all words of the mention;

4. part-of-speech tags of the two previous/next
words before/after the mention;

5. complete mention string;

6. length of the mention in words;

7. mention type (proper, nominal, pronominal);

8. whether the whole string of the mention ap-
pears again in the document;

9. whether the head of the mention appears again
in the document.

We use an anchored SVM (Goldberg and Elhadad,
2007) with a polynomial kernel of degree two for
classification. When only few features are available,
anchored SVMs generalize much better than soft-
margin-SVMs (Goldberg and Elhadad, 2009). In our
experiments, we use a count threshold for discard-
ing vary rare lexical features that occur fewer than
10 times.

Similar to Marneffe et al. (2015), we use three
different configurations for evaluation. The Surface
configuration only uses the shallow features. The
Combined configuration uses the surface features
plus the linguistic features introduced by Marneffe
et al. (2015). The linguistic features of Marneffe et
al. (2015) also include some pairwise combinations
of the single features. Since our SVM with a poly-
nomial kernel of degree two implicitly models fea-
ture pairs, we only include the single features in our
Combined configuration. When removing mentions
that are classified as non-coreferent during prepro-
cessing, precision matters more than recall in order
not to over prune coreferent mentions. To achieve
higher precision, the Confident configuration uses
high confidence predictions of SVM (i.e. classify-
ing a mention as non-coreferent if the SVM output
is less or equal to -1, and as coreferent if the output
is greater or equal to +1). We use the same set of
shallow features as Surface for Confident. However,
Marneffe et al. (2015) use their combined feature set
for Confident.

2.1 Results

Table 2 shows the results of our singleton detec-
tion model in comparison to that of Marneffe et al.
(2015). We train our model on the CoNLL 2012
English training set and evaluate it on the develop-
ment set using recall, precision, F1 measure and ac-
curacy for both coreferent and non-coreferent men-
tions. Unlike Marneffe et al. (2015) that also use
some gold annotations for their features, we extract
all of our surface features from ’auto_conll’
files. Therefore, only predicted annotations are used.

The incorporation of linguistic features in Marn-
effe et al. (2015) improves the classification of both
coreferent and non-coreferent mentions by about 1
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Non-Coreferent Coreferent
#Features R P F1 R P F1 Accuracy

Surface 73,393 80.2 79.9 80.0 75.3 75.6 75.4 78.0
Marneffe et al. Confident 73,516 56.0 89.8 69.0 48.2 90.7 62.9 52.2

Combined 73,516 81.1 80.8 80.9 76.4 76.6 76.5 79.0
Surface 8,331 89.37 87.08 88.21 80.32 83.59 81.92 85.73

This work Confident 8,331 65.08 94.44 77.06 55.14 93.55 69.38 61.08
Combined 8,446 89.48 87.16 88.30 80.45 83.76 82.07 85.85

Table 1: Results on the the CoNLL 2012 English development set.

percent in comparison to the Surface results. How-
ever, in our case, the linguistic features only improve
the results by about 0.1 percent.

As the results show, by only using shallow fea-
tures, we achieve a new state-of-the-art performance
for singleton detection that improves the results of
Marneffe et al. (2015) by a large margin for classi-
fying both coreferent and non-coreferent mentions.

2.2 Error Analysis

For a singleton detector, precision errors (classify-
ing a coreferent mention as non-coreferent) are more
harmful than recall errors. If a coreferent mention is
classified as non-coreferent, the recall of the coref-
erence resolver that uses the singleton detector will
decrease. On the other hand, recall errors only af-
fect the singleton detector itself and not coreference
resolvers.

The precision error ratios of our Surface and Con-
fident systems for proper name (NAM), nominal
(NOM) and pronominal (PRO) mentions are listed
in Table 2. For each mention type, Table 2 also
shows the precision error ratio by mention type re-
lated to the mentions that are first mentions of their
corresponding entities. For example, in the Confi-
dent system 73.45% of the nominal mentions that
are incorrectly classified as non-coreferent are first
mentions of their corresponding entities. As can be
seen, many of the precision errors in both Surface
and Confident systems are errors in which the first
mention of an entity is detected as non-coreferent.
Detecting whether a mention will be referred to later,
is indeed very hard and requires more context infor-
mation. Features (8) and (9) from our feature set are
designed to address the correct detection of the first
mentions of entities to a limited degree. These fea-
tures only address first mentions of entities that are

NAM NOM PRO

Surface
Error rate 23.17 70.61 6.22
First mentions 57.68 65.54 20.19

Confident
Error rate 23.52 74.70 1.78
First mentions 62.63 73.45 33.33

Table 2: Precision error ratio.

NAM NOM PRO
Surface 30.48 34.07 35.45
Confident 23.65 58.25 13.50

Table 3: Recall error ratio.

referred to by later mentions with head or complete
string match. More features considering properties
of other mentions, rather than the examined mention
itself, are required in order to improve the correct
detection of the first mentions of entities.

Table 3 shows the ratio of recall errors for each
mention type. For our Surface system, this ratio is
more or less the same for different mention types.
However, Confident’s main source of recall errors is
the detection of non-coreferent nominal mentions.

2.3 Discussion

Our results significantly outperform the results of
Marneffe et al. (2015) who use both surface features
and a set of hand-engineered features targeting dif-
ferent linguistic phenomena related to the task. Our
findings are mirrored by Durrett and Klein (2013)’s
work on the coreference resolution task. Durrett and
Klein (2013) show that a coreference resolution sys-
tem that uses surface features can outperform those
using hand-engineered linguistic features.

Linguistic features like syntactic nearness (on
which Hobbs’ algorithm (Hobbs, 1978) is based),
morpho-syntactic and semantic agreement (e.g.
number, gender and semantic class agreements), re-
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MUC B3 CEAFe Avg.
R P F1 R P F1 R P F1 F1

Stanford
Baseline 64.58 63.65 64.11 49.53 55.21 52.22 53.06 44.82 48.59 54.97
+Stanford Singleton 64.26 65.19 64.72 49.09 56.84 52.68 52.54 46.55 49.37 55.59
+Preprocess Pruning 64.27 69.01 66.56 48.65 60.32 53.86 48.71 51.48 50.06 56.83

Cort Pairwise 68.46 71.01 69.71 54.02 59.47 56.61 51.88 52.17 52.02 59.45
+Preprocess Pruning 68.19 73.38 70.69 53.62 62.02 57.52 51.42 55.07 53.18 60.46
Latent Ranking 68.55 77.22 72.63 54.64 66.78 60.11 52.85 60.3 56.33 63.02
+Pruning Feature 68.81 78.37 73.28 55.46 66.9 60.65 52.07 62.23 56.7 63.54

Wiseman et al. (2015) 69.31 76.23 72.60 55.83 66.07 60.52 54.88 59.41 57.05 63.39

Table 4: Results on the English test set. All the improvements made by our singleton detection models are statistically significant.

cency, focus (Grosz and Sidner, 1986), and center-
ing (Brennan et al., 1987) are examples of useful
linguistic features for coreference resolution which
have the additional benefit of being applicable to dif-
ferent languages. For example, Hobbs’ algorithm
and agreement features are being used successfully
in the Stanford system (Lee et al., 2013). How-
ever, apart from features like these, a large number
of linguistically motivated features have been pro-
posed which either do not have a significant impact
or are only applicable to a specific language or do-
main. Therefore, designing general linguistic fea-
tures which provide information that is not captured
by surface features deserve more attention in order
to gain higher recall and better generalization.

We combine a simple set of surface features with
a standard machine learning model that can handle a
large number of surface features. This leads to a new
state-of-the-art singleton detection with high preci-
sion that can easily be incorporated in a coreference
resolution system for pruning non-coreferent men-
tions.

3 Pruning = Better Coreference Resolvers

In this section, we investigate the effect of search
space pruning on coreference resolution. We choose
the Stanford rule-based system (Lee et al., 2013) and
the Cort1 system (Martschat and Strube, 2015) as
our baselines for coreference resolution. Wiseman
et al. (2015) is the best performing coreference res-
olution system to date. However, we choose Cort as
our learning-based baseline because Cort is a frame-
work that allows evaluations on various coreference

1http://github.com/smartschat/cort

resolution models, i.e. ranking, antecedent trees, and
pairwise. The pairwise model is the most commonly
used model in coreference resolution, and latent
ranking is the best performing model for coreference
resolution to date (Wiseman et al., 2015; Martschat
and Strube, 2015).

3.1 Results

Table 4 shows the results of integrating singleton
detection into different coreference resolution ap-
proaches. We evaluate the systems on the CoNLL
2012 English test set using the MUC (Vilain et
al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFe (Luo, 2005) measures as provided by the
CoNLL coreference scorer version 8.01 (Pradhan et
al., 2014). According to the approximate random-
ization test (Noreen, 1989), all of the improvements
made by our singleton detection module are statisti-
cally significant (p < 0.05).

Baseline shows the result of the Stanford system
without using singleton detection. +Stanford Single-
ton is the result of the Stanford system including its
singleton detection module (Recasens et al., 2013).
+Preprocess Pruning is the result when our Confi-
dent model from Section 2 is used.

The singleton detection modules of Recasens et
al. (2013) and Marneffe et al. (2015) are incorpo-
rated in the Stanford system in a heuristic way: if
both anaphor and antecedent are classified as single-
ton, and none of them is a named entity, then those
mentions will be disregarded. However, since our
Confident model does have a high precision, we use
it for removing all non-coreferent mentions in a pre-
processing step. As shown in Table 4, our singleton
detection improves the overall score of the Baseline
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system by about 2 percent on the test set.
Cort uses a perceptron for learning. Therefore,

we use a perceptron in Cort while an anchored SVM
would have performed slightly better. We also in-
clude all the additional features that are used in Cort
for our Cort singleton detection model. SVM accu-
racy with surface features on the development set is
about 0.1 percent better than that of the perceptron
with Cort’s additional features.

For the pairwise model, singleton detection is per-
formed in a preprocessing step. The singleton detec-
tion module improves the overall performance of the
pairwise model by about 1 percent on the test set.

The Cort latent model already performs search
space pruning in the form of anaphoricity detection.
Additional pruning of potential anaphors in the pre-
processing step by the singleton model hurts the re-
call of the latent model. Therefore, we add the out-
put of the singleton model as a new feature for both
anaphor and antecedent. For obtaining these fea-
tures for training, we split the training data into two
halves and train a singleton perceptron separately on
each half. The values of the singleton feature for the
first half are computed based on the model that is
trained on the second half, and vice versa. This way,
the accuracy of singleton features on both training
and testing is similar. If we would train the singleton
model on the whole training data, we would over-
fit the model seriously. The values of the singleton
feature would be very accurate on the training data,
and the learner would overestimate the importance
of this feature.

The new feature improves the overall perfor-
mance of the latent ranking model by about 0.5
percent on the test set. This result is the best re-
ported overall score for coreference resolution on
the CoNLL 2012 English test set to date.

The singleton feature support is added to
the Cort source code. It is available at
http://github.com/smartschat/cort.

3.2 Discussion
Recent improvements in coreference resolution have
been made by exploring more complex learning and
inference strategies, a larger number of features,
and joint processing. There are also technically vi-
able solutions for improving the performance of a
coreference resolver which do not work in prac-

tice. For instance, since coreference resolution is a
set partitioning problem, entity-based models seem
to be more suitable for coreference resolution than
mention-pair models. However, entity-based mod-
els do not necessarily perform better than mention-
pair models (e.g. Ng (2010) and Moosavi and Strube
(2014)). The same is true for incorporating more
semantic-level information in a coreference resolu-
tion system (e.g. Durrett and Klein (2013)).

In this paper, we show that coreference resolution
can also simply be improved by performing search
space pruning. The significant gap between the per-
formance of the latent ranking model on gold men-
tions and on system mentions indicates that there is
still room for further improvements in search space
pruning.

4 Conclusions

We achieve new state-of-the-art results for singleton
detection by only using shallow features and simple
classifiers. We also show that search space pruning
significantly improves different coreference resolu-
tion models. The substantial gap between the per-
formance on gold mentions and on system mentions
indicates that there is still plenty of room for further
improvements in singleton detection. Therefore,
search space pruning is a promising direction for fur-
ther improvements in coreference resolution. The
proposed singleton detector as a feature for coref-
erence resolvers is implemented for the Cort coref-
erence resolver. It is available with the Cort source
code.
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