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Abstract

We present a model of morphological seg-
mentation that jointly learns to segment and
restore orthographic changes, e.g., funniest 7→
fun-y-est. We term this form of analysis canon-
ical segmentation and contrast it with the tra-
ditional surface segmentation, which segments
a surface form into a sequence of substrings,
e.g., funniest 7→ funn-i-est. We derive an im-
portance sampling algorithm for approximate
inference in the model and report experimental
results on English, German and Indonesian.

1 Introduction

Morphological segmentation is useful for NLP appli-
cations, such as, automatic speech recognition (Afify
et al., 2006), keyword spotting (Narasimhan et al.,
2014), machine translation (Clifton and Sarkar, 2011)
and parsing (Seeker and Çetinoğlu, 2015). Prior work
cast the problem as surface segmentation: a word
form w is segmented into a sequence of substrings
whose concatenation is w. In this paper, we introduce
the problem of canonical segmentation: w is ana-
lyzed as a sequence of canonical morphemes, based
on a set of word forms that have been “canonically”
annotated for supervised learning. Each canonical
morpheme c corresponds to a surface morph s, de-
fined as its orthographic manifestation, i.e., as the
substring of w that is generated by applying editing
operations like insertion and deletion. Consider the
following example: funniest has a canonical segmen-
tation fun-y-est with three morphs funn-i-est. Arriv-
ing at the canonical analysis requires two edit op-
erations: delete n in funn and replace i with y in

funniest funyest fun y est

memikulmu menpikulmu men  pikul  mu

Zulassung zulassenung zu  lassen  ung

Orthography Underlying Form Segmentation

Figure 1: Examples of canonical segmentation for English
(top), Indonesian (middle) and German (bottom).

i. Figure 1 gives examples of orthography (i.e., the
concatentation of surface morphs), underlying form
(i.e., the concatentation of canonical morphemes) and
canonical segmentation in three languages.

Canonical segmentation is motivated in the fol-
lowing three ways: (i) Computational morphology
is the study of how words and their meanings are
composed from smaller units. This goal is better
supported by canonical morphemes than by surface
morphemes because the smaller units are more ac-
curately modeled. For funniest, composition can
reason with canonical morphemes fun and y, whereas
surface segmentation must work with funn and i.
(ii) Morphological analysis is typically done with
attribute-value pairs (AVP), e.g., [lemma=FUNNY,
degree=SUPER ]. While AVP is a good represen-
tation for inflectional morphology, it is not pow-
erful enough for derivational morphology. If we
represent the derivation of funnier as [lemma=FUN,
deriv-suffix=-Y, degree=SUPER ], then it is no
longer clear in this fixed representation whether
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degree = SUPER applies to fun or fun+y.1 Canon-
ical segmentation is more flexible—allowing us to
express derivational relations without committing
to a fixed attribute-value structure, which are used
to study inflection. This point is important due to
the fundamental distinction between the creation of
words through inflection vs. through derivation. In-
flection alters words to express syntactic relations
(e.g., tense) with no major change in meaning nor
POS. For example, perturbed and perturbs are in-
flections of the verb perturb. On the other hand,
derivation modifies words more drastically—often
changing the meaning or POS. For example, the noun
perturbation derives from the verb stem perturb and
the suffix ation (Haspelmath and Sims, 2013). (iii)
Most NLP systems take word forms as atomic build-
ing blocks. We propose canonical morphemes, an
alternative representation that models the structure
of a language’s lexicon and supports applications
that benefit from access to the internal structure of
words. This includes access to internal morphologi-
cal structure, e.g., canonical morphemes like -y and
-ly are recognized (independent of their orthographic
manifestation) as derivational suffixes that cause pre-
dictable modifications; as well as access to internal
semantic structure, e.g., the canonical segmentations
of fun and funny share the canonical morpheme fun).

The contributions of this paper are as follows.
We present the challenging new task of canonical
segmentation. We develop a feature-rich structured
joint model for canonical segmentation, which
accounts for orthographic variation and segment-
level structure. We derive an efficient importance
sampling algorithm for approximate inference. We
present experiments on three languages: English,
German and Indonesian.

2 Model, Inference and Training

Our goal is canonical segmentation: identifying both
the canonical morphemes and the morphs (their or-
thographic manifestations) of a word. This task in-
volves segmenting the input as well as accounting
for orthographic changes occurring in the word for-
mation processes. Let w be the surface form, u the
orthographic underlying representation (UR) of w,
and s a labeled segmentation of u. Note: all random

1Note that funnest is a word of (colloquial) English.

variables are string-valued (Dreyer and Eisner, 2009).
For example, consider the word unhappiness:

unhappiness︸ ︷︷ ︸
w

transduction7→ unhappyness︸ ︷︷ ︸
u

segmentation7→ [ prefix un][stem happy][suffix ness]︸ ︷︷ ︸
s

.

Note that our notion of an orthographic UR closely re-
sembles the phonological concept of a UR (Kenstow-
icz, 1994) and, indeed, many orthographic variations
are manifestations of phonology.

We model this process as a globally normalized
log-linear model of the conditional distribution,

p(s, u | w)=
1

Z(w)
exp
(
η>f(s, u)+ω>g(u, w)

)
,

where θ = {η,ω} are the model parameters, f
and g are, respectively, feature functions of the
segmentation-UR and UR-surface-form pairs and
Z(w) =

∑
s′,u′ exp

(
η>f(s′, u′) + ω>g(u′, w)

)
is

the partition function. We can view this model
as a conjunction of a finite-state transduction fac-
tor g (Dreyer et al., 2008) and a semi-Markov seg-
mentation factor f (Sarawagi and Cohen, 2004),
relating it to previous semi-CRF models of seg-
mentation.2 To fit the model, we maximize the
log-likelihood of the training data {(si, ui, wi)}Ni=1,
L(θ) =

∑N
i=1 log p(si, ui |wi), with respect to the

model parameters θ. Optimization is done with
gradient-based methods—requiring the computation
of log Z(w) and ∇ log Z(w), which is intractable.3

Thus, we turn to sampling (Rubinstein and Kroese,
2011) and stochastic gradient methods.

Features Our model includes several simple fea-
ture templates. The transduction factor of the model
is based on (Cotterell et al., 2014): we include fea-
tures that fire on individual edit actions as well as
conjunctions of edit actions and characters on the
surrounding context. For the semi-Markov factor, we
use the feature set of Cotterell et al. (2015a), which
2Our transduction factor maps surface forms w to UR strings
u of bounded length by imposing an insertion limit k. Thus,
|u| ≤ |w|+ k. Our experiments use k = 5.

3Since the semi-CRF features fire on substrings, we would need
a dynamic programming state for each substring of each of the
exponentially many settings of u.

665



includes indicator features on individual segments,
conjunctions of segments and segment labels and
conjunctions of segments and left and right context
on the input string. We also include a feature that
checks whether the segment is a word in ASPELL (or
a monolingual corpus).

Importance Sampling To approximately compute
the gradient for learning, we employ importance sam-
pling (MacKay, 2003, pp. 361–364). Rather than con-
sidering all underlying orthographic forms u, we use
samples taken from proposal distribution q—a distri-
bution over Σ∗. In the following equations, we omit
the dependence on w for notational brevity. Also,
let h(s, u) = f(s, u) + g(u, w). We now provide
the derivation of our importance sampling estimate
for the gradient of log-partition function, including
Rao-Blackwellization (Robert and Casella, 2013).

∇ log Z = E
(s,u)∼p

[h(s, u)] (1)

=
∑
s,u

p(s, u)h(s, u) (2)

=
∑
s,u

p(s|u)p(u)h(s, u) (3)

=
∑

u

p(u)
∑

s

p(s|u)h(s, u) (4)

=
∑

u

p(u) E
s∼p(·|u)

[h(s, u)] (5)

= E
u∼q

[
p(u)
q(u) E

s∼p(·|u)
[h(s, u)]

]
. (6)

The expectation Es∼p(·|u) [h(s, u)] is efficiently com-
puted with the semi-Markov generalization of the
forward-backward algorithm (Sarawagi and Cohen,
2004). The algorithm runs in O(n2 · t2) per sample
where n is the length of the string to be segmented
and t is the size of the label space. In our case, we
have three labels: prefix, stem and suffix so t = 3.

So long as q has support everywhere p does (i.e.,
p(u) > 0 ⇒ q(u) > 0), the estimate is unbi-
ased. Unfortunately, we can only efficiently compute
p(u) ∝ ∑

s exp(θ>h(s, u)) up to constant factor,
p(u) = p̄(u)/Zu. Thus, we use the indirect impor-
tance sampling estimator,

1∑m
i=1

p̄(u(i))

q(u(i))

m∑
i=1

p̄(u(i))
q(u(i))

E
s∼p(·|u(i))

[
h(s, u(i))

]
, (7)

where u(1). . . u(m) i.i.d.∼ q. The indirect estimator is
biased, but statistically consistent.4 We also note that
the particular instantiation of the indirect estimator
leverages an efficient dynamic program to compute
the expected features under p(·|u(i)). This has the
effect of decreasing the number of samples required
to get a useful estimate of the gradient. Comput-
ing p̄(u(i)) is a side effect of the dynamic program,
namely the normalization constant. As a proposal
distribution q, we use the following locally normal-
ized distribution,

q(u) =
exp(ω>g(u, w))∑
u′ exp(ω>g(u′, w))

. (8)

3 Related Work

Most work on morphological segmentation has been
unsupervised. The LINGUISTICA (Goldsmith, 2001)
and MORFESSOR (Creutz and Lagus, 2002) mod-
els rely on the minimum description length principle
(Cover and Thomas, 2012). In short, these meth-
ods seek to segment words while at the same time
minimizing the number of unique morphs discov-
ered, i.e., the complexity of the model. The MOR-
FESSOR model has additionally been augmented to
handle the semi-supervised scenario (Kohonen et al.,
2010). Goldwater et al. (2009) proposed a Bayesian
non-parametric approach to word and morphological
segmentation. Poon et al. (2009) used contrastive
estimation (Smith and Eisner, 2005) to learn a log-
linear model for segmentation fully unsupervised.

Few supervised techniques have been applied to
morphological segmentation. Ruokolainen et al.
(2013) applied a linear-chain CRF, showing that with
a minimal amount of labeled data the performance
of standard unsupervised and semi-supervised base-
lines are surpassed. In follow-up work (Ruokolainen
et al., 2014), they found that incorporating distribu-
tional character-level features acquired from large un-
labeled corpora improved the earlier model. Cotterell
et al. (2015a) showed that modeling morphotactics
with a semi-CRF improves results further.

The previously described approaches only attempt
to split words into a sequence of stem and affixes—
making it difficult to restore the underlying structure

4Informally, the indirect importance sampling estimate converges
to the true expectation as m→∞.
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which has been “corrupted” by the orthographic pro-
cess. Our approach, however, is capable of restoring
the underlying morphemes, e.g., stopping 7→ stop-ing.
We note two exceptions to the above statement. Both
Dasgupta and Ng (2007) and Naradowsky and Gold-
water (2009) incorporate basic, heuristic spelling
rules into unsupervised induction algorithms. Re-
latedly, Cotterell et al. (2015b) induced a phonology
in an unsupervised manner. In contrast, our model
is fully supervised and supports rich features, which
enable accurate prediction on new words.

4 Experiments

We provide canonical segmentation experiments in
three languages: English, German and Indonesian.

4.1 Corpora

The English data was extracted from segmentations
derived from CELEX (Baayen et al., 1993). The
German data was extracted from DerivBase (Zeller
et al., 2013), which provides a collection of derived
forms and the transformation rules. We manipulated
these rules to create canonical segmentations.
Lastly, the Indonesian data was created from the
output of the MORPHIND analyzer (Larasati et al.,
2011), which we ran on an open-source corpus of
Indonesian.5 For each language we selected 10,000
forms at random from a uniform distribution over
types to form our corpus. We sampled 5 splits of
the data into 8000 training forms, 1000 development
forms and 1000 test forms. We have released all train,
development and test splits online with additional
documentation about their construction.6

4.2 Models

We train two versions of our proposed model. First,
we train a pipeline model, i.e., we train the transduc-
tion component and segmentation component inde-
pendently and decode sequentially. This approach is
faster both at train and at test but suffers from cas-
cading errors. Second, we train a joint model, the
transduction and the segmentation components are
trained to work well together.

5https://github.com/desmond86/
Indonesian-English-Bilingual-Corpus

6http://ryancotterell.github.io/
canonical-segmentation/

Joint Pipeline SemiCRF WFST

er
ro

r en 0.27 (.02) 0.33 (.01) 0.33 (.01) 0.63 (.00)
de 0.41 (.03) 0.53 (.02) 0.65 (.01) 0.74 (.01)
id 0.10 (.01) 0.22 (.01) 0.27 (.01) 0.71 (.00)

di
st

an
ce en 0.98 (.34) 0.63 (.04) 0.68 (.01) 1.35 (.01)

de 1.01 (.07) 1.10 (.04) 1.32 (.04) 4.24 (.20)
id 0.15 (.02) 0.36 (.03) 0.49 (.02) 2.13 (.00)

F
1

en 0.76 (.02) 0.70 (.02) 0.68 (.01) 0.53 (.02)
de 0.76 (.02) 0.71 (.01) 0.65 (.01) 0.59 (.02)
id 0.80 (.01) 0.75 (.01) 0.71 (.01) 0.62 (.02)

Table 1: Top: Error rate. Middle: Average edit distance.
Bottom: Mean morpheme F1 (higher better). Standard
deviation in parentheses. Best result on each line in bold.

Baseline: Semi-CRF Segmenter The first base-
line is a semi-CRF (Sarawagi and Cohen, 2004) that
segments the orthographic form into morphs with-
out canonicalization. Earlier work by Cotterell et
al. (2015a) applied this model to supervised mor-
phological segmentation. We use the feature set as
Cotterell et al. (2015a), but we do not incorporate
their augmented morphotactic state space.

Baseline: WFST Segmenter Our second baseline
is a weighted finite-state transducer (Mohri, 1997)
with a log-linear parameterization (Dreyer et al.,
2008). We use the stochastic contextual edit model
of Cotterell et al. (2014). We employ context n-gram
features (up to 6-grams) on the input string to the left
and right of the edit location in addition to 2-gram
features on the lower string. The context features are
then conjoined with the exact edit action. We refer
the reader to Cotterell et al. (2014) for more details.
The segmentation boundaries are marked as a distin-
guished symbol in the target string. This model is
not entirely suited for the task as it makes it difficult
to include the rich features we get through ASPELL.

Training and Decoding Details We train all
models with AdaGrad (Duchi et al., 2011; Bottou,
2010). For the joint model, we take 10 samples
(m = 10) for each gradient estimate. See Algorithm
3 of Bengio et al. (2003) for pseudocode for
SGD with importance sampling. The pipeline and
segmentation models use ordinary SGD. We use
L2 regularization with the regularization coefficient
chosen by based on development set performance.

Exact decoding, argmaxs,u p(s, u | w), is in-
tractable. Thus, we use a sampling approximation:
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argmaxs,u(i) p(s, u(i) | w) where u(1). . . u(m) i.i.d.∼ q.
We use m = 1000 in our experiments. Conditioned
on each sample value for u, we use exact semi-CRF
Viterbi decoding to select s.

4.3 Evaluation Measures
Evaluating morphological segmentation is tricky.
The standard measure for the supervised task is bor-
der F1, which measures how often the segmentation
boundaries posited by the model are correct. How-
ever, this measure assumes that the concatenation
of the segments is identical to the input string (i.e.,
surface segmentation) and is thus not applicable
to canonical segmentation. On the other hand, the
Morpho Challenge competition (Kurimo et al., 2010)
uses a measure that samples a large number of word
pairs from a linguistic gold standard. A form is con-
sidered correct if the gold standard contains at least
one overlapping morph and the model posits at least
one overlapping morph—this is problematic because
for languages with multi-morphemic words (e.g.,
German), one should consider all morphs. Moreover,
we can actually recover the linguistically annotated
gold standard in contrast to unsupervised methods.

Instead, we report results under three measures: er-
ror rate, edit distance and morpheme F1. Error rate is
the proportion of analyses that are completely correct.
Since error rate gives no partial credit, we also report
edit distance between the predicted analysis and the
gold standard, where both are encoded as strings us-
ing a distinguished boundary character at segment
boundaries. Finally, morpheme F1 (van den Bosch
and Daelemans, 1999) considers overlap between the
set of morphemes in the model’s analysis and the set
of morphemes in the gold standard. In this case, pre-
cision asks how often did the predicted segmentation
contain morphemes in the gold standard and recall
asks how often were the gold standard morphemes in
the predicted segmentation.

4.4 Results and Error Analysis
Table 1 gives results for the three measures. Under
error rate and morpheme F1 our joint model per-
forms the best on all three languages, followed by
our pipeline model and then the two baselines. In
fact, we observe that error rate and F1 are quite corre-
lated in general. Under edit distance, the joint model
is the best model on German and Indonesian, but the

pipeline model is superior on English. Error analysis
indicates that the lower performance is due to spuri-
ous insertions. For example, our model incorrectly
analyzes ruby (stone) as ruble-y, mistaking the ruby
as an adjectival form of ruble (the Russian currency);
the correct analysis is ruby 7→ ruby. We believe
that a richer transduction component may fix some
of these problems. Overall, our joint model performs
well; it is on average within one edit operation of the
gold segmentation on three languages.

Unsurprisingly, the WFST performs poorly be-
cause it cannot leverage segment-level features (e.g.,
ASPELL features), which are available to the other
models. The performance of the semi-CRF is limited
by the orthographic changes in the language, which it
cannot model. German is rich in such changes, hence
the semi-CRF performs poorly and gets more than
half the test cases wrong.

5 Conclusion

We presented a joint model for the task of canonical
morphological segmentation, which extends exist-
ing approaches with the ability to learn orthographic
changes. We argue that canonical morphological
segmentation provides a useful analysis of linguistic
phenomena (e.g., derivational morphology) because
the sequence of morphemes is canonical—making it
evident, which words share morphemes. Our model
outperforms two baselines on three languages.
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