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Abstract

Semantic Role Labeling (SRL) captures se-
mantic roles (or participants) such as agent,
patient, and theme associated with verbs
from the text. While it provides important in-
termediate semantic representations for many
traditional NLP tasks (such as information ex-
traction and question answering), it does not
capture grounded semantics so that an arti-
ficial agent can reason, learn, and perform
the actions with respect to the physical envi-
ronment. To address this problem, this pa-
per extends traditional SRL to grounded SRL
where arguments of verbs are grounded to
participants of actions in the physical world.
By integrating language and vision process-
ing through joint inference, our approach not
only grounds explicit roles, but also grounds
implicit roles that are not explicitly mentioned
in language descriptions. This paper describes
our empirical results and discusses challenges
and future directions.

1 Introduction

Linguistic studies capture semantics of verbs by
their frames of thematic roles (also referred to as
semantic roles or verb arguments) (Levin, 1993).
For example, a verb can be characterized by agent
(i.e., the animator of the action) and patient
(i.e., the object on which the action is acted upon),
and other roles such as instrument, source,
destination, etc. Given a verb frame, the goal
of Semantic Role Labeling (SRL) is to identify lin-
guistic entities from the text that serve different the-
matic roles (Palmer et al., 2005; Gildea and Jurafsky,

The	woman	takes	out	a	cucumber	from	the	
refrigerator.	

	Predicate:	“takes	out”:	track	1	
	Agent:	‘’The	woman’’	:	track	2	
	Pa.ent:	‘’a	cucumber’’	:	track	3	
	Source:	‘’from	the	refrigerator’’	:	
track	4	
	Des.na.on:	‘’	‘’	:	track	5	
	

Figure 1: An example of grounded semantic role labeling for

the sentence the woman takes out a cucumber from the refrig-

erator. The left hand side shows three frames of a video clip

with the corresponding language description. The objects in the

bounding boxes are tracked and each track has a unique identi-

fier. The right hand side shows the grounding results where each

role including the implicit role (destination) is grounded to

a track id.

2002; Collobert et al., 2011; Zhou and Xu, 2015).
For example, given the sentence the woman takes
out a cucumber from the refrigerator., takes out is
the main verb (also called predicate); the noun
phrase the woman is the agent of this action; a cu-
cumber is the patient; and the refrigerator is the
source.

SRL captures important semantic representations
for actions associated with verbs, which have shown
beneficial for a variety of applications such as infor-
mation extraction (Emanuele et al., 2013) and ques-
tion answering (Shen and Lapata, 2007). However,
the traditional SRL is not targeted to represent verb
semantics that are grounded to the physical world
so that artificial agents can truly understand the on-
going activities and (learn to) perform the specified
actions. To address this issue, we propose a new task
on grounded semantic role labeling.

Figure 1 shows an example of grounded SRL.
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The sentence the woman takes out a cucumber
from the refrigerator describes an activity in a
visual scene. The semantic role representation
from linguistic processing (including implicit roles
such as destination) is first extracted and then
grounded to tracks of visual entities as shown in
the video. For example, the verb phrase take out
is grounded to a trajectory of the right hand. The
role agent is grounded to the person who actually
does the take-out action in the visual scene (track
1) ; the patient is grounded to the cucumber
taken out (track 3); and the source is grounded
to the refrigerator (track 4). The implicit role of
destination (which is not explicitly mentioned
in the language description) is grounded to the cut-
ting board (track 5).

To tackle this problem, we have developed an ap-
proach to jointly process language and vision by in-
corporating semantic role information. In particular,
we use a benchmark dataset (TACoS) which con-
sists of parallel video and language descriptions in
a complex cooking domain (Regneri et al., 2013) in
our investigation. We have further annotated sev-
eral layers of information for developing and eval-
uating grounded semantic role labeling algorithms.
Compared to previous works on language ground-
ing (Tellex et al., 2011; Yu and Siskind, 2013; Krish-
namurthy and Kollar, 2013), our work presents sev-
eral contributions. First, beyond arguments explic-
itly mentioned in language descriptions, our work
simultaneously grounds explicit and implicit roles
with an attempt to better connect verb semantics
with actions from the underlying physical world.
By incorporating semantic role information, our ap-
proach has led to better grounding performance.
Second, most previous works only focused on a
small number of verbs with limited activities. We
base our investigation on a wider range of verbs
and in a much more complex domain where object
recognition and tracking are notably more difficult.
Third, our work results in additional layers of anno-
tation to part of the TACoS dataset. This annotation
captures the structure of actions informed by seman-
tic roles from the video. The annotated data is avail-
able for download 1. It will provide a benchmark for
future work on grounded SRL.

1 http://lair.cse.msu.edu/gsrl.html

2 Related Work

Recent years have witnessed an increasing amount
of work in integrating language and vision, from
earlier image annotation (Ramanathan et al., 2013;
Kazemzadeh et al., 2014) to recent image/video
caption generation (Kuznetsova et al., 2013; Venu-
gopalan et al., 2015; Ortiz et al., ; Elliott and de
Vries, 2015; Devlin et al., 2015), video sentence
alignment (Naim et al., 2015; Malmaud et al., 2015),
scene generation (Chang et al., 2015), and multi-
model embedding incorporating language and vi-
sion (Bruni et al., 2014; Lazaridou et al., 2015).

What is more relevant to our work here is re-
cent progress on grounded language understanding,
which involves learning meanings of words through
connections to machine perception (Roy, 2005) and
grounding language expressions to the shared vi-
sual world, for example, to visual objects (Liu et
al., 2012; Liu and Chai, 2015), to physical land-
marks (Tellex et al., 2011; Tellex et al., 2014), and
to perceived actions or activities (Tellex et al., 2014;
Artzi and Zettlemoyer, 2013).

Different approaches and emphases have been ex-
plored. For example, linear programming has been
applied to mediate perceptual differences between
humans and robots for referential grounding (Liu
and Chai, 2015). Approaches to semantic pars-
ing have been applied to ground language to inter-
nal world representations (Chen and Mooney, 2008;
Artzi and Zettlemoyer, 2013). Logical Semantics
with Perception (LSP) (Krishnamurthy and Kol-
lar, 2013) was applied to ground natural language
queries to visual referents through jointly parsing
natural language (combinatory categorical grammar
(CCG)) and visual attribute classification. Graph-
ical models have been applied to word grounding.
For example, a generative model was applied to in-
tegrate And-Or-Graph representations of language
and vision for joint parsing (Tu et al., 2014). A Fac-
torial Hidden Markov Model (FHMM) was applied
to learn the meaning of nouns, verbs, prepositions,
adjectives and adverbs from short video clips paired
with sentences (Yu and Siskind, 2013). Discrimina-
tive models have also been applied to ground human
commands or instructions to perceived visual enti-
ties, mostly for robotic applications (Tellex et al.,
2011; Tellex et al., 2014). More recently, deep learn-
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ing has been applied to ground phrases to image re-
gions (Karpathy and Fei-Fei, 2015).

3 Method

We first describe our problem formulation and then
provide details on the learning and inference algo-
rithms.

3.1 Problem Formulation

Given a sentence S and its corresponding video clip
V , our goal is to ground explicit/implicit roles as-
sociated with a verb in S to video tracks in V. In
this paper, we focus on the following set of semantic
roles: {predicate, patient, location,
source, destination, tool}. In the cook-
ing domain, as actions always involve hands, the
predicate is grounded to the hand pose repre-
sented by a trajectory of relevant hand(s). Normally
agent would be grounded to the person who does
the action. As there is only one person in the scene,
we thus ignore the grounding of the agent in this
work.

Video tracks capture tracks of objects (including
hands) and locations. For example, in Figure 1, there
are 5 tracks: human, hand, cucumber, refrigerator
and cutting board. Regarding the representation of
locations, instead of discretization of a whole image
to many small regions(large search space), we cre-
ate locations corresponding to five spatial relations
(center, up, down, left, right) with respect to each
object track, which means we have 5 times number
of locations compared with number of objects. For
instance, in Figure 1, the source is grounded to

s2	 s1	 s6	 s3	 s4	 s5	

φ5	

The	person	
[Agent]	

Takes	out	
[Predicate]	

The	drawer	
[Source]	

From	
[Source]	

A	cuAng	board	
[PaCent]	

[DesCnaCon]	

φ4	φ3	φ6	φ1	φ2	

v2	

v1	

v6	

v3	 v4	

v5	

Figure 2: The CRF structure of sentence “the person takes out

a cutting board from the drawer”. The text in the square bracket

indicates the corresponding semantic role.

the center of the bounding boxes of the refrigerator
track; and the destination is grounded to the
center of the cutting board track.

We use Conditional Random Field(CRF) to model
this problem. An example CRF factor graph is
shown in Figure 2. The CRF structure is cre-
ated based on information extracted from language.
More Specifically, s1, ..., s6 refers to the observed
text and its semantic role. Notice that s6 is an im-
plicit role as there is no text from the sentence de-
scribing destination. Also note that the whole
prepositional phrase “from the drawer” is identified
as the source rather than “the drawer” alone. This
is because the prepositions play an important role in
specifying location information. For example, “near
the cutting boarding” is describing a location that is
near to, but not exactly at the location of the cutting
board. Here v1, ..., v6 are grounding random vari-
ables which take values from object tracks and lo-
cations in the video clip, and φ1, ..., φ6 are binary
random variables which take values {0,1}. When
φi equals to 1, it means vi is the correct ground-
ing of corresponding linguistic semantic role, oth-
erwise it is not. The introduction of random vari-
ables φi follows previous work from Tellex and col-
leagues (Tellex et al., 2011), which makes CRF
learning more tractable.

3.2 Learning and Inference

In the CRF model, we do not directly model the ob-
jective function as:

p(v1, ..., vk|S, V )

where S refers to the sentence, V refers to the cor-
responding video clip and vi refers to the ground-
ing variable. Because the gradient based learning
method needs the expectation of v1, ..., vk, which
is infeasible, we instead use the following objective
function:

P (φ|s1, s2, . . . , sk, v1, v2, . . . , vk, V )

where φ is a binary random vector [φ1, ..., φk], in-
dicating whether the grounding is correct. In this
way, the objective function factorizes according to
the structure of language with local normalization at
each factor.
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Gradient ascent with L2 regularization was used
for parameter learning to maximize the objective
function:

∂L
∂w =

∑
i F (φi, si, vi, V )−∑

i EP (φi|si,vi,V )F (φi, si, vi, V )

where F refers to the feature function. During the
training, we also use random grounding as negative
samples for discriminative training.

During inference, the search space can be very
large when the number of objects in the world in-
creases. To address this problem we apply beam
search to first ground roles including patient,
tool, and then other roles including location,
source, destination and predicate.

4 Evaluation

4.1 Dataset

We conducted our investigation based on a sub-
set of the TACoS corpus (Regneri et al., 2013).
This dataset contains a set of video clips paired
with natural language descriptions related to sev-
eral cooking tasks. The natural language descrip-
tions were collected through crowd-sourcing on top
of the “MPII Cooking Composite Activities” video
corpus (Rohrbach et al., 2012). In this paper, we

Table 1: Statistics for a set of verbs and their semantic roles

in our annotated dataset. The entry indicates the number of ex-

plicit/implicit roles for each category. “–” denotes no such role

is observed in the data.1

Verb Patient Source Destn Location Tool

take 251 / 0 102 / 149 2 / 248 – –

put 94 / 0 – 75 / 19 – –

get 247 / 0 62 / 190 0 / 239 – –

cut 134 / 1 64 / 64 – 3 / 131 5 / 130

open 23 / 0 – – 0 / 23 2 / 21

wash 93 / 0 – – 26 / 58 2 / 82

slice 69 / 1 – – 2 / 68 2 / 66

rinse 76 / 0 0 / 74 – 8 / 64 –

place 104 / 1 – 105 / 7 – –

peel 29 / 0 – – 1 / 27 2 / 27

remove 40 / 0 34 / 6 – – –

1For some verbs (e.g., get), there is a slight discrepancy be-
tween the sum of implicit/explicit roles across different cate-

selected two tasks “cutting cucumber” and “cutting
bread” as our experimental data. Each task has 5
videos showing how different people perform the
same task. Each video is segmented to a sequence
of video clips where each video clip comes with one
or more language descriptions. The original TACoS
dataset does not contain annotation for grounded se-
mantic roles.

To support our investigation and evaluation, we
had made a significant effort adding the follow-
ing annotations. For each video clip, we anno-
tated the objects’ bounding boxes, their tracks, and
their labels (cucumber, cutting board, etc.) using
VATIC (Vondrick et al., 2013). On average, each
video clip is annotated with 15 tracks of objects. For
each sentence, we annotated the ground truth pars-
ing structure and the semantic frame for each verb.
The ground truth parsing structure is the represen-
tation of dependency parsing results. The seman-
tic frame of a verb includes slots, fillers, and their
groundings. For each semantic role (including both
explicit roles and implicit roles) of a given verb, we
also annotated the ground truth grounding in terms
of the object tracks and locations. In total, our anno-
tated dataset includes 976 pairs of video clips and
corresponding sentences, 1094 verbs occurrences,
and 3593 groundings of semantic roles. To check an-
notation agreement, 10% of the data was annotated
by two annotators. The kappa statistics is 0.83 (Co-
hen and others, 1960).

From this dataset, we selected 11 most frequent
verbs (i.e., get, take, wash, cut, rinse, slice, place,
peel, put, remove, open) in our current investigation
for the following reasons. First, they are used more
frequently so that we can have sufficient samples of
each verb to learn the model. Second, they cover dif-
ferent types of actions: some are more related to the
change of the state such as take, and some are more
related to the process such as wash. As it turns out,
these verbs also have different semantic role patterns
as shown in Table 1. The patient roles of all these
verbs are explicitly specified. This is not surprising
as all these verbs are transitive verbs. There is a large
variation for other roles. For example, for the verb
take, the destination is rarely specified by lin-

gories. This is partly due to the fact that some verb occurrences
take more than one objects as grounding to a role. It is also pos-
sibly due to missed/duplicated annotation for some categories.
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guistic expressions (i.e., only 2 instances), however
it can be inferred from the video. For the verb cut,
the location and the tool are also rarely spec-
ified by linguistic expressions. Nevertheless, these
implicit roles contribute to the overall understanding
of actions and should also be grounded too.

4.2 Automated Processing

To build the structure of the CRF as shown in Fig-
ure 2 and extract features for learning and inference,
we have applied the following approaches to process
language and vision.
Language Processing. Language processing con-
sists of three steps to build a structure containing
syntactic and semantic information. First, the Stan-
ford Parser (Manning et al., 2014) is applied to cre-
ate a dependency parsing tree for each sentence.
Second, Senna (Collobert et al., 2011) is applied
to identify semantic role labels for the key verb in
the sentence. The linguistic entities with seman-
tic roles are matched against the dependency nodes
in the tree and the corresponding semantic role la-
bels are added to the tree. Third, for each verb, the
Propbank (Palmer et al., 2005) entries are searched
to extract all relevant semantic roles. The implicit
roles (i.e., not specified linguistically) are added as
direct children of verb nodes in the tree. Through
these three steps, the resulting tree from language
processing has both explicit and implicit semantic
roles. These trees are further transformed to the CRF
structures based on a set of rules.

Vision Processing. A set of visual detectors are first
trained for each type of objects. Here a random
forest classifier is adopted. More specifically, we
use 100 trees with HoG features (Dalal and Triggs,
2005) and color descriptors (Van De Weijer and
Schmid, 2006). Both HoG and Color descriptors
are used, because some objects are more structural,
such as knives, human; some are more textured such
as towels. With the learned object detectors, given
a candidate video clip, we run the detectors at each
10th frame (less than 0.5 second), and find the can-
didate windows for which the detector score corre-
sponding to the object is larger than a threshold (set
as 0.5). Then using the detected window as a starting
point, we adopt tracking-by-detection (Danelljan et
al., 2014) to go forward and backward to track this

object and obtain the candidate track with this object
label.

Feature Extraction. Features in the CRF model can
be divided into the following three categories:

1. Linguistic features include word occurrence
and semantic role information. They are ex-
tracted by language processing.

2. Track label features are the label information
for tracks in the video. The labels come from
human annotation or automated visual process-
ing depending on different experimental set-
tings (described in Section 4.3).

3. Visual features are a set of features involving
geometric relations between tracks in the video.
One important feature is the histogram compar-
ison score. It measures the similarity between
distance histograms. Specifically, histograms
of distance values between the tracks of the
predicate and other roles for each verb are
first extracted from the training video clips. For
an incoming distance histogram, we calculate
its Chi-Square distances (Zhang et al., 2007)
from the pre-extracted training histograms with
the same verb and the same role. its histogram
comparison score is set to be the average of
top 5 smallest Chi-Square distances. Other vi-
sual features include geometric information for
single tracks and geometric relations between
two tracks. For example, size, average speed,
and moving direction are extracted for a single
track. Average distance, size-ratio, and rela-
tive direction are extracted between two tracks.
For features that are continuous, we discretized
them into uniform bins.

To ground language into tracks from the video, in-
stead of using track label features or visual features
alone, we use a Cartesian product of these features
with linguistic features. To learn the behavior of dif-
ferent semantic roles of different verbs, visual fea-
tures are combined with the presence of both verbs
and semantic roles through Cartesian product. To
learn the correspondence between track labels and
words, track label features are combined with the
presence of words also through Cartesian product.
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To train the model, we randomly selected 75% of
annotated 976 pairs of video clips and corresponding
sentences as training set. The remaining 25% were
used as the testing set.

4.3 Experimental Setup

Comparison. To evaluate the performance of our
approach, we compare it with two approaches.

• Baseline: To identify the grounding for each
semantic role, the first baseline chooses the
most possible track based on the object type
conditional distribution given the verb and se-
mantic role. If an object type corresponds
to multiple tracks in the video, e.g., multiple
drawers or knives, we then randomly select one
of the tracks as grounding. We ran this baseline
method five times and reported the average per-
formance.

• Tellex (2011): The second approach we com-
pared with is based on an implementa-
tion (Tellex et al., 2011). The difference is
that they don’t explicitly model fine-grained se-
mantic role information. For a better compar-
ison, we map the grounding results from this
approach to different explicit semantic roles ac-
cording to the SRL annotation of the sentence.
Note that this approach is not able to ground
implicit roles.

More specifically, we compare these two approaches
with two variations of our system:

• GSRLwo V: The CRF model using linguistic
features and track label features (described in
Section 4.2).

• GSRL: The full CRF model using linguistic
features, track label features, and visual fea-
tures(described in Section 4.2).

Configurations. Both automated language process-
ing and vision processing are error-prone. To fur-
ther understand the limitations of grounded SRL, we
compare performance under different configurations
along the two dimensions: (1) the CRF structure is
built upon annotated ground-truth language parsing

versus automated language parsing; (2) object track-
ing and labeling is based on annotation versus auto-
mated processing. These lead to four different ex-
perimental configurations.

Evaluation Metrics. For experiments that are based
on annotated object tracks, we can simply use the
traditional accuracy that directly measures the per-
centage of grounded tracks that are correct. How-
ever, for experiments using automated tracking,
evaluation can be difficult as tracking itself poses
significant challenges. The grounding results (to
tracks) cannot be directly compared with the an-
notated ground-truth tracks. To address this prob-
lem, we have defined a new metric called approxi-
mate accuracy. This metric is motivated by previous
computer vision work that evaluates tracking per-
formance (Bashir and Porikli, 2006). Suppose the
ground truth grounding for a role is track gt and the
predicted grounding is track pt. The two tracks gt
and pt are often not the same (although may have
some overlaps). Suppose the number of frames in
the video clip is k. For each frame, we calculate the
distance between the centroids of these two tracks.
If their distance is below a predefined threshold, we
consider the two tracks overlap in this frame. We
consider the grounding is correct if the ratio of the
overlapping frames between gt and pt exceeds 50%.
As can be seen, this is a lenient and an approximate
measure of accuracy.

4.4 Results

The results based on the ground-truth language pars-
ing are shown in Table 2, and the results based
on automated language parsing are shown in Table
3. For results based on annotated object tracking,
the performance is reported in accuracy and for re-
sults based on automated object tracking, the perfor-
mance is reported in approximate accuracy. When
the number of testing samples is less than 15, we
do not show the result as it tends to be unreliable
(shown as NA). Tellex (2011) does not address im-
plicit roles (shown as “–”). The best performance
score is shown in bold. We also conducted a two-
tailed bootstrap significance testing (Efron and Tib-
shirani, 1994). The score with a “*” indicates it is
statistically significant (p < 0.05) compared to the
baseline approach. The score with a “+” indicates
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Table 2: Evaluation results based on annotated language parsing.

Accuracy On the Gold Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.856 0.372 NA 0.225 0.314 0.311 0.569 NA 0.910 NA 0.853 0.556 0.620 0.583

Tellex(2011) 0.865 0.745 – 0.306 – 0.763 – NA – NA – 0.722 – –

GSRLwo V 0.854 0.794∗+ NA 0.375∗ 0.392∗+ 0.658∗ 0.615∗+ NA 0.920+ NA 0.793+ 0.768∗+ 0.648∗+ 0.717∗

GSRL 0.878∗+ 0.839∗+ NA 0.556∗+ 0.684∗+ 0.789∗ 0.641∗+ NA 0.930+ NA 0.897∗+ 0.825∗+ 0.768∗+ 0.8∗

Approximated Accuracy On the Automated Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.529 0.206 NA 0.169 0.119 0.236 0.566 NA 0.476 NA 0.6 0.352 0.393 0.369

Tellex(2011) 0.607 0.233 – 0.154 – 0.333 – NA – NA – 0.359 – –

GSRLwo V 0.582∗ 0.244∗ NA 0.262∗+ 0.126+ 0.485∗+ 0.613∗+ NA 0.467+ NA 0.714∗+ 0.410∗+ 0.425∗+ 0.417∗

GSRL 0.548 0.263∗ NA 0.262∗+ 0.086+ 0.394∗ 0.514+ NA 0.456+ NA 0.688∗+ 0.399∗+ 0.381+ 0.391∗

Upper Bound 0.920 0.309 NA 0.277 0.252 0.636 0.829 NA 0.511 NA 0.818 0.577 0.573 0.575

Table 3: Evaluation results based on automated language parsing.

Accuracy On the Gold Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.881 0.318 NA 0.203 0.316 0.235 0.607 NA 0.877 NA 0.895 0.539 0.595 0.563

Tellex(2011) 0.903 0.746 – 0.156 – 0.353 – NA – NA – 0.680 – –

GSRLwo V 0.873 0.813∗+ NA 0.328∗+ 0.360+ 0.412∗ 0.648∗+ NA 0.877+ NA 0.818+ 0.769∗+ 0.611+ 0.7∗

GSRL 0.873 0.875∗+ NA 0.453∗+ 0.667∗+ 0.412∗ 0.667∗+ NA 0.891+ NA 0.891+ 0.823∗+ 0.741∗+ 0.787∗

Approximated Accuracy On the Automated Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.543 0.174 NA 0.121 0.113 0.093 0.594 NA 0.612 NA 0.567 0.327 0.405 0.362

Tellex(2011) 0.598 0.218 – 0.086 – 0.00 – NA – NA – 0.322 – –

GSRLwo V 0.618∗ 0.243∗ NA 0.190∗+ 0.120+ 0.133+ 0.641∗+ NA 0.585+ NA 0.723∗+ 0.401∗+ 0.434∗+ 0.415∗

GSRL 0.493 0.243∗ NA 0.190∗+ 0.063+ 0.133+ 0.612+ NA 0.554+ NA 0.617+ 0.367∗+ 0.386+ 0.375

Upper Bound 0.908 0.277 NA 0.259 0.254 0.4 0.854 NA 0.631 NA 0.830 0.543 0.585 0.561

it is statistically significant (p < 0.05) compared to
the approach (Tellex et al., 2011).

For experiments based on automated object track-
ing, we also calculated an upper bound to assess the
best possible performance which can be achieved
by a perfect grounding algorithm given the current
vision processing results. This upper bound is cal-
culated based on grounding each role to the track
which is closest to the ground-truth annotated track.
For the experiments based on annotated tracking,
the upper bound would be 100%. This measure
provides some understandings about how good the
grounding approach is given the limitation of vi-
sion processing. Notice that the grounding results in

the gold/automatic language processing setting are
not directly comparable as the automatic SRL can
misidentify frame elements.

4.5 Discussion
As shown in Table 2 and Table 3, our approach
consistently outperforms the baseline (for both ex-
plicit and implicit roles) and the Tellex (2011) ap-
proach. Under the configuration of gold recogni-
tion/tracking, the incorporation of visual features
further improves the performance. However, this
performance gain is not observed when automated
object tracking and labeling is used. One possi-
ble explanation is that as we only had limited data,
we did not use separate data to train models for
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Figure 3: The relation between the accuracy and the entropy of each verb’s patient from the gold language, gold visual recogni-

tion/tracking setting. The entropy for the patient role of each verb is shown below the verb.

object recognition/tracking. So the GSRL model
was trained with gold recognition/tracking data and
tested with automated recognition/tracking data.

By comparing our method with Tellex (2011), we
can see that by incorporating fine grained seman-
tic role information, our approach achieves better
performance on almost all the explicit role (except
for the patient role under the automated tracking
condition).

The results have also shown that some roles are
easier to ground than others in this domain. For
example, the predicate role is grounded to the
hand tracks (either left hand or right hand), there
are not many variations such that the simple base-
line can achieve pretty high performance, especially
when annotated tracking is used. The same situation
happens to the location role as most of the lo-
cations happen near the sink when the verb is wash,
and near the cutting board for verbs like cut, etc.
However, for the patient role, there is a large
difference between our approach and baseline ap-
proaches as there is a larger variation of different
types of objects that can participate in the role for a
given verb.

For experiments with automated tracking, the up-
per bound for each role also varies. Some roles
(e.g., patient) have a pretty low upper bound.

The accuracy from our full GSRL model is already
quite close to the upper bound. For other roles
such as predicate and destination, there is
a larger gap between the current performance and
the upper bound. This difference reflects the model’s
capability in grounding different roles.

Figure 3 shows a close-up look at the grounding
performance to the patient role for each verb un-
der the gold parsing and gold tracking configuration.
The reason we only show the results of patient
role here is every verb has this role to be grounded.
For each verb, we also calculated its entropy based
on the distribution of different types of objects that
can serve as the patient role in the training data.
The entropy is shown at the bottom of the figure. For
verbs such as take and put, our full GSRL model
leads to much better performance compared to the
baseline. As the baseline approach relies on the en-
tropy of the potential grounding for a role, we fur-
ther measured the improvement of the performance
and calculated the correlation between the improve-
ment and the entropy of each verb. The result shows
that Pearson coefficient between the entropy and the
improvement of GSRL over the baseline is 0.614.
This indicates the improvement from GSRL is pos-
itively correlated with the entropy value associated
with a role, implying the GSRL model can deal with
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more uncertain situations. For the verb cut, The
GSRL model performs slightly worse than the base-
line. One explanation is that the possible objects that
can participate as a patient for cut are relatively con-
strained where simple features might be sufficient.
A large number of features may introduce noise, and
thus jeopardizing the performance.

We further compare the performance of our full
GRSL model with Tellex (2011) (also shown in Fig-
ure 3) on the patient role of different verbs. Our
approach outperforms Tellex (2011) on most of the
verbs, especially put and open. A close look at the
results have shown that in those cases, the patient
roles are often specified by pronouns. Therefore, the
track label features and linguistic features are not
very helpful, and the correct grounding mainly de-
pends on visual features. Our full GSRL model can
better capture the geometry relations between differ-
ent semantic roles by incorporating fine-grained role
information.

5 Conclusion and Future Work

This paper investigates a new problem on grounded
semantic role labeling. Besides semantic roles ex-
plicitly mentioned in language descriptions, our ap-
proach also grounds implicit roles which are not
explicitly specified. As implicit roles also cap-
ture important participants related to an action (e.g.,
tools used in the action), our approach provides
a more complete representation of action seman-
tics which can be used by artificial agents for fur-
ther reasoning and planning towards the physical
world. Our empirical results on a complex cook-
ing domain have shown that, by incorporating se-
mantic role information with visual features, our ap-
proach can achieve better performance compared to
baseline approaches. Our results have also shown
that grounded semantic role labeling is a challenging
problem which often depends on the quality of au-
tomated visual processing (e.g., object tracking and
recognition).

There are several directions for future improve-
ment. First, the current alignment between a video
clip and a sentence is generated by some heuristics
which are error-prone. One way to address this is
to treat alignment and grounding as a joint problem.
Second, our current visual features have not shown

effective especially when they are extracted based
on automatic visual processing. This is partly due to
the complexity of the scene from the TACoS dataset
and the lack of depth information. Recent advances
in object tracking algorithms (Yang et al., 2013; Mi-
lan et al., 2014) together with 3D sensing can be
explored in the future to improve visual processing.
Moreover, linguistic studies have shown that action
verbs such as cut and slice often denote some change
of state as a result of the action (Hovav and Levin,
2010; Hovav and Levin, 2008). The change of state
can be perceived from the physical world. Thus an-
other direction is to systematically study causality
of verbs. Causality models for verbs can potentially
provide top-down information to guide intermediate
representations for visual processing and improve
grounded language understanding.

The capability of grounding semantic roles to the
physical world has many important implications. It
will support the development of intelligent agents
which can reason and act upon the shared phys-
ical world. For example, unlike traditional ac-
tion recognition in computer vision (Wang et al.,
2011), grounded SRL will provide deeper under-
standing of the activities which involve participants
in the actions guided by linguistic knowledge. For
agents that can act upon the physical world such as
robots, grounded SRL will allow the agents to ac-
quire the grounded structure of human commands
and thus perform the requested actions through plan-
ning (e.g., to follow the command “put the cup on
the table”). Grounded SRL will also contribute
to robot action learning where humans can teach
the robot new actions (e.g., simple cooking tasks)
through both task demonstration and language in-
struction.
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