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Abstract
We propose an end-to-end, domain-
independent neural encoder-aligner-decoder
model for selective generation, i.e., the
joint task of content selection and surface
realization. Our model first encodes a full
set of over-determined database event records
via an LSTM-based recurrent neural network,
then utilizes a novel coarse-to-fine aligner to
identify the small subset of salient records to
talk about, and finally employs a decoder to
generate free-form descriptions of the aligned,
selected records. Our model achieves the
best selection and generation results reported
to-date (with 59% relative improvement in
generation) on the benchmark WEATHER-
GOV dataset, despite using no specialized
features or linguistic resources. Using an
improved k-nearest neighbor beam filter
helps further. We also perform a series of
ablations and visualizations to elucidate the
contributions of our key model components.
Lastly, we evaluate the generalizability of
our model on the ROBOCUP dataset, and get
results that are competitive with or better than
the state-of-the-art, despite being severely
data-starved.

1 Introduction

We consider the important task of producing a natu-
ral language description of a rich world state rep-
resented as an over-determined database of event
records. This task, which we refer to as selective
generation, is often formulated as two subproblems:
content selection, which involves choosing a sub-
set of relevant records to talk about from the ex-
haustive database, and surface realization, which is
concerned with generating natural language descrip-
tions for this subset. Learning to perform these tasks

jointly is challenging due to the uncertainty in decid-
ing which records are relevant, the complex depen-
dencies between selected records, and the multiple
ways in which these records can be described.

Previous work has made significant progress on
this task (Chen and Mooney, 2008; Angeli et al.,
2010; Kim and Mooney, 2010; Konstas and Lap-
ata, 2012). However, most approaches solve the
two content selection and surface realization sub-
tasks separately, use manual domain-dependent re-
sources (e.g., semantic parsers) and features, or em-
ploy template-based generation. This limits do-
main adaptability and reduces coherence. We take
an alternative, neural encoder-aligner-decoder ap-
proach to free-form selective generation that jointly
performs content selection and surface realization,
without using any specialized features, resources, or
generation templates. This enables our approach to
generalize to new domains. Further, our memory-
based model captures the long-range contextual de-
pendencies among records and descriptions, which
are integral to this task (Angeli et al., 2010).

We formulate our model as an encoder-aligner-
decoder framework that uses recurrent neural net-
works with long short-term memory units (LSTM-
RNNs) (Hochreiter and Schmidhuber, 1997) to-
gether with a coarse-to-fine aligner to select and
“translate” the rich world state into a natural lan-
guage description. Our model first encodes the
full set of over-determined1 event records using a
bidirectional LSTM-RNN. A novel coarse-to-fine
aligner then reasons over multiple abstractions of
the input to decide which of the records to discuss.
The model next employs an LSTM decoder to gen-

1By “over-determined”, we mean that there are extraneous
and redundant records present in the database.
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erate natural language descriptions of the selected
records.

The use of LSTMs, which have proven effective
for similar long-range generation tasks (Sutskever et
al., 2014; Vinyals et al., 2015b; Karpathy and Fei-
Fei, 2015), allows our model to capture the long-
range contextual dependencies that exist in selec-
tive generation. Further, the introduction of our pro-
posed variation on alignment-based LSTMs (Bah-
danau et al., 2014; Xu et al., 2015) enables our
model to learn to perform content selection and sur-
face realization jointly, by aligning each generated
word to an event record during decoding. Our novel
coarse-to-fine aligner avoids searching over the full
set of over-determined records by employing two
stages of increasing complexity: a pre-selector and
a refiner acting on multiple abstractions (low- and
high-level) of the record input. The end-to-end na-
ture of our framework has the advantage that it can
be trained directly on corpora of record sets paired
with natural language descriptions, without the need
for ground-truth content selection.

We evaluate our model on a benchmark weather
forecasting dataset (WEATHERGOV) and achieve
the best results reported to-date on content selection
(12% relative improvement in F-1) and language
generation (59% relative improvement in BLEU),
despite using no domain-specific resources. We
also perform a series of ablations and visualiza-
tions to elucidate the contributions of the primary
model components, and also show improvements
with a simple, k-nearest neighbor beam filter ap-
proach. Finally, we demonstrate the generalizability
of our model by directly applying it to a benchmark
sportscasting dataset (ROBOCUP), where we get re-
sults competitive with or better than state-of-the-art,
despite being extremely data-starved.

2 Related Work

Selective generation is a task where a natural lan-
guage description is produced for a salient subset of
a rich world state represented as an over-determined
database of event records. A good deal of atten-
tion in this area has been paid to the individual
content selection and selective realization subprob-
lems. With regards to the former, Barzilay and Lee
(2004) model the content structure from unanno-

tated documents and apply it to the application of
text summarization. Barzilay and Lapata (2005)
treat content selection as a collective classification
problem and simultaneously optimize the local label
assignment and their pairwise relations. Liang et al.
(2009) address the related task of aligning a set of
records to given textual description clauses. They
propose a generative semi-Markov alignment model
that jointly segments text sequences into utterances
and associates each to the corresponding record.

Surface realization is often treated as a problem
of producing text according to a given representation
(Reiter et al., 2000). Walker et al. (2001) and Stent
et al. (2004) design trainable sentence planners to
generate sentences (and their combinations) for con-
text planning and dialog, relying upon various lin-
guistics features. Soricut and Marcu (2006) propose
a language generation system that uses the WIDL-
representation, a formalism used to compactly rep-
resent probability distributions over finite sets of
strings. Wong and Mooney (2007) and Lu and
Ng (2011) use synchronous context-free grammars
to generate natural language sentences from formal
meaning representations. Similarly, Belz (2008) em-
ploys probabilistic context-free grammars to per-
form surface realization. Other effective approaches
include the use of tree conditional random fields (Lu
et al., 2009) and template extraction within a log-
linear framework (Angeli et al., 2010).

Recent work seeks to solve the full selective
generation problem through a single framework.
Chen and Mooney (2008) and Chen et al. (2010)
learn alignments between comments and their cor-
responding event records using a translation model
for parsing and generation. Kim and Mooney (2010)
implement a two-stage framework that decides what
to discuss using a combination of the methods of
Lu et al. (2008) and Liang et al. (2009), and then
produces the text based on the generation system of
Wong and Mooney (2007).

Angeli et al. (2010) propose a unified concept-
to-text model that treats joint content selection and
surface realization as a sequence of local decisions
represented by a log-linear model. Similar to other
work, they train their model using external align-
ments from Liang et al. (2009). Generation then fol-
lows as inference over this model, where they first
choose an event record, then the record’s fields (i.e.,
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attributes), and finally a set of templates that they
then fill in with words for the selected fields. Their
ability to model long-range dependencies relies on
their choice of features for the log-linear model,
while the template-based generation further employs
some domain-specific features for fluent output.

Konstas and Lapata (2012) propose an alternative
method that simultaneously optimizes the content
selection and surface realization problems. They
employ a probabilistic context-free grammar that
specifies the structure of the event records, and then
treat generation as finding the best derivation tree
according to this grammar. However, their method
still selects and orders records in a local fashion via
a Markovized chaining of records. Konstas and La-
pata (2013) improve upon this approach with global
document representations. However, this approach
also requires alignment during training, which they
estimate using the method of Liang et al. (2009).

We treat the problem of selective generation as
end-to-end learning via a recurrent neural network
encoder-aligner-decoder model, which enables us
to jointly learn content selection and surface re-
alization directly from database-text pairs, without
the need for an external aligner or ground-truth se-
lection labels. The use of LSTM-RNNs enables
our model to capture the long-range dependencies
that exist among the records and natural language
output. Additionally, the model does not rely on
any manually-selected or domain-dependent fea-
tures, templates, or parsers, and is thereby general-
izable. The alignment-RNN approach has recently
proven successful for generation-style tasks, e.g.,
machine translation (Bahdanau et al., 2014) and im-
age captioning (Xu et al., 2015). Since selective
generation requires identifying the small number of
salient records among an over-determined database,
we avoid performing exhaustive search over the full
record set, and instead propose a novel coarse-to-
fine aligner that divides the search complexity into
pre-selection and refinement stages.

3 Task Definition

We consider the problem of generating a natural
language description for a rich world state speci-
fied in terms of an over-determined set of records
(database). This problem requires deciding which
of the records to discuss (content selection) and

r1:N :

temperature(time=17-06, min=48, mean=53, max=61)

windSpeed(time=17-06, min=3, mean=6, max=11)

windDir(time=17-06, mode=SSW)

gust(time=17-06, min=0, mean=0, max=0)

skyCover(time=17-21, mode=0-25)

skyCover(time=02-06, mode=75-100)

precipChance(time=17-06, min=2, mean=14, max=20)

rainChance(time=17-06, mode=someChance)

x1:N :
“a 20 percent chance of showers after midnight. increas-

ing clouds, with a low around 48 southwest wind between

5 and 10 mph”

(a) WEATHERGOV

r1:N :

pass(arg1=purple6, arg2=purple3)

kick(arg1=purple3)

badPass(arg1=purple3, arg2=pink9)

turnover(arg1=purple3, arg2=pink9)

x1:N : “purple3 made a bad pass that was picked off by pink9”

(b) ROBOCUP

Figure 1: Sample database-text pairs chosen from the
(a) WEATHERGOV and (b) ROBOCUP datasets.

how to discuss them (surface realization). Train-
ing data consists of scenario pairs (r(i), x(i)) for
i = 1, 2, . . . , n, where r(i) is the complete set of
records and x(i) is the natural language description
(Fig. 1). At test time, only the records are given. We
evaluate our model in the context of two publicly-
available benchmark selective generation datasets.

WEATHERGOV The weather forecasting dataset
(see Fig. 1(a)) of Liang et al. (2009) consists of
29528 scenarios, each with 36 weather records (e.g.,
temperature, sky cover, etc.) paired with a natural
language forecast ( 28.7 avg. word length).

ROBOCUP We evaluate our model’s generaliz-
ability on the sportscasting dataset of Chen and
Mooney (2008), which consists of only 1539 pairs
of temporally ordered robot soccer events (e.g., pass,
score) and commentary drawn from the four-game
2001–2004 RoboCup finals (see Fig. 1(b)). Each
scenario contains an average of 2.4 event records
and a 5.7 word natural language commentary.

4 The Model

We formulate selective generation as inference
over a probabilistic model P (x1:T |r1:N ), where
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LSTM LSTM LSTM

Std. align. Refiner

LSTM LSTM
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Figure 2: Our model architecture with a bidirectional
LSTM encoder, coarse-to-fine aligner, and decoder.

r1:N = (r1, r2, . . . , rN ) is the input set of over-
determined event records,2 x1:T = (x1, x2, . . . , xT )
is the generated description with xt being the word
at time t and x0 being a special start token:

x∗1:T = arg max
x1:T

P (x1:T |r1:N ) (1a)

= arg max
x1:T

T∏
t=1

P (xt|x0:t−1, r1:N ) (1b)

The goal of inference is to generate a natural lan-
guage description for a given set of records. An
effective means of learning to perform this gen-
eration is to use an encoder-aligner-decoder archi-
tecture with a recurrent neural network, which has
proven effective for related problems in machine
translation (Bahdanau et al., 2014) and image cap-
tioning (Xu et al., 2015). We propose a variation on
this general model with novel components that are
well-suited to the selective generation problem.

Our model (Fig. 2) first encodes each input record
rj into a hidden state hj with j ∈ {1, . . . , N} us-
ing a bidirectional recurrent neural network (RNN).
Our novel coarse-to-fine aligner then acts on a con-
catenation mj of each record and its hidden state

2These records may take the form of an unordered set
or have a natural ordering (e.g., temporal in the case of
ROBOCUP). In order to make our model generalizable, we treat
the set as a sequence and use the order specified by the dataset.
We note that it is possible that a different ordering will yield
improved performance, since ordering has been shown to be
important when operating on sets (Vinyals et al., 2015a).

as multi-level representation of the input to compute
the selection decision zt at each decoding step t. The
model then employs an RNN decoder to arrive at the
word likelihood P (xt|x0:t−1, r1:N ) as a function of
the multi-level input and the hidden state of the de-
coder st−1 at time step t − 1. In order to model the
long-range dependencies among the records and de-
scriptions (which is integral to effectively perform-
ing selective generation (Angeli et al., 2010; Kon-
stas and Lapata, 2012; Konstas and Lapata, 2013)),
our model employs LSTM units as the nonlinear en-
coder and decoder functions.

Encoder Our LSTM-RNN encoder (Fig. 2)
takes as input the set of event records rep-
resented as a sequence r1:N = (r1, r2, . . . , rN )
and returns a sequence of hidden annotations
h1:N = (h1, h2, . . . , hN ), where the annotation hj

summarizes the record rj . This results in a represen-
tation that models the dependencies that exist among
the records in the database.We adopt an encoder ar-
chitecture similar to that of Graves et al. (2013)

iej
fe

j

oe
j

ge
j

 =


σ
σ
σ

tanh

T e

(
rj
hj−1

)
(2a)

cej = fe
j � cej−1 + iej � ge

j (2b)

hj = oe
j � tanh(cej) (2c)

where T e is an affine transformation, σ is the logis-
tic sigmoid that restricts its input to [0, 1], iej , fe

j ,
and oe

j are the input, forget, and output gates of the
LSTM, respectively, and cej is the memory cell acti-
vation vector. The memory cell cej summarizes the
LSTM’s previous memory cej−1 and the current in-
put, which are modulated by the forget and input
gates, respectively. Our encoder operates bidirec-
tionally, encoding the records in both the forward
and backward directions, which provides a better
summary of the input records. In this way, the hid-
den annotations hj = (

−→
h >j ;
←−
h >j )> concatenate for-

ward
−→
h j and backward

←−
h j annotations, each deter-

mined using Equation (2c).

Coarse-to-Fine Aligner Having encoded the in-
put records r1:N to arrive at the hidden annotations
h1:N , the model then seeks to select the content at
each time step t that will be used for generation. Our
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model performs content selection using an extension
of the alignment mechanism proposed by Bahdanau
et al. (2014), which allows for selection and genera-
tion that is independent of the ordering of the input.

In selective generation, the given set of event
records is over-determined with only a small subset
of salient records being relevant to the output natu-
ral language description. Standard alignment mech-
anisms limit the accuracy of selection and genera-
tion by scanning the entire range of over-determined
records. In order to better address the selective
generation task, we propose a coarse-to-fine aligner
that prevents the model from being distracted by
non-salient records. 3 Our model aligns based on
multiple abstractions of the input: both the origi-
nal input record as well as the hidden annotations
mj = (r>j ;h>j )>, an approach that has previously
been shown to yield better results than aligning
based only on the hidden state (Mei et al., 2015).

Our coarse-to-fine aligner avoids searching over
the full set of over-determined records by using two
stages of increasing complexity: a pre-selector and
refiner (Fig. 2). The pre-selector first assigns to each
record a probability pj of being selected, while the
standard aligner computes the alignment likelihood
wtj over all the records at each time step t during
decoding. Next, the refiner produces the final se-
lection decision by re-weighting the aligner weights
wtj with the pre-selector probabilities pj :

pj = sigmoid
(
q> tanh(Pmj)

)
(3a)

βtj = v>tanh(Wst−1 + Umj) (3b)

wtj = exp(βtj)/
∑

j

exp(βtj) (3c)

αtj = pjwtj/
∑

j

pjwtj (3d)

zt =
∑

j

αtjmj (3e)

where P , q, U ,W , v are learned parameters. Ideally,
the selection decision would be based on the highest-
value alignment zt = mk where k = arg maxj αtj .
However, we use the weighted average (Eqn. 3e) as
its soft approximation to maintain differentiability of
the entire architecture.

3 Our coarse-to-fine nomenclature is based on the alignment
inference at successively finer granularities.

The pre-selector assigns large values (pj > 0.5)
to a small subset of salient records and small val-
ues (pj < 0.5) to the rest. This modulates the stan-
dard aligner, which then has to assign a large weight
wtj in order to select the j-th record at time t. In
this way, the learned prior pj makes it difficult for
the alignment (attention) to be distracted by non-
salient records. Further, we can relate the output
of the pre-selector to the number of records that are
selected. Specifically, the output pj expresses the
extent to which the j-th record should be selected.
The summation

∑N
j=1 pj can then be regarded as

a real-valued approximation to the total number of
pre-selected records (denoted as γ), which we regu-
larize towards, based on validation (see Eqn. 5).

Decoder Our architecture uses an LSTM decoder
that takes as input the current context vector zt,
the last word xt−1, and the LSTM’s previous hid-
den state st−1. The decoder outputs the conditional
probability distribution Px,t = P (xt|x0:t−1, r1:N )
over the next word, represented as a deep output
layer (Pascanu et al., 2014),

idt
fd

t

od
t

gd
t

 =


σ
σ
σ

tanh

T d

Ext−1

st−1

zt

 (4a)

cdt = fd
t � cdt−1 + idt � gd

t (4b)

st = od
t � tanh(cdt ) (4c)

lt = L0(Ext−1 + Lsst + Lzzt) (4d)

Px,t = softmax (lt) (4e)

where E (an embedding matrix), L0, Ls, and Lz are
parameters to be learned.

Training and Inference We train the model us-
ing the database-record pairs (r1:N , x1:T ) from the
training corpora so as to maximize the likelihood of
the ground-truth language description x∗1:T (Eqn. 1).
Additionally, we introduce a regularization term
(
∑N

j=1 pj − γ)2 that enables the model to influence
the pre-selector weights based on the aforemen-
tioned relationship between the output of the pre-
selector and the number of selected records. More-
over, we also introduce the term (1.0 − max(pj)),
which accounts for the fact that at least one record
should be pre-selected. Note that when γ is equal to
N , the pre-selector is forced to select all the records
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(pj = 1.0 for all j), and the coarse-to-fine alignment
reverts to the standard alignment introduced by Bah-
danau et al. (2014). Together with the negative log-
likelihood of the ground-truth description x∗1:T , our
loss function becomes

L = − logP (x∗1:T |r1:N ) +G (5a)

= −
T∑

t=1

logP (x∗t |x0:t−1, r1:N ) +G (5b)

G =

 N∑
j=1

pj − γ
2

+
(
1−max(pj)

)
(5c)

Having trained the model, we generate the natu-
ral language description by finding the maximum a
posteriori words under the learned model (Eqn. 1).
4 For inference, we perform greedy search starting
with the first word x1. Beam search offers a way to
perform approximate joint inference — however, we
empirically found that beam search does not perform
any better than greedy search on the datasets that we
consider, an observation that is shared with previous
work (Angeli et al., 2010). We later discuss an al-
ternative k-nearest neighbor-based beam filter (see
Sec 6.2).

5 Experimental Setup

Datasets We analyze our model on the benchmark
WEATHERGOV dataset, and use the data-starved
ROBOCUP dataset to demonstrate the model’s gen-
eralizability. Following Angeli et al. (2010), we
use WEATHERGOV training, development, and test
splits of size 25000, 1000, and 3528, respectively.
For ROBOCUP, we follow the evaluation method-
ology of previous work (Chen and Mooney, 2008),
performing three-fold cross-validation whereby we
train on three games (approximately 1000 scenarios)
and test on the fourth. Within each split, we hold
out 10% of the training data as the development set
to tune the early-stopping criterion and γ. We then
report the standard average performance (weighted
by the number of scenarios) over these four splits.

Dataset Processing In this section, we present the
implementation details regarding our data prepro-
cessing. We use WEATHERGOV as an example here,

4Numerical values are also generated exactly as any other
token in the vocabulary.

since it is our primary dataset, and the same recipe
is followed for ROBOCUP.

For tokenization of the textual descriptions, we
simply treat as token each string unit delimited by
a space, which includes regular words (“sunny”),
punctuation (“,”), and numerical values (“20”). A
special token is added to represent the beginning and
end of the entire textual description. This operation
results in a vocabulary of size 338, and we did not
filter out any rare tokens. Moreover, in this setup,
numerical values are also generated as any other to-
ken during decoding period.

For event record representation, we represent each
event as a fixed-length vector, concatenated by mul-
tiple “attribute (field) vectors”. Each attribute vec-
tor represents either a 1) record type (e.g., “rain-
Chance”) with a one-hot vector, 2) record time
slot (e.g., “06:00–21:00”) with a one-hot vector, 3)
record mode (e.g., “SSE”) with a one-hot vector, or,
4) record value (e.g., “20”) with a 0-1 vector. The 0-
1 vector for record value is simply the signed binary
representation of this number. We choose the usage
of 0-1 binary representation vectors for numbers be-
cause it allows us to share binning-style information
between nearby numbers (whereas a one-hot vector
is sparse).

Training Details On WEATHERGOV, we lightly
tune the number of hidden units and γ on the de-
velopment set according to the generation metric
(BLEU), and choose 500 units from {250, 500, 750}
and γ = 8.5 from {6.5, 7.5, 8.5, 10.5, 12.5}. For
ROBOCUP, we only tune γ on the development set
and choose γ = 5.0 from the set {1.0, 2.0, . . . , 6.0}.
However, we do not retune the number of hidden
units on ROBOCUP. For each iteration, we ran-
domly sample a mini-batch of 100 scenarios during
back-propagation and use Adam (Kingma and Ba,
2015) for optimization. Training typically converges
within 30 epochs. We select the model according to
the BLEU score on the development set.5

Evaluation Metrics We consider two metrics as a
means of evaluating the effectiveness of our model
on the two selective generation subproblems. For
content selection, we use the F-1 score of the set of

5We implement our model in Theano (Bergstra et al., 2010;
Bastien et al., 2012) and will make the code publicly available.
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Table 1: Primary WEATHERGOV results

Method F-1 sBLEU cBLEU

KL12 – 33.70 –
KL13 – 36.54 –
ALK10 65.40 38.40 51.50
Our model 73.21 61.01 70.39

selected records as defined by the harmonic mean of
precision and recall with respect to the ground-truth
selection record set. We define the set of selected
records as consisting of the record with the largest
selection weight αti computed by our aligner at each
decoding step t.

We evaluate the quality of surface realization us-
ing the BLEU score6 (a 4-gram matching-based pre-
cision) (Papineni et al., 2001) of the generated de-
scription with respect to the human-created refer-
ence. To be comparable to previous results on
WEATHERGOV, we also consider a modified BLEU
score (cBLEU) that does not penalize numerical de-
viations of at most five (Angeli et al., 2010) (i.e.,
to not penalize “low around 58” compared to a ref-
erence “low around 60”). On ROBOCUP, we also
evaluate the BLEU score in the case that ground-
truth content selection is known (sBLEUG), to be
comparable to previous work.

6 Results and Analysis

We analyze the effectiveness of our model on
the benchmark WEATHERGOV (as primary) and
ROBOCUP (as generalization) datasets. We also
present several ablations to illustrate the contribu-
tions of the primary model components.

6.1 Primary Results (WEATHERGOV)

We report the performance of content selection and
surface realization using F-1 and two BLEU scores
(standard sBLEU and the customized cBLEU of An-
geli et al. (2010)), respectively (Sec. 5). Table 1
compares our test results against previous meth-
ods that include KL12 (Konstas and Lapata, 2012),
KL13 (Konstas and Lapata, 2013), and ALK10 (An-
geli et al., 2010). Our method achieves the best
results reported to-date on all three metrics, with
relative improvements of 11.94% (F-1), 58.88%

6We compute BLEU using the publicly available evaluation
provided by Angeli et al. (2010).

(sBLEU), and 36.68% (cBLEU) over the previous
state-of-the-art.

6.2 Beam Filter with k-Nearest Neighbors

We perform greedy search as an approximation to
full inference over the set of decision variables
(Eqn. 1). We considered beam search as an alterna-
tive, but as with previous work on this dataset (An-
geli et al., 2010), we found that greedy search still
yields better BLEU performance (Table 2).

Table 2: Effect of beam width

Beam width M 1 2 5 10

dev sBLEU 65.58 64.70 57.02 47.07
dev cBLEU 75.78 74.91 65.83 54.19

As an alternative, we consider a beam filter based
on a k-nearest neighborhood. First, we generate the
M -best description candidates (i.e., a beam width
of M ) for a given input record set (database) us-
ing standard beam search. Next, we find the K
nearest neighbor database-description pairs from the
training data, based on the cosine similarity of each
neighbor database with the given input record. We
then compute the BLEU score for each of the M de-
scription candidates relative to the K nearest neigh-
bor descriptions (as references) and select the candi-
date with the highest BLEU score. We tune K and
M on the development set and report the results in
Table 3. Table 4 presents the test results with this
tuned setting (M = 2, K = 1), where we achieve
BLEU scores better than our primary greedy results.

Table 3: k-NN beam filter (dev set)

sBLEU M = 2 M = 5 M = 10

K = 1 65.99 65.88 65.65
K = 2 65.89 65.98 65.83
K = 5 65.64 65.45 65.41
K = 10 65.91 65.89 65.12

cBLEU M = 2 M = 5 M = 10

K = 1 76.21 76.13 75.98
K = 2 75.99 76.03 75.82
K = 5 75.90 75.63 75.41
K = 10 75.95 75.87 75.23
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Record details:
id-0: temperature(time=06-21, min=52, mean=63, max=71); id-2: windSpeed(time=06-21, min=8, mean=17, max=23);
id-3: windDir(time=06-21, mode=SSE); id-4: gust(time=06-21, min=0, mean=10, max=30);
id-5: skyCover(time=6-21, mode=50-75); id-10: precipChance(time=06-21, min=19, mean=32, max=73);
id-15: thunderChance(time=13-21, mode=SChc)

Figure 3: An example generation for a set of records from WEATHERGOV.

Table 4: k-NN beam filter (test set)

Primary k-NN (M = 2, K = 1)

sBLEU 61.01 61.76
cBLEU 70.39 71.23

6.3 Ablation Analysis (WEATHERGOV)

Next, we present several ablations to analyze the
contribution of our model components.7

Aligner Ablation First, we evaluate the contribu-
tion of our proposed coarse-to-fine aligner by com-
paring our model with the basic encoder-aligner-
decoder model introduced by Bahdanau et al. (2014)
(which we originally started with). Table 5 reports
the results demonstrating that our two-level aligner
yields superior F-1 and BLEU scores relative to a
standard aligner.8

Table 5: Coarse-to-fine aligner ablation (dev set)

Aligner F-1 sBLEU cBLEU

Basic 60.35 63.54 74.90
Coarse-to-fine 76.28 65.58 75.78

7These results are based on our primary model of Sec. 6.1
and on the development set.

8The same improvement trends hold on the test set. More-
over, our two-level aligner (and the basic aligner) model is sub-
stantially better than having no aligner at all, i.e., a simple
encoder-decoder model of Sutskever et al. (2014).

Encoder Ablation Next, we consider the effec-
tiveness of the encoder. Table 6 compares the results
with and without the encoder on the development
set, and demonstrates that there is a significant gain
from encoding the event records using the LSTM-
RNN. We attribute this improvement to the LSTM-
RNN’s ability to capture the relationships that exist
among the records, which is known to be essential
to selective generation (Barzilay and Lapata, 2005;
Angeli et al., 2010).

Table 6: Encoder ablation (dev set)

Encoder F-1 sBLEU cBLEU

With 76.28 65.58 75.78
Without 57.45 56.47 68.63

6.4 Qualitative Analysis (WEATHERGOV)

Output Examples Fig. 3 shows an example
record set with its output description and record-
word alignment heat map. As shown, our model
learns to align records with their corresponding
words (e.g., windDir and “southeast,” temperature
and “71,” windSpeed and “wind 10,” and gust and
“winds could gust as high as 30 mph”). It also learns
the subset of salient records to talk about (matching
the ground-truth description perfectly for this ex-
ample, i.e., a standard BLEU of 100.00). We also
see some word-level mismatch, e.g., “cloudy” mis-
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aligns to id-0 temp and id-10 precipChance, which
we attribute to the high correlation between these
types of records (“garbage collection” in Liang et
al. (2009)).

Word Embeddings (Trained & Pretrained)
Training our decoder has the effect of learning em-
beddings for the words in the training set (via the
embedding matrix E in Eqn. 4). Here, we ex-
plore the extent to which these learned embeddings
capture semantic relationships among the training
words. Table 7 presents nearest neighbor words for
some of the common words from the WEATHER-
GOV dataset (according to cosine similarity in the
embedding space).

Table 7: Nearest neighbor word for example words

Word Nearest neighbor

gusts gust
clear sunny

isolated scattered
southeast northeast

storms winds
decreasing falling

We also consider different ways of using pre-
trained word embeddings (Mikolov et al., 2013) to
bootstrap the quality of our learned embeddings.
One approach initializes our embedding matrix with
the pre-trained vectors and then refines the embed-
ding based on our training corpus. The second con-
catenates our learned embedding matrix with the
pre-trained vectors in an effort to simultaneously ex-
ploit general similarities as well as those learned
for the domain. As shown previously for other
tasks (Vinyals et al., 2014; Vinyals et al., 2015b), we
find that the use of pre-trained embeddings results in
negligible improvements (on the development set).

6.5 Out-of-Domain Results (ROBOCUP)

We use the ROBOCUP dataset to evaluate the
domain-independence of our model. The dataset
is severely data-starved with only 1000 (approx.)
training pairs, which is much smaller than is typi-
cally necessary to train RNNs. This results in higher
variance in the trained model distributions, and we
thus adopt the standard denoising method of ensem-
bles (Sutskever et al., 2014; Vinyals et al., 2015b;

Zaremba et al., 2014).9

Table 8: ROBOCUP results

Method F-1 sBLEU sBLEUG

CM08 72.00 – 28.70
LJK09 75.70 – –
CKM10 79.30 – –
ALK10 79.90 – 28.80
KL12 – 24.88 30.90
Our model 81.58 25.28 29.40

Following previous work, we perform two exper-
iments on the ROBOCUP dataset (Table 8), the first
considering full selective generation and the second
assuming ground-truth content selection at test time.
On the former, we obtain a standard BLEU score
(sBLEU) of 25.28, which exceeds the best score of
24.88 (Konstas and Lapata, 2012). Additionally,
we achieve an selection F-1 score of 81.58, which
is also the best result reported to-date. In the case
of assumed (known) ground-truth content selection,
our model attains an sBLEUG score of 29.40, which
is competitive with the state-of-the-art.10

7 Conclusion

We presented an encoder-aligner-decoder model for
selective generation that does not use any spe-
cialized features, linguistic resources, or genera-
tion templates. Our model employs a bidirec-
tional LSTM-RNN model with a novel coarse-to-
fine aligner that jointly learns content selection and
surface realization. We evaluate our model on
the benchmark WEATHERGOV dataset and achieve
state-of-the-art selection and generation results. We
achieve further improvements via a k-nearest neigh-
bor beam filter. We also present several model ab-
lations and visualizations to elucidate the effects of
the primary components of our model. Moreover,
our model generalizes to a different, data-starved do-
main (ROBOCUP), where it achieves results compet-
itive with or better than the state-of-the-art.
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