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Abstract

We introduce a novel technique called dynamic
feature induction that keeps inducing high di-
mensional features automatically until the fea-
ture space becomes ‘more’ linearly separable.
Dynamic feature induction searches for the fea-
ture combinations that give strong clues for
distinguishing certain label pairs, and gener-
ates joint features from these combinations.
These induced features are trained along with
the primitive low dimensional features. Our ap-
proach was evaluated on two core NLP tasks,
part-of-speech tagging and named entity recog-
nition, and showed the state-of-the-art results
for both tasks, achieving the accuracy of 97.64
and the F1-score of 91.00 respectively, with
about a 25% increase in the feature space.

1 Introduction

Feature engineering typically involves two processes:
the process of discovering novel features with domain
knowledge, and the process of optimizing combina-
tions between existing features. Discovering novel
features may require linguistic background as well
as good understanding in machine learning such that
it is often difficult to do. Optimizing feature combi-
nations can be also difficult but usually requires less
domain knowledge and more importantly, it can be
as effective as discovering new features. It has been
shown for many tasks that approaches using simple
machine learning with extensive feature engineering
outperform ones using more advanced machine learn-
ing with less intensive feature engineering (Xue and
Palmer, 2004; Bengtson and Roth, 2008; Ratinov and
Roth, 2009; Zhang and Nivre, 2011).

Recently, people have tried to automate the second
part of feature engineering, the optimization of fea-
ture combinations, through leading-edge models such
as neural networks (Collobert et al., 2011). Coupled
with embedding approaches (Mikolov et al., 2013; Le
and Mikolov, 2014; Pennington et al., 2014), neural
networks can find the optimal feature combinations
using techniques such as random weight initialization
and back-propagation, and have established the new
state-of-the-art for several tasks (Socher et al., 2013;
Devlin et al., 2014; Yu et al., 2014). However, neural
networks are not as good at optimizing combinations
between sparse features, which are still the most dom-
inating factors in natural language processing.

This paper introduces a new technique called dy-
namic feature induction that automates the optimiza-
tion of feature combinations (Section 3), and can be
easily adapted to any NLP task using sparse features.
Dynamic feature induction allows humans to focus
on the first part of feature engineering, the discovery
of novel features, while machines handle the second
part. Our approach was experimented with two core
NLP tasks, part-of-speech tagging (Section 4) and
named entity recognition (Section 5) and showed the
state-of-the-art results for both tasks.

2 Background

2.1 Nonlinearity in NLP

Linear classification algorithms such as Perceptron,
Winnow, or Support Vector Machines with a linear
kernel have performed exceptionally well for various
NLP tasks (Collins, 2002; Zhang and Johnson, 2003;
Pradhan et al., 2005). This is not because our feature
space is linearly separable by nature, but sparse fea-
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Figure 1: Overview of dynamic feature induction.

tures introduced to NLP yield very high dimensional
vector space such that it is rather forced to be linearly
separable. For example, NLP features for a word wi
typically involve the word forms ofwi−1 andwi (e.g.,
fi−1, fi). If the feature space is not linearly separable
with these features, a common trick is to introduce
‘higher’ dimension features by joining ‘lower’ dimen-
sion features together (e.g., fi−1 fi). The more joint
features we introduce, the higher chance we get for
the feature space being linearly separable although
these joint features can be very overfitted.

Let us define low dimensional features as the primi-
tive features such as fi−1 or fi, and high dimensional
features as the joint features such as fi fi+1. 1 Low
dimensional features are well explored for most NLP
tasks; it is the high dimensional features that are quite
sensitive to specific tasks. Finding high dimensional
features can be a manual intensive work and this is
what dynamic feature induction intends to take over.

2.2 Related Work
Kudo and Matsumoto (2003) introduced the polyno-
mial kernel expansion that explicitly enumerated the
feature combinations. Our approach is distinguished
because they used a frequency-based PrefixSpan al-
gorithm (Pei et al., 2001) whereas we used the online
learning weights for finding the feature combinations.
Goldberg and Elhadad (2008) suggested an efficient
algorithm for computing polynomial kernel SVMs by
combining inverted indexing and kernel expansion.
Their work is focused more on improving support
vector machines whereas our work is generalized to
any linear classification algorithm.

1The joint features tend to yield a much higher dimensional
feature space than the primitive features.

Okanohara and Tsujii (2009) introduced an approach
for generating feature combinations using `1 regular-
ization and grafting (Perkins et al., 2003). Although
we share similar ideas, their grafting algorithm starts
with an empty feature set whereas ours starts with low
dimensional features, and their correlation parame-
ters αi,y are pre-computed whereas ours are dynami-
cally determined. Strubell et al. (2015) suggested an
algorithm that dynamically selected strong features
during decoding. Our work is distinguished because
we do not run multiple training phases as they do for
figuring our strong features.

3 Dynamic Feature Induction

The intuition behind dynamic feature induction is to
keep populating high dimensional features by joining
low dimensional features together until the feature
space becomes ‘more’ linearly separable.2 Figure 1
shows how features are induced during training:

1. Given a training instance (x1, y1), where x1 is a
feature set consisting of 5 features and y1 is the
gold label, the classifier predicts the label ŷ1.

2. Let us refer “strong features for y against ŷ” to
features that give strong clues for distinguishing
y from ŷ. If ŷ1 is not equal to y1 (2.1), strong
features for y1 against ŷ1 in x1 are selected (2.2),
and combinations of these features are added to
the induced feature set F (2.3).

3. Given a new training instance (x2, y2), combi-
nations of features in x2 are checked by F (3.1),
and appended to x2 if allowed (3.2).

2The term ‘more’ is used because dynamic feature induction
does not guarantee for the feature space to be linearly separable.
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4. The extended feature set x2 is fed into the classi-
fier. If ŷ2 is equal to y2, no feature combination
is induced from x2.

Thus, high dimensional features in F are incremen-
tally induced and learned along with low dimensional
features during training. During decoding, each fea-
ture set is extended by the induced features in F , and
the prediction is made using the extended feature set.
The size of F can grow up to |X |2, where |X | is the
size of low dimensional features. However, we found
that |F| is more like 1/4 · |X | in practice.

The following sections explain our approach in de-
tails. Sections 3.1, 3.2, and 3.3 describe how features
are induced and learned during training. Sections 3.4
and 3.5 describe how the induced features are stored
and expanded during decoding.

3.1 Feature Induction
Algorithm 1 shows an online learning algorithm that
induces and learns high dimensional features during
training. It takes the set of training instances D and
the learning rate η, and returns the weight vector w
and the set of induced features F .

Algorithm 1 Feature Induction

Input: D: training set, η: learning rate.
Output: w: weight vector, F : induced feature set.

1: w← g← 0
2: F ← ∅
3: until max epoch is reached do
4: foreach (x, y) ∈ D do
5: ŷ ← arg maxy′∈Y(w · φ(x, y′,F)− Iy(y′))
6: if y 6= ŷ then
7: ∂ ← φ(x, y,F)− φ(x, ŷ,F)
8: g← g + ∂ ◦ ∂
9: w← w + (η/(ρ+√g)) · ∂

10: v← [w ◦ φ(x, y,∅)]y − [w ◦ φ(x, ŷ,∅)]ŷ
11: L ← arg kmax∀i vi
12: for i = 2 to |L| do
13: F ← F ∪ {(L1,Li)}
14: return w,F

The algorithm begins by initializing the weight vector
w, the diagonal vector g, and the induced feature set
F (lines 1-2). For each instance (x, y) ∈ D where
y is the gold-label for the feature set x, it predicts
ŷ maximizing w · φ(x, y′,F) − Iy(y′), where I is
defined as follows (lines 4-5):

Iy(y′)←
{

1, if y = y′.
0, otherwise.

The feature map φ takes (x, y,F), and returns a d×l-
dimensional vector, where d and l are the sizes of
features and labels, respectively; each dimension con-
tains the value for a particular feature and a label.3

If certain combinations between features in x exist
in F , they are appended to the feature vector along
with the low dimensional features (see Section 3.5
for more details). The indicator function I allows our
algorithm to be optimized for the hinge loss for mul-
ticlass classification (Crammer and Singer, 2002):

`h = max[0, 1 + w · (φ(x, ŷ,F)− φ(x, y,F))]

If y is not equal to ŷ (line 6), the partial vector ∂ is
measured (line 7), and g and w are updated (lines 8-9)
by AdaGrad (Duchi et al., 2011), where the learning
rate η is adjusted by g (in our case, ρ =1E-5). Once
w is updated, the d-dimensional vector v is generated
by subtracting [w◦φ(x, ŷ,∅)]ŷ from [w◦φ(x, y,∅)]y
(line 10), where [. . .]y returns only the portion of the
values relevant to y (Figure 2).

The i’th element in v represents the strength of
the i’th feature for y against ŷ; the greater vi is, the
stronger the i’th feature is. Next, indices of the top-k
entries in v are collected in the ordered listL (line 11),
representing the strongest features for y against ŷ.4

Finally, the pairs of the first index in L, representing
the strongest feature, and the other indices in L are
added to the induced feature set F (lines 12-13). For
example, if L = [i, j, k] such that vi ≥ vj ≥ vk > 0,
two pairs, (i, j) and (i, k), are added to F .

For all our experiments, k = 3 is used; increasing
k beyond this cutoff did not show much improvement.
Notice that all induced features in F are derived by
joining only low dimensional features together. Our
algorithm does not join a high dimensional feature
with either a low dimensional feature or another high
dimensional feature. This was done intentionally to
prevent from the feature space being exploded; such
features can be induced by replacing ∅ with F in the
line 10 as follows:

v← [w ◦ φ(x, y,F)]y − [w ◦ φ(x, ŷ,F)]ŷ
3In most cases, these values are either 0 or 1.
4‘arg kmax’ returns the ordered list of indices whose values

in v are 1)k-largest and 2)greater than 0.
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Figure 2: Given the weight vector w and the feature map φ, [w◦φ(x, y,∅)]y takes the Hadamard product between w and φ(x, y,∅),

then truncates the resulting vector with respect to the label y.

It is worth mentioning that we did not find it useful
for joining intermediate features together (e.g., (j, k)
in the above example). It is possible to utilize these
combinations by weighting them differently, which
we will explore in the future. Additionally, we exper-
imented with the combinations between strong and
weak features (joining i’th and j’th features, where
vi > 0 and vj < 0), which again was not so useful.
We are planning to evaluate our approach on more
tasks and data, which will give us better understand-
ing of what combinations are the most effective.

3.2 Regularized Dual Averaging
Each high dimensional feature in F is induced for
making classification between two labels, y and ŷ,
but it may or may not be helpful for distinguishing
labels other than those two. Our algorithm can be
modified to learn the weights of the induced features
only for their relevant labels by adding the label in-
formation to F , which would change the line 13 in
Algorithm 1 as follows:

F ← F ∪ {(L1,Li, y, ŷ)}

However, introducing features targeting specific la-
bel pairs potentially confuses the classifier, especially
when they are trained with the low dimensional fea-
tures targeting all labels. Instead, it is better to apply
a feature selection technique such as `1 regulariza-
tion so the induced features can be selectively learned
for labels that find those features useful. We adapt
regularized dual averaging (Xiao, 2010), which effi-
ciently finds the convergence rates for online convex

optimization, and works most effectively with sparse
feature vectors. To apply regularized dual averaging,
the line 1 in Algorithm 1 is changed to:

w← g← c← 0; t← 1

c is a d × l-dimensional vector consisting of accu-
mulative penalties. t is the number of weight vectors
generated during training. Although w is technically
not updated when y = ŷ, it is still considered a new
vector. Thus, t is incremented for every training in-
stance, so t← t+ 1 is inserted after the line 5. c is
updated by adding the partial vector ∂ as follows (to
be inserted after the line 7):

c← c + ∂

Thus, each dimension in c represents the accumula-
tive penalty (or reward) for a particular feature and a
label. At last, the line 9 is changed to:

w← (η/(ρ+√g)) · `1(c, t, λ)

`1(c, t, λ)←
{

ci − sgn(ci) · λ · t, |c∀i| > λ · t.
0, otherwise.

The function `1 takes c, t, and the regularizer pa-
rameter λ tuned during development. If the absolute
value of the accumulative penalty ci is greater than
λ · t, the weight wi is updated by λ and t; otherwise,
it is assigned to 0. For our experiments, RDA was
able to throw out irrelevant features successfully, and
showed improvement in accuracy; in fact, dynamic
feature induction without RDA did not show as much
improvement over low dimensional features.
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3.3 Locally Optimal Learning to Search

Features in most NLP tasks are extracted from struc-
tures (e.g., sequence, tree). For structured learning,
we adapt “locally optimal learning to search” (Chang
et al., 2015b), that is a member of imitation learning
similar to DAGGER (Ross et al., 2011). LOLS not
only performs well relative to the reference policy,
but also can improve upon the reference policy, show-
ing very good results for tasks such as part-of-speech
tagging and dependency parsing. We adapt LOLS by
setting the reference policy as follows:

1. The reference policy π determines how often the
gold label y is picked over the predicted label ŷ
to build a structure. For all our experiments, π
is initialized to 0.95.

2. For the first epoch, since π is 0.95, y is randomly
picked over ŷ for 95% of the time.

3. After every epoch, π is multiplied by 0.95. This
allows the next epoch to pick y less often than
the previous epoch (e.g., π becomes 0.952 =
0.9025 for the 2nd epoch so y is picked about
90% of the time instead of 95%).

For our experiments, LOLS gave only marginal im-
provement, probably because the tasks we evaluated,
part-of-speech tagging and named entity recognition,
did not yield complex structures. However, we still
included this in our framework because we wanted to
evaluate our approach on more tasks such as depen-
dency parsing where learning to search algorithms
show a clear advantage (Goldberg and Nivre, 2012;
Choi and McCallum, 2013; Chang et al., 2015a).

3.4 Feature Hashing

Feature hashing is a technique of converting string
features to vectors (Ganchev and Dredze, 2008; Wein-
berger et al., 2009). Given a string feature f and a
hash function h, the index of f in the vector space is
determined by taking the remainder of the hash code:

k ← hstring→int(f) mod δ

The divisor δ is tuned during development. Feature
hashing allows to convert string features into sparse
vectors without reserving an extra space for a map
whose keys and values are the string features and their

indices. Given a feature index pair (i, j) representing
strong features for y against ŷ (Section 3.1), the index
of the induced feature can be measured as follows:

k ← hint→int(i · |X |+ j) mod δ

For efficiency, feature hashing is adapted to our sys-
tem such that the induced feature setF is actually not
a set but a δ-dimensional boolean array, where each
dimension represents the validity of the correspond-
ing induced feature. Thus, the line 13 in Algorithm 1
is changed to:

k ← hint→int(L1 · |X |+ Li) mod δ
Fk ← True

For the choice of h, xxHash is used, that is a fast
non-cryptographic hash algorithm showing the per-
fect score on the Q.Score.5

3.5 Feature Expansion
Algorithm 2 describes how high dimensional features
are expanded from low dimensional features during
training and decoding. It takes the sparse vector xl
containing only low dimensional features and returns
a new sparse vector xl+h containing both low and
high dimensional features.

Algorithm 2 Feature Expansion

Input: xl: sparse feature vector containing only
low dimensional features.

Output: xl+h: sparse feature vector containing both
low and high dimensional features.

1: xl+h ← copy(xl)
2: for i← 1 to |xl| do
3: for j ← i+ 1 to |xl| do
4: k ← hint→int(i · |X |+ j) mod δ
5: if Fk then xl+h.append(k)
6: return xl+h

The algorithm begins by copying xl to xl+h (line 1).
For every combination (i, j) ∈ xl× xl, where i and j
represent the corresponding feature indices (lines 2-
3), it first measures the index k of the feature com-
bination (line 4), then checks if this combination is
valid (Section 3.4). If the combination is valid, mean-
ing that (Fk = True), k is added to xl+h (line 5).
Finally, xl+h is returned with the expanded high di-
mensional features.

5https://github.com/Cyan4973/xxHash
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4 Part-of-Speech Tagging

4.1 Corpus
The Wall Street Journal corpus from the Penn Tree-
bank III is used (Marcus et al., 1993) with the stan-
dard split for part-of-speech tagging experiments.

Set Sections Sentences ALL OOV
TRN 0-18 38,219 912,344 0
DEV 19-21 5,527 131,768 4,467
TST 22-24 5,462 129,654 3,649

Table 1: Distributions of the Wall Street Journal corpus. TRN:

training, DEV: development, TST: evaluation, ALL: all words,

OOV: out-of-vocabulary words.

4.2 Tagging and Learning Algorithms
A one-pass, left-to-right tagging algorithm is used for
our experiments. Such a simple algorithm is chosen
because we want to see the performance gain purely
from our approach, not by a more sophisticated tag-
ging algorithm (Toutanova et al., 2003; Shen et al.,
2007), which may improve the performance further.

For learning, the final algorithm from Section 3 is
used. Additionally, mini-batch is applied, where each
batch consists of training instances from k-number of
sentences, causing the sizes of these batches different.
We found that grouping instances with respect to the
sentence boundary was more effective than batching
them across arbitrary sentences. For all our experi-
ments, the learning rate η = 0.02 and the mini-batch
boundary k = 5 were used without tuning.

4.3 Ambiguity Classes
The ambiguity class of a word is the concatenation
of all possible tags for that word. For example, if the
word ‘study’ can be tagged by NN (common noun) or
VB (base verb), its ambiguity class becomes NN VB.
Instead of building ambiguity classes only from the
training dataset, we automatically tagged a mixture of
large datasets, the English Wikipedia articles6 and the
New York Times corpus,7 and pre-constructed ambi-
guity classes using the automatic tags before training.
This was motivated by Moore (2015), who showed
extraordinary results on the out-of-vocabulary words
by limiting the classification to the ambiguity classes
collected from such large corpora.

6dumps.wikimedia.org/enwiki
7catalog.ldc.upenn.edu/LDC2008T19

We used the ClearNLP POS tagger (Choi and Palmer,
2012) for tagging the data (about 141M words), threw
away tags appearing less than a certain threshold, and
created the ambiguity classes. For each word, tags
appearing less than 20% of the time for that word
were discarded. As the result, about 2M ambiguity
classes were collected from these datasets.

4.4 Feature Template

Table 2 shows the template for low dimensional fea-
tures. Digits inside the curly brackets imply the con-
text windows with respect to the wordwi to be tagged.
For example, f{0,±1} represents the word-forms of
wi, wi−1, and wi+1. No joint features (e.g., f0 f1)
are included in this template; they should be automat-
ically induced by dynamic feature induction.

Orthographic (Giménez and Màrquez, 2004) and
word shape (Finkel et al., 2005) features are adapted
from the previous work. The positional features indi-
cate whether wi is the first or the last word in the sen-
tence. Word clusters are trained on the same datasets
in Section 4.3 using Brown et al. (1992).

f:{0,±1,±2}, fu:{0,±1,±2}, s:{0,±1}, c:{0,±1},
π2:{0}, π3:{0}, σ1:{0}, σ2:{0}, σ3:{0}, σ4:{0},
p:{0,−1,−2,−3}, a:{0,1,2,3},O:{0},P:{0}

Table 2: Feature template for part-of-speech tagging. f : word-

form, fu: uncapitalized word-form, s: word shape, c: word

cluster, πk: k’th prefix, σk: k’th suffix, p: part-of-speech tag,

a: ambiguity class, O: orthographic feature set, P: positional

feature set.

4.5 Development

The regularization parameter λ (Section 3.2) and the
modulo divisor δ (Section 3.4) are tuned during de-
velopment through grid search on λ ∈ [1E-9, 1E-6]
and δ ∈ [1.5M, 5M]. Table 3 shows the accuracies
achieved by our models on the development set.

Model ALL OOV FEAT
M0: baseline 97.09 86.14 365,400
M1: M0 + ext. ambi. 97.37 91.92 365,409
M2: M1 + clusters 97.45 91.96 372,181
M3: M1 + dynamic 97.42 92.10 468,378
M4: M2 + dynamic 97.48 92.21 473,134

Table 3: Part-of-speech tagging accuracies on the development

set. FEAT: the number of features generated by each model.
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M0 used the tagging and the learning algorithms in
Section 4.2 and the feature template in Section 4.4,
where the ambiguity classes were collected only from
the training dataset; dynamic feature induction was
not used for M0. By applying the external ambiguity
classes in Section 4.3, M1 achieved about a 5.8% im-
provement on OOV. M2 gained small improvements
by adding word clusters. Coupled with dynamic fea-
ture induction, M3 and M4 gained about 0.04% and
0.2% improvements on average for ALL and OOV.

For both M3 and M4, about 100K more features
were generated from M1 and M2, implying that about
25% of the features were automatically induced by
dynamic feature induction. It is worth pointing out
that improving upon M1 was a difficult task because
it was already reaching near the state-of-the-art. The
external ambiguity classes by themselves were strong
enough to make accurate predictions such that the
induced features did not find a critical role in the
classification.

4.6 Evaluation
Table 4 shows the accuracies achieved by the models
from Section 4.5 and the previous state-of-the-art
approaches on the evaluation set.

Approach ALL OOV EXT
Manning (2011) 97.29 89.70
Manning (2011) 97.32 90.79 X
Shen et al. (2007) 97.33 89.61
Sun (2014) 97.36 -
Moore (2015) 97.36 91.09 X
Spoustová et al. (2009) 97.44 - X
Søgaard (2011) 97.50 - X
Tsuboi (2014) 97.51 91.64 X
This work: M0 97.18 86.35
This work: M1 97.37 91.34 X
This work: M2 97.46 91.23 X
This work: M3 97.52 91.53 X
This work: M4 97.64 92.03 X

Table 4: Part-of-speech tagging accuracies on the evaluation set.

EXT: whether or not the approach used external data.

The results on the evaluation set appear much more
promising. Still, the biggest gain was made by M1,
but our final model M4 was able to achieve a 0.8% im-
provement on OOV over M2, and showed the state-of-
the-art results on both ALL and OOV. Interestingly,

M2 showed a slightly lower accuracy on OOV than
M1 even with the additional word cluster features. On
the other hand, M2 did show a slightly higher accu-
racy on ALL, indicating that the model was probably
too overfitted to the in-vocabulary words.8 However,
M4 was still able to achieve improvements over M2

on both ALL and OOV, implying that dynamic fea-
ture induction facilitated the classifier to be trained
more robustly.

5 Named Entity Recognition

5.1 Corpus
The English corpus from the CoNLL’03 shared task
is used (Tjong Kim Sang and De Meulder, 2003) for
named entity recognition experiments.

Set Articles Sentences Words
TRN 946 14,987 203,621
DEV 216 3,466 51,362
TST 231 3,684 46,435

Table 5: Distributions of the English corpus from the CoNLL’03

shared task. TRN: training, DEV: development, TST: evaluation.

5.2 Feature Template
Table 6 shows the feature template for NER, adapting
the specifications in Table 2. Following the state-of-
the-art approaches (Table 8), word clusters are trained
on the Reuters Corpus Volume I (Lewis et al., 2004)
using Brown et al. (1992). Named entity gazetteers
are collected from DBPedia.9 Word embeddings are
trained on the datasets in Section 4.3 using Mikolov
et al. (2013) and appended to the sparse feature vec-
tors as dense vectors. Note that the word embedding
features did not participate in dynamic feature induc-
tion; it was not intuitive how to combine sparse and
dense features together so we left it as a future work.

f:{0,±1}, fu:{0,±1,±2}, s:{0,±1}, l:{0}, c:{0,1,2},
e:{0,±1,±2,±3,±4}, π1:{0}, π3:{1}, σ1:{0}, σ3:{−1,0},
p:{0,±1,±2}, n:{−1,−2,−3}, z:{±1,0,2,3},O:{0},O:{1}

Table 6: Feature template for named entity recognition. f : word-

form, fu: uncapitalized word-form, s: word shape, l: lemma,

c: word cluster, e: word embedding, πk: k’th prefix, σk: k’th

suffix, p: part-of-speech tag, n: named entity tag, z: named

entity gazetteer, O: orthographic feature set.

8A similar trend is shown in Table 3 for M1 and M2.
9wiki.dbpedia.org/downloads2015-04
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5.3 Development

The regularization parameter and the modulo divisor
are tuned during development through the same grid
search in Section 4.5. Table 7 shows the precisions
and the recalls achieved by our models on the devel-
opment set (the F1-scores are shown in Table 8).

Model P R FEAT
M0: baseline 90.87 89.15 164,440
M1: M0 + gazetteers 92.30 90.61 164,720
M2: M1 + clusters 93.66 91.79 169,232
M3: M2 + embeddings 94.14 92.43 169,682
M4: M3 + dynamic 94.50 93.10 208,860

Table 7: Precision and recall on the development set for named

entity recognition. P: precision, R: recall.

M0 used the tagging and the learning algorithms in
Section 4.2 and the feature template in Section 5.2,
excluding the gazetteer, cluster, and embedding fea-
tures; dynamic feature induction was not applied to
M0. M{1,2,3} gained incremental improvements from
the gazetteer, cluster, and embedding features, respec-
tively. M4 showed 0.36% and 0.67% improvements
on precision and recall respectively, and generated
about 40K more features compared to M3. This is
about 23% increase in features that is similar to the
increase shown in Table 3.

5.4 Evaluation

Table 8 shows the F1-scores achieved by our models
and the previous state-of-the-art approaches.10

Approach DEV TST
Turian et al. (2010) 93.25 89.41
Suzuki and Isozaki (2008) 94.48 89.92
Ratinov and Roth (2009) 93.50 90.57
Lin and Wu (2009) - 90.90
Passos et al. (2014) 94.46 90.90
This work: M0 90.00 84.44
This work: M1 91.45 86.85
This work: M2 92.72 89.64
This work: M3 93.27 90.57
This work: M4 93.79 91.00

Table 8: F1-scores on the development and the evaluation sets

for named entity recognition.

10Ratinov and Roth (2009) reported the F1-score of 90.80 on
the evaluation set, but that model was trained on both the training
and the development sets so not compared in this table.

All models showed improvements over their prede-
cessors; the improvements made in TST were more
dramatic than the ones made in DEV although they
followed a very similar trend. Notice that M3, not us-
ing dynamic feature induction, showed very similar
scores to Ratinov and Roth (2009). This was not sur-
prising because M3 adapted many features suggested
by them, except for the non-local features.11

M4 achieved about 0.5% improvements over M3,
showing the state-of-the-art result on TST. Consid-
ering that M3 was already near state-of-the-art, this
improvement was meaningful. It was interesting that
Suzuki and Isozaki (2008) achieved the state-of-the-
art result on DEV although their score on TST was
much lower than the other approaches. This might
be because features extracted from the huge external
data they used were overfitted to DEV, but more thor-
ough analysis needs to be done. On the other hand,
Passos et al. (2014) achieved the near state-of-the-art
result on DEV while it also got a very high score on
TST by utilizing phrase embeddings, which we will
look into in the future.

6 Conclusion

In this paper, we introduced a novel technique called
dynamic feature induction that automatically induces
high dimensional features so the feature space can be
more linearly separable. Our approach was evaluated
on two NLP tasks, part-of-speech tagging and named
entity recognition, and showed the state-of-the-art
results on both tasks. The improvements achieved by
dynamic feature induction might not be statistically
significant, but important because they gave the last
gist to the state-of-the-art; without this last gist, our
system would have not reached the bar.

It is worth mentioning that we also experimented
with several feature templates including many joint
features without applying dynamic feature induction.
The results we got from these manually induced fea-
tures were not any better (often worse) than the ones
achieved by dynamic feature induction, which was
very encouraging. In the future, we will experiment
our approach on more NLP tasks such as dependency
parsing and conference resolution where induced fea-
tures should play a more critical role.

11We transformed the original data into the BILOU notation,
which was also suggested by Ratinov and Roth (2009).

278



We concede that our approach is more empirically
motivated than theoretically justified. For instance,
the choice of k (line 11) or the combination configu-
ration for L (line 13) in Algorithm 1 are rather empir-
ically derived. All the parameters are automatically
tuned by running grid searches on the development
sets (Sections 4.5 and 5.3); it would be intellectually
intriguing to find a more principled way of adjusting
these hyper-parameters than just brute-force search.

The locally optimal learning to search is used to
help structured learning although it gives a relatively
smaller impact to the tasks involving sequence clas-
sification such as part-of-speech tagging and named
entity recognition. This framework is used because
we plan to apply our approach on more structurally
oriented tasks such as dependency parsing and AMR
parsing. Our work is also related to feature group-
ing, which has been shown to be beneficial in learn-
ing high-dimensional data (Zhong and Kwok, 2011;
Suzuki and Nagata, 2013). It will be interesting to
compare our work to the previous work and see the
strengths and weaknesses of our approach.
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