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Abstract 

Existing research on multiclass text classifica-
tion mostly makes the closed world assump-
tion, which focuses on designing accurate 
classifiers under the assumption that all test 
classes are known at training time. A more re-
alistic scenario is to expect unseen classes 
during testing (open world). In this case, the 
goal is to design a learning system that classi-
fies documents of the known classes into their 
respective classes and also to reject docu-
ments from unknown classes. This problem is 
called open (world) classification. This paper 
approaches the problem by reducing the open 
space risk while balancing the empirical risk. 
It proposes to use a new learning strategy, 
called center-based similarity (CBS) space 
learning (or CBS learning), to provide a novel 
solution to the problem. Extensive experi-
ments across two datasets show that CBS 
learning gives promising results on multiclass 
open text classification compared to state-of-
the-art baselines. 

1 Introduction 

With the rapid growth of online information, text 
classifiers have become one of the most important 
tools for people to track and organize information. 
And the emergence of social media platforms has 
brought increasing diversity and dynamics to the 
Web. Many social science researchers rely on the 
collected online user generated content to carry out 
research on different social phenomenon. In this 
case, multiclass text classifiers are widely used to 
gather information of several topics of interest. 
However, most existing research on multiclass text 
classification makes the closed world assumption, 
meaning that all the test classes have been seen in 
training. However, in a more realistic scenario 

where people use a multiclass classifier to collect 
information of several topics from a data source 
that covers a much broader range of topics, it is 
normal to break the closed world assumption and 
to see the arrival of documents from unknown 
classes that have never been seen in training. In 
this case, a multiclass classifier should not always 
assign a document to one of the known classes. In-
stead, it should identify unknown classes of docu-
ments and label them as unknown or reject. This is 
called open (world) classification. 

More precisely, in the traditional multiclass 
classification setting, the learner assumes a fixed 
set of classes Y = {C1, C2, …, Cm}, and the task is 
to construct a 𝑚-class classifier using the training 
data. The resulting classifier is tested/applied on 
the data from only the m classes. While in open 
classification, we allow the classifier to predict la-
bels/classes from the set of C1, C2, …, Cm, Cm+1 
classes, where the (m+1)th class Cm+1 represents the 
unknown which covers documents of all unknown 
or unseen classes or topics. In other words, every 
test instance may be predicted to belong to either 
one of the known classes yi  ∈ 𝑌 , or Cm+1 (un-
known).   

It is thus not sufficient for a classifier to just re-
turn the most likely class label among the m known 
classes. An option to reject must be provided. An 
obvious approach to predicting the class label 
𝑦 ∈ 𝑌 ∪ {𝐶!!!} for an n-dimensional data point 
𝑥 ∈ 𝑅! is to incorporate a posterior probability es-
timator 𝑝(𝑦|𝑥) and a decision threshold into an ex-
isting multiclass learning algorithm (Kwok, 1999; 
Fumera and Roli, 2002; Huang et al., 2006; Bravo 
et al., 2008). There are many reasons this tech-
nique would not achieve good results in open clas-
sification. As we will discuss in the following sec-
tions, one of the most important reasons is that the 
underlying classifier is not robust or is not in-
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formed enough to reject unseen classes of docu-
ments due to its significant open space risk. 

Traditional multiclass learners optimize only on 
the known classes under the closed world assump-
tion, while a potential learner for open classifica-
tion has to optimize for both the known classes and 
for the unknown classes. Some recent research in 
the field of computer vision studied the problem, 
which they call open set recognition (Scheirer et 
al., 2013; 2014; Jain et al., 2014) for facial recog-
nition. Classic learners define and optimize over 
empirical risk, which is measured on the training 
data. For open classification, it is crucial to consid-
er how to extend the model to capture the risk of 
the unknown by preventing overgeneralization or 
overspecialization. In order to tackle this problem, 
Scheirer et al. (2013) introduced the concept of 
open space risk and formulated an extension of ex-
isting one-class and binary SVMs to address the 
open classification problem. However, as we will 
see in section 3, their proposed method is weak as 
the positively labeled open space is still an infinite 
area.  

In this work, we propose a solution to reduce the 
open space risk while also balancing the empirical 
risk for open classification. Intuitively, given a 
positive class of documents, our open space for the 
positive class is considered as the space that is suf-
ficiently far from the center of the positive docu-
ments. In the multiclass classification setting, each 
of the m target classes is surrounded by a ball cov-
ering the positively labeled (the target class) area, 
while any document falling outside of all the m 
balls is considered belonging to the unknown class.  

Recent work by Fei and Liu (2015) proposed a 
new learning strategy called center-based similari-
ty space learning (CBS learning) to deal with the 
problem of covariate shift in binary classification. 
We found that it is also suitable for open classifica-
tion. Instead of conducting learning in the tradi-
tional document space (or D-space) with n-gram 
features, CBS learning learns in a similarity space. 
Unlike SVM learning in D-space that bounds the 
positive class only by an infinite half-space formed 
with the decision hyperplane, which has a huge 
open space risk, CBS learning finds a closed 
boundary for the positive class covering only a fi-
nite area, which is a spherical area in the original 
D-space and thus reduce the open space risk signif-
icantly. While discussing CBS learning, we will al-
so describe the underlying assumptions made by it 

which were not stated in our earlier paper (Fei and 
Liu, 2015). Our final multiclass classifier is called 
cbsSVM (based on SVM).  

To the best of our knowledge, this is the first at-
tempt to study multiclass open classification in text 
from the open space risk management perspective. 
Our experiments show that cbsSVM for multiclass 
open classification produces superior classifiers to 
existing state-of-the art methods.  

2 Related Work 

Compared to research on multiclass classification 
with the closed world assumption, there is relative-
ly less work on open classification. In this section, 
we review related work on one-class classification, 
SVM decision score calibration, and others.  

One-class classifiers, which only rely on posi-
tive training data, are natural starting solutions to 
the multiclass open classification task. One-class 
SVM (Scholkopf et al., 2001) and SVDD (Tax and 
Duin, 2004) are two representative one-class clas-
sifiers. One-class SVM treats the origin in the fea-
ture space as the only member of the negative 
class, and maximizes the margin with respect to it. 
SVDD tries to place a hypersphere with the mini-
mum radius around almost all the positive training 
points. It has been shown that the use of Gaussian 
kernel makes SVDD and One-class SVM equiva-
lent, and the results reported in (Khan and Madden, 
2014) demonstrate that SVDD and One-class SVM 
are comparable when the Gaussian kernel is ap-
plied. However, as no negative training data is 
used, one-class classifiers have trouble producing 
good separations. We will see in Section 4 that 
their results are poor.  

This work is also related to using thresholded 
probabilities for rejection. As the decision score 
produced by SVM is not a probability distribution, 
several techniques have been proposed to convert a 
raw decision score to a calibrated probability out-
put (Platt, 2000; Zadrozny and Elkan, 2002; Duan 
and Keerthi, 2005; Huang et al., 2006; Bravo et al., 
2008). Usually a parametric distribution is as-
sumed for the underlying distribution, and raw 
scores are mapped based on the learned model. A 
variation of Platt’s (2000) approach is the most 
widely used probability estimator for SVM score 
calibration. It fits a sigmoid function to the SVM 
scores during training. Provided with a threshold, a 
test instance can be rejected if the highest probabil-
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ity of this instance belonging to a class is lower 
than the threshold in multiclass open classification 
settings.  

Recently, researchers in computer vision 
(Scheirer et al., 2013; 2014; Jain et al., 2014) made 
some attempts to solve open classification (which 
they call open set recognition) for visual learning 
from new angles. Scheirer et al. (2013) introduced 
the concept of open space risk, and defined it as a 
relative measure. The proposed model reduces the 
open space risk by replacing the half-space of a bi-
nary linear classifier with a positive region bound-
ed by two parallel hyperplanes. While the positive-
ly labeled region for a target class is reduced com-
pared to the half-space in the traditional linear 
SVM, their open space risk is still infinite. In (Jain 
et al., 2014), the authors proposed to use Extreme 
Value Theory (EVT) to estimate the unnormalized 
posterior probability of inclusion for each class by 
fitting a Weibull distribution over the positive class 
scores from a 1-vs-rest multiclass RBF SVM clas-
sifier. Scheirer et al. (2014) introduced the Com-
pact Abating Probability (CAP) model, which ex-
plains how thresholding the probabilistic output of 
RBF One-class SVM manages the open space risk. 
Using the probability output from RBF one-class 
SVM as a conditioner, the authors combine RBF 
One-class SVM and a Weibull-calibrated SVM 
similar to the one in (Jain et al., 2014). For both 
methods (Jain et al., 2014; Scheirer et al., 2014), 
decision thresholds need to be chosen based on the 
prior knowledge of the ratio of unseen classes in 
testing, which is a weakness of the methods. 

Dalvi et al. (2013) proposed Exploratory Learn-
ing in the multiclass semi-supervised learning 
(SSL) setting.  In their work, an “exploratory” ver-
sion of expectation-maximization (EM) is pro-
posed to extend traditional multiclass SSL meth-
ods, which deals with the scenario when the algo-
rithm is given seeds from only some of the classes 
in the data. It automatically explores different 
numbers of new classes in the EM iterations. The 
underlying assumption is that a new class should 
be introduced to hold an instance 𝑥 when the prob-
ability of 𝑥  belonging to the existing classes is 
close to uniform. This is quite different from our 
work. First, it works in the semi-supervised setting 
and assumes that test data is available during train-
ing. Second, it only focuses on improving accuracy 
on the classes with seed examples.  

3 Proposed Method 

In this section, we propose our solution for the 
open classification problem. First we discuss our 
strategy to reduce the open space risk while bal-
ancing the empirical risk of the training data. Then 
we apply a recently proposed SVM-based learning 
strategy (Fei and Liu, 2015), which yields the same 
risk management strategy. We will also discuss its 
underlying assumptions, which was not addressed 
in the original paper of Fei and Liu (2015). Lastly, 
we will show why the proposed solution works for 
open classification. 

3.1 Open Space Risk Formulation 

Consider the risk formulation by Scheirer et al. 
(2013), where apart from the empirical risk, there 
is risk in labeling the open space (space away from 
positive training examples) as “positive” for any 
known class. Due to lack of information on a clas-
sification function on the open space, open space 
risk is approximated by a relative Lebesgue meas-
ure (Shackel, 2007). Let 𝑆! be a large ball of radius 
𝑟! that contains both the positively labeled open 
space 𝑂 and all of the positive training examples; 
and let 𝑓 be a measurable classification function 
where 𝑓! 𝑥 = 1 for recognition of class 𝑦 of in-
terest and 𝑓! 𝑥 = 0 otherwise. The probabilistic 
open space risk 𝑅! 𝑓  of function 𝑓 for a class 𝑦 is 
defined as the fraction (in terms of Lebesgue 
measure) of positively labeled open space com-
pared to the overall measure of positively labeled 
space (which includes the space close to the posi-
tive examples). 

𝑅! 𝑓 =
𝑓! 𝑥 𝑑𝑥!

𝑓! 𝑥 𝑑𝑥!!

 

The above definition indicates that the more we 
label open space as positive, the greater open space 
risk is. However, it does not suggest how to speci-
fy the positively labeled open space 𝑂.  

In this work, we formulate 𝑂 as the positively 
labeled area that is sufficiently far from the center 
of the positive training examples. Let 𝐵!! 𝑐𝑒𝑛!  
be a closed ball of radius 𝑟! centered around the 
center of positive class 𝑦  (𝑐𝑒𝑛! ), which ideally 
contains all positive examples of class 𝑦; 𝑆! be a 
larger ball 𝐵!! 𝑐𝑒𝑛!  of radius 𝑟!  with the same 
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center 𝑐𝑒𝑛!. Let classification function 𝑓! 𝑥 = 1 
when 𝑥 ∈ 𝐵!! 𝑐𝑒𝑛! , and 𝑓! 𝑥 = 0  otherwise. 
Also let ℎ be the positive half space defined by a 
binary SVM decision hyperplane Ω obtained using 
positive and negative training examples, and let the 
size of ball 𝐵!!  be bounded by Ω, 𝐵!!⋂ℎ = 𝐵!! . 
We define open space as 

𝑂 = 𝑆! − 𝐵!! 𝑐𝑒𝑛!  

where radius 𝑟! needs to be determined from the 
training data for each known positive class. 

This open space formulation greatly reduces the 
open space risk compared to traditional SVM and 
1-vs-Set Machine in (Scheirer et al., 2013). For 
traditional SVM, whose classification function 
𝑓!!"# 𝑥 = 1 when 𝑥 ∈ ℎ, and positive open space 
being approximately ℎ − 𝐵!! 𝑐𝑒𝑛! , which is only 
bounded by the SVM decision hyperplane Ω. For 
1-vs-Set Machine in (Scheirer et al., 2013), whose 
classification function 𝑓!!!!"!!"# 𝑥 = 1  when 
𝑥 ∈ 𝑔 , where 𝑔  is a slab area with thickness 𝛿 
bounded by two parallel hyperplanes Ω  and Ψ 
(Ψ ∥Ω) in ℎ. And its positive open space is ap-
proximately 𝑔 − 𝐵!! 𝑐𝑒𝑛! . Given open space 
formulations of traditional SVM and 1-vs-Set Ma-
chine, we can see that both methods label an un-
limited area as positively labeled space, while our 
formulation reduces it to a bounded spherical area. 

Given the above open space definition, the ques-
tion is how to estimate radius 𝑟! for the positive 
class. We show that the center-based similarity 
space learning (CBS learning) recently proposed in 
(Fei and Liu, 2015) is suitable for the purpose. It 
was original proposed to deal with the negative co-
variate shift problem in binary text classification. 

Below, we first introduce CBS learning and then 
discuss why it is suitable for our problem, as well 
as its underlying assumptions. 

3.2 Center-Based Similarity Space Learning 

We now discuss CBS learning for binary text clas-
sification. Let D = {(d1, y1), (d2, y2), …, (dn, yn)} 
be the set of training examples, where di is the fea-
ture vector (e.g., with unigram features) represent-
ing a document di and yi ∈ {1, -1} is its class label. 
This feature vector is called a document space vec-
tor (ds-vector). Traditional classification directly 
uses D to build a binary classifier. CBS learning 

transforms each ds-vector di (no change to its class) 
to a center-based similarity space feature vector 
(CBS vector) cbs-vi. Each feature in the CBS vec-
tor is a similarity between a center cj of the positive 
class documents and di. CBS learning can use mul-
tiple document space representations or feature 
vectors (e.g., one based on unigrams and one based 
on bigrams) to represent each document, which re-
sults in multiple centers for the positive documents. 
There can also be multiple document similarity 
functions used to compute similarity values. The 
detailed learning technique is as follows. 

For a document di in D, we have a set Ri of p ds-
vectors Ri = {𝐱!! , 𝐱!! , …, 𝐱!! }. Each ds-vector 𝐱!! 
denotes one document space representation of the 
document di, e.g., unigram representation or bi-
gram representation. Then the center of positive 
training documents can be computed, which is rep-
resented as a set of 𝑝 centroids C = {c1, c2, …, cp}, 
each of which corresponds to one document space 
representation in Ri. Rocchio method in infor-
mation retrieval (Rocchio, 1971; Manning et al. 
2008) is used to compute each center cj (a vector), 
which uses the corresponding ds-vectors of all 
training positive and negative documents. 

𝐜! =
𝛼
𝐷!

𝐱!!

𝐱!!
−

𝛽
|𝐷 − 𝐷!|

𝐱!!

𝐱!!!!∈!!!!!!∈!!

 

where 𝐷! is the set of documents in the positive 
class and |.| is the size function. 𝛼 and 𝛽 are pa-
rameters, which are usually set empirically. It is 
reported that using tf-idf representation, 𝛼 = 16 
and 𝛽 = 4 usually work quite well (Buckley et al. 
1994). The subtraction is used to reduce the influ-
ence of those terms that are not discriminative (i.e., 
terms appearing in both classes).  

Based on Ri for any document di in both training 
and testing and the previously computed set C of 
centers using the training data, we can transform a 
document di from its document space representa-
tions Ri to one center-based similarity vector cbs-vi 
by applying a similarity function 𝑆𝑖𝑚 on each ele-
ment 𝐱!! of Ri and its corresponding center 𝐜! in C. 

cbs-vi = Sim(Ri, C) 

Sim has a set of similarity measures. Each measure 
mj is applied to p document representations 𝐱!! in Ri 
and their corresponding centers 𝐜! in C to generate 
p similarity features (cbs-features) in cbs-vi. 
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For ds-features, we use unigrams and bigrams 
with tf-idf weighting as two document representa-
tions. We also adopt the five similarity measures in 
(Fei and Liu, 2015) to gauge the similarity of two 
vectors. Based on these measures, we produce 10 
CBS features to represent a document in the CBS 
space. 

3.3 Why does CBS learning work? 

Given the open space definition in Section 3.1, our 
goal is to estimate the radius 𝑟! of the positively 
labeled space for the positive class. Now we ex-
plain how CBS learning gives an estimate of 𝑟!.  

Due to learning in the similarity space with 
similarities as features, CBS learning generates a 
boundary based on similarities to separate the posi-
tive and negative training data in the similarity 
space, which is essentially a ball encompassing the 
positive training data in the original document 
space. In other words, instead of explicitly mini-
mizing the positively labeled open space risk, CBS 
learning approximates the radius 𝑟! by learning a 
score based on similarities in the similarity space, 
which is equivalent to a limited spherical area in 
the original document space. The generated model 
thus not only limits the positively labeled open 
space on the positive side of Ω (SVM decision hy-
perplane), but also balances the empirical risk from 
the positive and negative training examples. In 
fact, 𝑟! is approximately the distance from the cen-
ter of positive class to Ω measured in similarities. 
Figure 1 illustrates the point. The positively la-
beled/classified region produced by CBS learning 
is the circle in the original document space, while 
SVM learning produces a half space bounded by 
its decision line, which is approximately the tan-
gent line of the circle. Note that as multiple simi-
larity features are used, the spherical area is 
formed by an integrated similarity produced by 
SVM, which combines all similarity features. 

In order for the method to work well for our 
multiclass classification, ideally two assumptions 
should be made about the data. First, the target 

classes of documents are generated by a mixture 
model, where each mixture component is respon-
sible for each class of documents. Secondly, after 
feature normalization each target class of docu-
ments is generated by a Gaussian distribution, 
where the Gaussian mean resides at the center of 
the class, and its 𝑛×𝑛 covariance matrix has equal 
eigenvalues so that the positive class can have a 
spherical shape boundary or a ball. Note that we do 
not make any assumptions about data from non-
target classes. 

3.4 Multiclass Open Classification 

The preceding discussion is based on binary open 
classification. We follow the standard technique of 
combining a set of 1-vs-rest binary classifiers to 
perform multiclass classification with a rejection 
option for unknown. The SVM scores for each 
classifier are first converted to probabilities based 
on a variation of Platt’s (2000) algorithm, which is 
supported in LIBSVM (Chang and Lin, 2011). Let 
𝑃 𝑦|𝐱  be a probably estimate, where 𝑦 ∈ 𝑌 is a 
class label and 𝐱 is a feature vector, and let 𝜆 be 
the decision threshold (usually 0.5). Let 𝑌 be the 
set of known classes, 𝐶!!! be the unknown class, 
and 𝑦∗ is the final predicted class for x. The final 
classifier (called cbsSVM) uses this following for 
classification.  

𝑦∗ =
𝑎𝑟𝑔𝑚𝑎𝑥!∈𝑌𝑃 𝑦|𝐱 𝑖𝑓 𝑃 𝑦∗|𝐱 ≥ 𝜆 
𝐶𝑚+1                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

4 Experiments 

In this section, we show the results of the proposed 
method cbsSVM and compare it extensively with 
state-of-the-art baselines across two datasets.  

4.1 Baselines 

1-vs-Rest multiclass SVM (1-vs-rest-SVM). This 
is the standard 1-vs-Rest multiclass SVM with 
Platt Probability Estimation (Platt, 2000), and it is 
implemented based on LIBSVM1 (version 3.20) 
(Chang and Lin, 2011). It works in the same way 
as the proposed cbsSVM (Section 3.4) except that it 
uses the document space classification. Linear ker-
nel is used as it is shown by many researchers that 
linear SVM performs the best for text classification 
                                                                                                                
1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/ 

 
Figure 1: CBS learning reduces open space risk. 
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(Joachims, 1998; Colas and Brazdil, 2006). 

1-vs-Set Machine (1-vs-set-linear). For this base-
line (Scheirer et al., 2013), we use all the default 
parameter settings in the original paper. That is, the 
near and far plane pressures are set at 𝑝! = 1.6 and 
𝑝! = 4  respectively; regularization constant 
𝜆! = 1 and no explicit hard constraints are used on 
the training error (𝛼 = 0,𝛽 = 1). 

W-SVM (wsvm-linear and wsvm-rbf). These two 
baselines combine RBF one-class SVM with bina-
ry SVM (Scheirer et al., 2014). Both linear kernel 
and RBF kernel are tested. For thresholding the 
output, two parameters 𝛿! and 𝛿! are required. We 
set 𝛿! = 0.001, which is used to adjust what data 
the one-class SVM considers to be related. 𝛿! is a 
required decision threshold not only for W-SVM, 
but also for the next two baselines (PI-SVM, PI-
OSVM). Two ways of setting 𝛿! were suggested 
by the authors. We set it as the prior probability of 
the number of unseen classes during evaluation 
(testing). An alternative way is to set it based on an 
openness score computed using the number of 
training and testing classes. We tried both methods 
and found the former gave better results.  

PI-SVM (Pi-svm-linear and Pi-svm-rbf). This 
baseline is from (Jain et al., 2014), which estimates 
the probability of inclusion based on the output of 
binary SVMs. Two kernels are tested. As stated 
above, the threshold 𝛿 is set as the prior probability 
of the number of unseen classes in test.  

PI-OSVM (Pi-osvm-linear and Pi-osvm-rbf). Sim-
ilar to PI-SVM, PI-OSVM (Jain et al., 2014) uses a 
multiclass one-class SVM before fitting an Ex-
treme Value Theory distribution to estimate the 
probability of inclusion. Again, two kernel func-
tions are tested and the prior probability of the 
number of unseen classes is used to set 𝛿. As PI-
OSVM is a variant of the traditional one-class 
SVM, we do not use one-class SVM as a baseline. 

Exploratory Seeded K-Means (Exploratory-
EM). In (Dalvi et al., 2013), three well-known 
multiclass semi-supervised learning methods were 
extended under the exploratory EM framework. 
We compare with exploratory version of Seeded 
K-Means due to its superior performance on 
20newsgroup dataset. We also applied the criteria 
that work the best in the original paper for creating 
new classes and for model selection, i.e., the 

MinMax criterion and the AICc criterion. Note that 
ExploratoryEM works in the semi-supervised set-
ting and uses both the training and test data as la-
beled and unlabeled data in training. As more than 
one new class can be introduced during training, 
for comparison we lump together all instances as-
signed to new classes as being rejected (unknown). 
In the experiments, we set the max number of it-
erations to be 50. Little changes in results are 
shown after 50 iterations. 

All documents use tf-idf term weighting scheme 
with no feature selection. Source code for different 
baselines (1-vs-Set Machine 2 , W-SVM and PI-
SVM3, and Exploratory learning4) was provided by 
the authors of their original papers. 

4.2 Datasets 

We perform evaluation using two publically avail-
able datasets: 20-newsgroup (Rennie, 2008) and 
Amazon reviews (Jindal and Liu, 2008). The 20-
newsgroup data contains 20 non-overlapping clas-
ses with a total of 18828 documents. The Amazon 
reviews dataset has review documents of 50 types 
of products or domains. Each type of product has 
1000 reviews. For each class in both datasets, we 
randomly sampled 70% of documents for training, 
and the rest 30% for testing. Although product re-
views are used for experiments, we do not perform 
sentiment classification. Instead, we still perform 
the traditional topic based classification. That is, 
given a review, the system decides what type of 
product the review is about. 

4.3 Experiment settings 

Following that in (Jain et al., 2013) and (Dalvi et 
al., 2013), we conduct open world cross-validation 
style analysis, holding out some classes in training 
and mixing them back during testing, and varying 
the number of training and test classes. Since for a 
given dataset, the number (percentage) of training 
classes 𝑚  and the number of test classes 𝑛  can 
vary, there are many ways to generate a train-test 
partition. We report our results using 10 random 
train-test partitions for each dataset. We vary the 
number of test classes for Amazon (10, 20, 30, 40, 
50), and for 20-newsgroup (10, 20). We use 25%, 

                                                                                                                
2 https://github.com/Vastlab/liblinear.git 
3 https://github.com/ljain2/libsvm-openset 
4 http://www.cs.cmu.edu/~bbd/ExploreEM_package.zip 
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50%, 75% and 100% of the test classes in training.  
When 100% of test classes are used in training, 

the problem reduces to the closed world classifica-
tion. As most of our baselines such as W-SVM, PI-
OSVM and PI-SVM all use prior knowledge to set 
decision threshold to 0 in the closed world setting, 
for fair comparison, we also set the threshold to 0 
for both 1-vs-rest-SVM and our proposed cbsSVM 
for closed world classification. By doing this, we 
always assign a known class label to a test in-
stance. For Exploratory Seeded K-Means, we use 
an option supported in the exploratory learning 
package that does not allow any new classes to be 
introduced in learning.     

For each train-test partition, we first compute 
precision, recall and F1 score for each class and 
then macro-average the results across all classes. 

Final results are given by averaging the results of 
10 random train-test partitions. Due to space limits, 
we will only show F1 scores in the paper. 

For all the methods that use the RBF kernel, the 
parameters are tuned via cross validation on the 
training data, yielding (𝐶 = 5, 𝛾 = 0.2) for Ama-
zon and (𝐶 = 10, 𝛾 = 0.5) for 20-newsgroup. 

4.4 Results and Discussion 

We now show all the results. Results for Amazon 
is given in Tables 1 to 5, and for 20-newsgroup are 
given in Tables 6 and 7. As we can see, in most 
situations (23 of 28 settings) our proposed cbsSVM 
method performs the best. Even when 100% of the 
test classes are used for training (the traditional 
closed world classification), cbsSVM still performs 

  25% 50% 75% 100%  25% 50% 75% 100%  25% 50% 75% 100% 
cbsSVM  0.450 0.715 0.775 0.873  0.566 0.695 0.695 0.760  0.565 0.645 0.630 0.686 
1-vs-rest-SVM  0.219 0.658 0.715 0.817  0.466 0.610 0.616 0.688  0.463 0.568 0.545 0.627 
ExploratoryEM  0.386 0.647 0.704 0.854  0.571 0.561 0.573 0.691  0.500 0.511 0.569 0.659 
1-vs-set-linear  0.592 0.698 0.700 0.697  0.506 0.560 0.589 0.620  0.462 0.511 0.542 0.585 
wsvm-linear  0.603 0.694 0.698 0.702  0.553 0.618 0.625 0.641  0.521 0.574 0.578 0.598 
wsvm-rbf  0.246 0.587 0.701 0.792  0.397 0.502 0.574 0.701  0.372 0.444 0.502 0.651 
Pi-osvm-linear  0.207 0.590 0.662 0.731  0.453 0.531 0.589 0.629  0.428 0.510 0.553 0.605 
Pi-osvm-rbf  0.061 0.142 0.137 0.148  0.143 0.079 0.058 0.050  0.108 0.047 0.043 0.047 
Pi-svm-linear  0.600 0.695 0.701 0.705  0.547 0.620 0.628 0.644  0.520 0.575 0.581 0.602 
Pi-svm-rbf  0.245 0.590 0.718 0.774  0.396 0.546 0.675 0.714  0.379 0.517 0.629 0.680 

                                     Table 1: Amazon 10 Domains.           Table 2:  Amazon 20 Domains.           Table 3: Amazon 30 Domains. 
 

  25% 50% 75% 100%  25% 50% 75% 100% 
cbsSVM  0.541 0.633 0.619 0.650  0.557 0.615 0.586 0.634 

1-vs-rest-SVM  0.463 0.543 0.515 0.584  0.460 0.533 0.502 0.568 
ExploratoryEM  0.467 0.496 0.562 0.628  0.348 0.467 0.534 0.618 
1-vs-set-linear  0.429 0.489 0.526 0.558  0.420 0.483 0.514 0.551 
wsvm-linear  0.499 0.554 0.560 0.565  0.488 0.545 0.549 0.559 

wsvm-rbf  0.351 0.402 0.464 0.609  0.317 0.367 0.436 0.584 
Pi-osvm-linear  0.413 0.483 0.533 0.571  0.403 0.489 0.535 0.578 

Pi-osvm-rbf  0.078 0.043 0.047 0.049  0.066 0.039 0.047 0.050 
Pi-svm-linear  0.497 0.554 0.563 0.568  0.487 0.546 0.551 0.562 

Pi-svm-rbf  0.371 0.505 0.602 0.634  0.360 0.509 0.632 0.630 

                                                                Table 4:  Amazon 40 Domains.         Table 5:  Amazon 50 Domains. 
 

  25% 50% 75% 100%  25% 50% 75% 100% 
cbsSVM  0.417 0.769 0.796 0.855  0.593 0.701 0.720 0.852 

1-vs-rest-SVM  0.246 0.722 0.784 0.828  0.552 0.683 0.682 0.807 
ExploratoryEM  0.648 0.706 0.733 0.852  0.555 0.633 0.713 0.864 
1-vs-set-linear  0.678 0.671 0.659 0.567  0.497 0.557 0.550 0.577 
wsvm-linear  0.666 0.666 0.665 0.679  0.563 0.597 0.602 0.677 

wsvm-rbf  0.320 0.523 0.675 0.766  0.365 0.469 0.607 0.773 
Pi-osvm-linear  0.300 0.571 0.668 0.770  0.438 0.534 0.640 0.757 

Pi-osvm-rbf  0.059 0.074 0.032 0.026  0.143 0.029 0.022 0.009 
Pi-svm-linear  0.666 0.667 0.667 0.680  0.563 0.599 0.603 0.678 

Pi-svm-rbf  0.320 0.540 0.705 0.749  0.370 0.494 0.680 0.767 

                                    Table 6:  20-newsgroup 10 Domains.    Table 7:  20-newsgroup 20 Domains. 
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the best in almost all settings (6 out of 7) except 
for 20-newsgroup with 20 classes. In this case, it 
lost to ExploratoryEM by 1.12%. In fact, it is un-
fair to compare cbsSVM with ExploratoryEM be-
cause ExploratoryEM uses the test data in training.  

We also analyzed the cases where our technique 
does not perform well. By comparing Table 1 and 
Table 6, we see that our method loses to 1-vs-set-
linear, wsvm-linear and Pi-svm-linear on both da-
tasets when training on 2 classes (25%) and testing 
on 10 classes, though in other cases training on 
25% known classes can still yield good results. By 
inspecting the results, we found that in both set-
tings our technique achieves very high recall but 
low precision on the known classes, while achieves 
high precision but low recall on the unknown clas-
ses. After careful investigation, we found this is 
caused by the relatively poor approximation of ra-
dius 𝑟! when positive and negative training exam-
ples are far apart. 

To verify the cause, we conducted more experi-
ments on the 20-newsgroup data using the same 
setting (10 classes for test and 2 for training). The 
10 classes are listed in Table 8. We show the re-
sults for two sets of experiments. In each set of the 
experiments, we keep one known class unchanged 
in training and select different classes as the se-
cond class. We show how the results change on the 
unchanged class as well as the unknown (reject) 

classes. Table 9 gives the precision, recall, and F1 
score for comp.windows.x and for the unknown 
classes. Similarly, Table 10 gives the results for 
rec.motorcycles and for the unknown classes. The 
first column in both tables are the different second 
classes used in training. We can see that in both 
sets of experiments, the precision and F1 score on 
the unchanged known classes (comp.windows.x 
and rec.motorcycles) are better when a more simi-
lar class (closer in distance) is selected in training. 
In particular, comp.windows.x achieves the best re-
sult when comp.os.ms-windows.misc is the second 
known class, and rec.motorcycles achieves the best 
result when rec.autos is the second known class. 
This is because the radius 𝑟! for each positively 
labeled space is determined based on the distance 
between the positive and negative training exam-
ples. As related classes are closer in distance, a 
tighter boundary with smaller 𝑟! can be learned. 
However, our results show in the cases when only 
2 known classes are available, a tight boundary is 
harder to achieve for either class for cbsSVM. 

5 Conclusion 

In this paper, we proposed to study the problem of 
multiclass open text classification. In particular, we 
investigated the problem via reducing the open 
space risk, and proposed a solution based on cen-

rec.motorcycles comp.graphics  comp.os.ms-windows.misc alt.atheism   comp.sys.mac.hardware 
comp.windows.x  misc.forsale comp.sys.ibm.pc.hardware rec.autos rec.sport.baseball 

Table 8:  10 domains for testing. 
 

 comp.windows.x Unknown (reject) 
 Prec. Recall F1 Prec. Recall F1 
rec.motorcycles 0.260 0.963 0.410 0.972 0.168 0.287 
comp.graphics 0.380 0.850 0.525 0.966 0.482 0.643 
comp.sys.mac.hardware 0.286 0.972 0.442 0.977 0.356 0.522 
comp.os.ms-windows.misc 0.418 0.877 0.567 0.976 0.513 0.672 
misc.forsale 0.244 0.959 0.389 0.966 0.201 0.334 
rec.autos 0.226 0.979 0.367 0.976 0.162 0.277 

Table 9:  Results on comp.windows.x and unknown classes. 
 

 rec.motorcycles Unknown (reject) 
 Prec. Recall F1 Prec. Recall F1 
comp.sys.mac.hardware 0.284 0.956 0.438 0.962 0.198 0.328 
rec.autos 0.459 0.892 0.606 0.974 0.470 0.634 
comp.windows.x 0.260 0.963 0.410 0.972 0.168 0.287 
comp.graphics 0.289 0.953 0.444 0.964 0.177 0.299 
comp.sys.ibm.pc.hardware 0.284 0.953 0.438 0.958 0.169 0.288 
alt.atheism 0.194 0.973 0.324 0.980 0.333 0.498 

Table 10:  Results on rec.motorcycles and unknown classes. 

513



 
 
 

 

ter-based similarity space learning. The solution 
reduced the positive labeled area from an infinite 
space to a finite space compared to previous work. 
This markedly reduces the open space risk. With 
extensive experiments across two public multiclass 
datasets, we demonstrated that the proposed solu-
tion is highly promising. Our future work includes 
designing a more robust solution that still works 
well when the number of known classes is small. 
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