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IRIT, Université de Toulouse & CNRS

118 Route de Narbonne, 31062 Toulouse, France
{firstname.lastname@irit.fr}

Abstract

In this paper we present the first, to the best
of our knowledge, discourse parser that is able
to predict non-tree DAG structures. We use
Integer Linear Programming (ILP) to encode
both the objective function and the constraints
as global decoding over local scores. Our un-
derlying data come from multi-party chat dia-
logues, which require the prediction of DAGs.
We use the dependency parsing paradigm, as
has been done in the past (Muller et al., 2012;
Li et al., 2014; Afantenos et al., 2015), but
we use the underlying formal framework of
SDRT and exploit SDRT’s notions of left and
right distributive relations. We achieve an F-
measure of 0.531 for fully labeled structures
which beats the previous state of the art.

1 Introduction

Multi-party dialogue parsing, in which complete
discourse structures for multi-party dialogue or its
close cousin, multi-party chat, are automatically
constructed, is still in its infancy. Nevertheless,
these are now very common forms of communica-
tion on the Web. Dialogue appears also importantly
different from monologue. Afantenos et al. (2015)
point out that forcing discourse structures to be trees
will perforce miss 9% of the links in their corpus,
because a significant number of discourse structures
in the corpus are not trees. Although Afantenos et
al. (2015) is the only prior paper we know of that
studies dialogue parsing on multi-party dialogue,
and that work relied on methods adapted to treelike
structures, we think the area of multi-party dialogue

and non-treelike discourse structures is ripe for in-
vestigation and potentially important for other gen-
res like the discourse analysis of fora (Wang et al.,
2011, for example). This paper proposes a method
based on constraints using Integer Linear Program-
ming decoding over local probability distributions to
investigate both treelike and non-treelike, full dis-
course structures for multi-party dialogue. We show
that our method outperforms that of Afantenos et al.
(2015) on the corpus they developed.

Discourse parsing involves at least three main
steps: the segmentation of a text into elementary
discourse units (EDUs), the basic building blocks
for discourse structures, the attachment of EDUs to-
gether into connected structures for texts, and finally
the labelling of the links between discourse units
with discourse relations. Much current work in dis-
course parsing focuses on the labelling of discourse
relations, using data from the Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008). This work has
availed itself of increasingly sophisticated features
of the semantics of the units to be related (Braud and
Denis, 2015); but as the PDTB does not provide full
discourse structures for texts, it is not relevant to our
concerns here. Rhetorical Structure Theory (RST)
(Mann and Thompson, 1987; Mann and Thompson,
1988; Taboada and Mann, 2006) does take into ac-
count the global structure of the document, and the
RST Discourse Tree Bank Carlson et al. (2003) has
texts annotated according to RST with full discourse
structures. This has guided most work in recent dis-
course parsing of multi-sentence text (Subba and Di
Eugenio, 2009; Hernault et al., 2010; duVerle and
Prendinger, 2009; Joty et al., 2013; Joty et al., 2015).
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But RST requires that discourse structures be projec-
tive trees.

While projective trees are arguably a contender
for representing the discourse structure of mono-
logue text, multi-party chat dialogues exhibit cross-
ing dependencies. This rules out using a theory
like RST as a basis either for an annotation model
or as a guide to learning discourse structure (Afan-
tenos et al., 2015). Several subgroups of interlocu-
tors can momentarily form and carry on a discussion
amongst themselves, forming thus multiple concur-
rent discussion threads. Furthermore, participants
of one thread may reply or comment to something
said to another thread. One might conclude from
the presence of multiple threads in dialogue that we
should use non-projective trees to guide discourse
parsing. But non-projective trees cannot always re-
flect the structure of a discourse either, as Asher
and Lascarides (2003) argue on theoretical grounds.
Afantenos et al. (2015) provide examples in which
a question or a comment by speaker S that is ad-
dressed to all the engaged parties in the conversa-
tion receives an answer from all the other partic-
ipants, all of which are then acknowledged by S
with a simple OK or No worries, thus creating an
intuitive, “lozenge” like structure, in which the ac-
knowledgment has several incoming links represent-
ing discourse dependencies.

A final, important organizing element of the dis-
course structure for text and dialogue is the presence
of clusters of EDUs that can act together as an argu-
ment to other discourse relations. This means that
subgraphs of the entire discourse graph act as ele-
ments or nodes in the full discourse structure. These
subgraphs are complex discourse units or CDUs.1

Here is an example from the Settlers corpus:

(1) gotwoodforsheep: [Do you have a sheep?]a
Thomas: [I do,]b [if you give me clay]c
Thomas: [or wood.]d

Thomas’s response to gotwoodforsheep spans two
turns in the corpus. More interestingly, the response
is a conditional “yes” in which EDUs (c) and (d)
jointly specify the antecedent of the discourse rela-
tion that links both to the EDU I do.

1CDUs are a feature of SDRT as we explain below. They are
also a feature of RST on some interpretations of the Satellite-
Nucleus feature.

CDUs have been claimed to be an important or-
ganizing principle of discourse structure and impor-
tant for the analysis of anaphora and ellipsis for over
20 years (Asher, 1993). Yet the computational com-
munity has ignored them; when they are present in
annotated corpora, they have been eliminated. This
attitude is understandable, because CDUs, as they
stand, are not representable as trees in any straight-
forward way. But given that our method can produce
non-treelike graphs, we take a first step towards the
prediction of CDUs as part of discourse structure by
encoding them in a hypergraph-like framework. In
particular, we will transform our corpus by distribut-
ing relations on CDUs over all their constituents as
we describe in section 3.

Our paper is organized as follows. The data that
we have used are described in more detail in the fol-
lowing section, while the underlying linguistic the-
ory that we are using is described in section 3. In
section 4 we present in detail the model that we
have used, in particular the ILP decoder and the con-
straints and objective function it exploits. We report
our results in section 5. Section 6 provides the re-
lated work while section 7 concludes this paper.

2 Input data

For our experiments we used a corpus collected
from chats involving an online version of the game
The Settlers of Catan described in (Afantenos et al.,
2012; Afantenos et al., 2015). Settlers is a multi-
party, win-lose game in which players use resources
such as wood and sheep to build roads and settle-
ments. Players take turns directing the bargaining.
This is the only discourse annotated corpus of multi-
agent dialogue of which we are aware, and it was one
in which apparently non-treelike structures were al-
ready noted and also contains CDUs. Such a chat
corpus is also useful to study because it approxi-
mates spoken dialogue in several ways—sentence
fragments, non-standard orthography and occasional
lack of syntax—without the inconvenience of tran-
scribing speech. The corpus consists of 39 games
annotated for discourse structure in the style of
SDRT. Each game consists of several dialogues, and
each dialogue represents a single bargaining session
directed by a particular player or perhaps several
connected sessions. Each dialogue is treated as hav-
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Total Training Testing

Dialogues 1091 968 123
Turns 9160 8166 994
EDUs 10677 9545 1132
CDUs 1284 1132 152

Relation instances

No distribution 10191 9127 1064
Partial dist. 11734 10507 1227
Full dist. 13675 12210 1465

Table 1: Dataset overview

ing its own discourse structure. About 10% of the
corpus was held out for evaluation purposes while
the rest was used for training. The dialogues in
the corpus are mostly short with each speaker’s turn
containing typically only one, two or three EDUs,
though the longest has 156 EDUs and 119 turns.
Most of the discourse connections or relation in-
stances in the corpus thus occur between speaker
turns. Statistics on the number of dialogues, EDUs
and relations contained in each sub-corpus can be
found in table 1. Note that the number of relation
instances in the corpus depends on how CDUs are
translated, which we’ll explain in the next section.
The corpus has approximately the same number of
EDUs and relations as the RST corpus (Carlson et
al., 2003).

3 Linguistic Foundations

Segmented Discourse Representation Theory.
We give a few details here on one discourse theory
in which non-treelike discourse structures are coun-
tenanced and that underlies the annotations of the
corpus we used. That theory is SDRT. In SDRT, a
discourse structure, or SDRS, consists of a set of Dis-
course Units (DUs) and as Discourse Relations link-
ing those units. DUs are distinguished into EDUs
and CDUs. We identify EDUs here with phrases
or sentences describing a state or an event; CDUs
are SDRSs. Formally an SDRS for a given text seg-
mented in EDUsD = {e1, . . . , en}, where ei are the
EDUs ofD, is a tuple (V,E1, E2, `) where V is a set
of nodes or discourse units including {e1, . . . , en},
E1 ⊆ V × V a set of edges representing discourse
relations, E2 ⊆ V × V a set of edges that rep-

resents parthood in the sense that if (x, y) ∈ E2,
then the unit x is an element of the CDU y; finally
` : E1 → Relations is a labelling function that as-
signs an edge in E1 its discourse relation type.

From SDRT Structures to Dependency Struc-
tures. Predicting full SDRSs (V,E1, E2, `) with
E2 6= ∅ has been to date impossible, because no re-
liable method has been identified in the literature for
calculating edges in E2. Instead, most approaches
(Muller et al., 2012; Afantenos et al., 2015, for ex-
ample) simplify the underlying structures by a head
replacement strategy (HR) that removes nodes rep-
resenting CDUs from the original hypergraphs and
replacing any incoming or outgoing edges on these
nodes on the heads of those CDUs, forming thus de-
pendency structures and not hypergraphs. A simi-
lar approach has also been followed by Hirao et al.
(2013) and Li et al. (2014) in the context of RST to
deal with multi-nuclear relations.

Transforming SDRSs using HR does not come
without its problems. The decision to attach all in-
coming and outgoing links to a CDU to its head is
one with little theoretical or semantic justification.
The semantic effects of attaching an EDU to a CDU
are not at all the same as attaching an EDU to the
head of the CDU. For example, suppose we have a
simple discourse with the following EDUs marked
by brackets and discourse connectors in bold :

(2) [The French economy continues to suffer]a
because [high labor costs remain high]b and
[investor confidence remains low]c.

The correct SDRS for (2) is one in which both b and
c together explain why the French economy contin-
ues to suffer. That is, b and c form a CDU and give
rise to the following graph:

a b c
EXPLANATION CONTINUATION

HR on (2) produces a graph whose strictly com-
positional interpretation would be false—b alone ex-
plains why the French economy continues to suf-
fer. Alternatively an interpretation of the proposed
translation an SDRS with CDUs would introduce
spurious ambiguities: either b alone or b and c to-
gether provide the explanation. To make matters
worse, given the semantics of discourse relations
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in SDRT (Asher and Lascarides, 2003), some rela-
tions have a semantics that implies that a relation
between a CDU and some other discourse unit can
be distributed over the discourse units that make up
the CDU. But not all relations are distributive in
this sense. For example, we could complicate (2)
slightly:

(3) [The French economy continues to suffer]a
and [the Italian economy remains in the
doldrums]b because of [persistent high la-
bor costs]c and [lack of investor confidence
in both countries]d.

In (3), the SDRS graph would be:

a b c d
EXPLANATIONCONTINUATION CONTINUATION

However, this SDRS entails that a is explained by
[c, d] and that b is explained by [c, d]. That is, EX-
PLANATION “distributes” to the left but not to the
right. Once again, the HR translation from SDRSs
into dependency structures described above would
get the intuitive meaning of this example wrong or
introduce spurious ambiguities.

Given the above observations, we decided to take
into account the formal semantics of the discourse
relations before replacing CDUs. More precisely,
we distinguish between left distributive and right
distributive relations. In a nutshell, we examined
the temporal and modal semantics of relations and
classified them as to whether they were distribu-
tive with respect to their left or to their right argu-
ment; left distributive relations are those for which
the source CDU node should be distributed while
right distributive relations are those for which the
target CDU node should be distributed. A relation
can be both left and right distributive. Left distribu-
tive relations include ACKNOWLEDGEMENT, EX-
PLANATION, COMMENT, CONTINUATION, NAR-
RATION, CONTRAST, PARALLEL, BACKGROUND,
while right distributive relations include RESULT,
CONTINUATION, NARRATION, COMMENT, CON-
TRAST, PARALLEL, BACKGROUND, ELABORA-
TION. In Figure 1 we show an example of how rela-
tions distribute between EDU/CDU, CDU/EDU and
CDU/CDU.

ei

ej1 . . . ejn

=⇒
ei

ej1 . . . ejn

(a)

ei1 . . . ein

ej

=⇒
ei1 . . . ein

ej

(b)

ei1 . . . ein

ej1 . . . ejn

=⇒
ei1 . . . ein

ej1 . . . ejn

(c)

Figure 1: Distributing relations: (a) right distribution from an

EDU to a CDU, (b) left distribution from a CDU to an EDU,

(c) from a CDU to a CDU. We assume that all relations are

both right and left distributive.

4 Underlying Model

Decoding over local scores. When we apply ei-
ther a full or partial distributional (partial distribu-
tion takes into account which relations distribute in
which direction) translation to the SDRSs in our cor-
pus, we get dependency graphs that are not trees as
input to our algorithms. We now approximate full
SDRS graphs (V,E1, E2, `) with graphs that dis-
tribute outE2—that is, graphs of the form (V,E1, `)
or more simply (V,E, `). It is important to note that
those graphs are not in general trees but rather Di-
rected Acyclic Graphs (DAGs). We now proceed to
detail how we learn such structures.

Ideally, what one wants is to learn a function
h : XEn 7→ YG where XEn is the domain of in-
stances representing a collection of EDUs for each
dialogue and YG is the set of all possible SDRT
graphs. However, given the complexity of this task
and the fact that it would require an amount of train-
ing data that we currently lack in the community, we
aim at the more modest goal of learning a function
h : XE2 7→ YR where the domain of instances XE2

represents parameters for a pair of EDUs and YR

represents the set of SDRT relations.
An important drawback of this approach is that

there are no formal guarantees that the predicted
structures will be well-formed. They could for ex-
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ample contain cycles although they should be DAGs.
Most approaches have circumvented this problem
by using global decoding over local scores and by
imposing specific constraints upon decoding. But,
those constraints were mostly limited to the pro-
duction of maximum spanning trees, and not full
DAGs. We perform global decoding as well but use
Integer Linear Programming (ILP) with an objective
function and constraints that allow non-tree DAGs.
We use a regularized maximum entropy (shortened
MaxEnt) model (Berger et al., 1996) to get the local
scores, both for attachment and labelling.

ILP for Global Decoding. ILP essentially in-
volves an objective function that needs to be maxi-
mized under specific constraints. Our goal is to build
the directed graph G = 〈V,E,R〉 with R being a
function that provides labels for the edges inE. Ver-
tices (EDUs) are referred by their position in textual
order, indexed from 1. The m labels are referred by
their index in alphabetical order, starting from 1. Let
n = |V |.

The local model provides us with two real-valued
functions:

sa : {1, . . . , n}2 7→ [0, 1]

sr : {1, . . . , n}2 × {1, . . . ,m} 7→ [0, 1]
sa(i, j) gives the score of attachment for a pair of
EDUs (i, j); sr(i, j, k) gives the score for the at-
tached pair of EDUs (i, j) linked with the relation
type k. We define the n2 binary variables aij and
mn2 binary variables rijk:

aij = 1 ≡ (i, j) ∈ V
rijk = 1 ≡ R(i, j) = k

The objective function that we want to maximize is
n∑

i=1

n∑
j=1

(
aijsa(i, j) +

m∑
k=1

rijksr(i, j, k)

)
which gives us a score and a ranking for all candi-
date structures.

Our objective function is subject to several con-
straints. Because we have left the domain of trees
well-explored by syntactic analysis and their compu-
tational implementations, we must design new con-
straints on discourse graphs, which we have devel-
oped from looking at our corpus while also being
guided by theoretical principles. Some of these con-
straints come from SDRT, the underlying theory of

the annotations. In SDRT discourse graphs should
be DAGs with a unique root or source vertex, i.e.
one that has no incoming edges. They should also
be weakly connected; i.e. every discourse unit in it
is connected to some other discourse unit. We imple-
mented connectedness and the unique root property
as constraints in ILP by using the following equa-
tions.

n∑
i=1

hi = 1

∀j 1 ≤ nhj +
n∑

i=1

aij ≤ n

where hi is a set of auxiliary variables indexed on
{1, . . . , n}. The above constraint presupposes that
our graphs are acyclic.

Implementing acyclicity is facilitated by another
constraint that we call the turn constraint. This con-
straint is also theoretically motivated. The graphs
in our training corpus are reactive in the sense
that speakers’ contributions are reactions and attach
anaphorically to prior contributions of other speak-
ers. This means that edges between the contribu-
tions of different speakers are always oriented in one
direction. A turn by one speaker can’t be anaphori-
cally and rhetorically dependent on a turn by another
speaker that comes after it. Once made explicit, this
constraint has an obvious rationale: people do not
know what another speaker will subsequently say
and thus they cannot create an anaphoric or rhetor-
ical dependency on this unknown future act. This
is not the case within a single speaker turn though;
people can know what they will say several EDUs
ahead so they can make such kinds of future directed
dependencies. ILP allows us to encode this con-
straint as follows. We indexed turns from different
speakers in textual order from 1 to nt, while consec-
utive turns from the same speaker were assigned the
same index. Let t(i) be the turn index of EDU i, and
T (k) the set of all EDUs belonging to turn k. The
following constraint forbids backward links between
EDUs from distinct turns:

∀i, j (i > j) ∧ (t(i) 6= t(j)) =⇒ aij = 0
The observation concerning the turn constraint is

also useful for the model that provides local scores.
We used it for attachment and relation labelling dur-
ing training and testing.
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Given the turn constraint we only need to ensure
acyclicity of the same speaker turn subgraphs. We
introduce an auxiliary set of integer variables, (cki),
indexed on {1, . . . , nt} × {1, . . . , n} in order to ex-
press this constraint:

∀k, i 1 ≤ cki ≤ |T (k)|
∀k, i, j such that t(i) = t(j) = k

ckj ≤ cki − 1 + n(1− aij)
Another interesting observation concerns the den-

sity of the graph. The objective function being addi-
tive on positive terms, every extra edge improves the
global score of the graph, which leads to an almost-
complete graph unless the edge count is constrained.
So we imposed an upper limit δ ∈ [1, n] represent-
ing the density of the graphs:

n∑
i=1

n∑
j=1

aij ≤ δ(n− 1)

δ ∈ [1, n] since we need to have at least n− 1 edges
for the graph to be connected and at maximum we
can have n(n − 1) edges if the graph is complete
without loops. δ being a hyper-parameter, we esti-
mated it on a development corpus representing 20%
of our total corpus.2

The development corpus also shows that graph
density decreases as the number of vertices grow. A
high δ entails a too large number of edges in longer
dialogues. We compensate for this effect by using an
additive cap η ≥ 0 on the edge count, also estimated
on the development corpus:3

n∑
i=1

n∑
j=1

aij ≤ n− 1 + η

Another empirical observation concerning the
corpus was that the number of outgoing edges from
any EDU had an upper bound eo � n. We set that
as an ILP constraint:4

∀i
n∑

j=1

aij ≤ eo

These observations don’t have a semantic expla-
nation, but they suggest a pragmatic one linked at

2δ takes the values 1.0, 1.2 and 1.4 for the head, partial and
full distribution of the relations, respectively.

3η takes the value of 4 for the full distribution while it has
no upper bound for the head and partial distributions.

4eo is estimated on the development corpus to the value of 6
for the head, partial and full distributions.

least to the type of conversation present in our cor-
pus. Short dialogues typically involve a opening
question broadcast to all the players in search of
a bargain, and typically all the other players reply.
The replies are then taken up and either a bargain is
reached or it isn’t. The players then move on. Thus,
the density of the graph in such short dialogues will
be determined by the number of players (in our case,
four). In a longer dialogue, we have more directed
discourse moves and threads involving subgroups
of the participants appear, but once again in these
dialogues it never happens that our participants re-
turn again and again to the same contribution; if the
thread of commenting on a contribution φ continues,
future comments attach to prior comments, not to φ.
Our ILP constraints on density and edge counts thus
suggest a novel way of capturing different dialogue
types and linguistic constraints.

Finally, we included various minor constraints,
such as the fact that EDUs cannot be attached to
themselves,5 if EDUs i and j are not attached the
pair is not assigned any discourse relation label,6

EDUs within a sequence of contributions by the
same speaker in our corpus are linked at least to the
previous EDU (Afantenos et al., 2015)7 and edges
with zero score are not included in the graph.8

For purposes of comparison with the ILP decoder,
we tested the Chu-Liu-Edmonds version of the clas-
sic Maximum Spanning Tree (MST) algorithm Mc-
Donald et al. (2005) used for discourse parsing by
Muller et al. (2012) and Li et al. (2014) and by Afan-
tenos et al. (2015) on the Settlers corpus. This al-
gorithm requires a specific node to be the root, i.e.
a node without any incoming edges, of the initial
complete graph. For each dialogue, we made an ar-
tificial node as the root with special dummy features.
At the end of the procedure, this node points to the
real root of the discourse graph. As baseline mea-
sures, we included what we call a LOCAL decoder
which creates a simple classifier out of the raw local
probability distribution. Since we use MaxEnt, this

5∀i aii = 0
6∀i, j ∑m

k=1 rijk = aij
7∀i t(i) = t(i+ 1) =⇒ ai,i+1 = 1
8∀i, j sa(i, j) = 0 =⇒ aij = 0 and

∀i, j, k sr(i, j, k) = 0 =⇒ xijk = 0
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decoder selects

r̂ = argmax
r

(
1

Z(c)
exp

(
m∑

i=1

wifi(p, r)

))
with r representing a relation type or a binary attach-
ment value. A final baseline was LAST, where each
EDU is attached to the immediately preceding EDU
in the linear, textual order.

5 Experiments and Results

Features for training the local model and getting
scores for the decoders were extracted for every pair
of EDUs. Features concerned each EDU individ-
ually as well as the pair itself. We used obvious,
surface features such as: the position of EDUs in
the dialogue, who their speakers are, whether two
EDUs have the same speaker, the distance between
EDUs, the presence of mood indicators (‘?’, ‘!’) in
the EDU, lexical features of the EDU (e.g., does
a verb signifying an exchange occur in the EDU),
and first and last words of the EDU. We also used
the structures and Subject lemmas given by syntac-
tic dependency parsing, provided by the Stanford
CoreNLP pipeline (Manning et al., 2014). Finally
we used Cadilhac et al. (2013)’s method for classi-
fying EDUs with respect to whether they involved
an offer, a counteroffer, or were other.

As mentioned earlier, in addition to the ILP
and MST decoders we used two baseline decoders,
LAST and LOCAL. The LAST decoder simply se-
lects the previous EDU for attachment no matter
what the underlying probability distribution is. This
has proved a very hard baseline to beat in discourse.
The LOCAL decoder is a naive decoder which in the
case of attachment returns “attached” if the proba-
bility of attachment between EDUs i and j is higher
than .5 and “non-attached” in the opposite case.

Each of the three distribution methods described
in Section 3 (Head, Partial and Full Distribution)
yielded different dependency graphs for our input
documents, which formed three distinct corpora on
which we trained and tested separately. For each
of them, our training set represented 90% of the
dependency graphs from the initial corpus, chosen
at random; the test set representing the remaining
10%. Table 2 shows our evaluation results, com-
paring decoders and baselines for each of the dis-
tribution strategies. As can be seen, our ILP de-

coder consistently performs significantly better than
the baselines as well as the MST decoder, which was
the previous state of the art (Afantenos et al., 2015)
even when restricted to tree structures and HR (set-
ting the hyper-parameter δ = 1). This prompted us
to investigate how our objective function compared
to MST’s. We eliminated all constraints in ILP ex-
cept acyclicity, connectedness, turn constraint and
eliminating any constraint on outgoing edges (set-
ting δ = ∞); in this case, ILP’s objective func-
tion performed better on the full structure prediction
(.531 F1) than MST with attachment and labelling
jointly maximized (.516 F1). This means that our
objective function, although it maximizes scores and
not probabilities, produces an ordering over outputs
that outperforms classic MST. Our analysis showed
further that the constraints on outgoing edges (the
tuning of the hyperparameter eo = 6) were very im-
portant for our corpus and our (admittedly flawed)
local model; in other words, an ILP constrained tree
for this corpus was a better predictor of the data with
our local model than an unrestrained MST tree de-
coding.

We also note that our scores dropped in distribu-
tive settings but that ILP performed considerably
better than the alternatives and better than the previ-
ous state of the art on dependency trees using HR on
the gold and MST decoding. We need to investigate
further constraints, and to refine and improve our
features to get a better local model. Our local model
will eventually need to be replaced by one that takes
into account more of the surrounding structure when
it assigns scores to attachments and labels. We also
plan to investigate the use of recurrent neural net-
works in order to improve our local model.

6 Related Work

ILP has been used for various computational linguis-
tics tasks: syntactic parsing (Martins et al., 2010;
Fernández-González and Martins, 2015), semantic
parsing (Das et al., 2014), coreference resolution
(Denis and Baldridge, 2007) and temporal analysis
(Denis and Muller, 2011). As far as we know, we are
the first to use ILP to predict discourse structures.

Our use of dependency structures for discourse
also has antecedents in the literature. The first we
know of is Muller et al. (2012). Their prediction
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Decoder Model Unlabelled Attachment Labelled Attachment
Precision Recall F1 Precision Recall F1

Head (no distribution)
LAST – 0.602 0.566 0.584 0.403 0.379 0.391
LOCAL local 0.664 0.379 0.483 0.591 0.337 0.429
MST local 0.688 0.655 0.671 0.529 0.503 0.516
ILP local 0.707 0.672 0.689 0.544 0.518 0.531

Partial distribution
LAST – 0.651 0.545 0.593 0.467 0.391 0.426
LOCAL local 0.647 0.370 0.471 0.544 0.311 0.396
MST local 0.710 0.594 0.647 0.535 0.448 0.488
ILP local 0.680 0.657 0.668 0.528 0.510 0.519

Full distribution
LAST – 0.701 0.498 0.582 0.505 0.360 0.420
LOCAL local 0.681 0.448 0.541 0.558 0.367 0.443
MST local 0.737 0.524 0.613 0.561 0.399 0.466
ILP local 0.703 0.649 0.675 0.549 0.507 0.527

Table 2: Evaluation results.

model uses local probability distributions and global
decoding, and they transform their data using HR,
and so ignore the semantics of discourse relations.
Hirao et al. (2013) and Li et al. (2014) also exploit
dependency structures by transforming RST trees.
Li et al. (2014) used both the Eisner algorithm (Eis-
ner, 1996) as well as the MST algorithm as decoders.
We plan to apply ILP techniques to the RST Tree
Bank to compare our method with theirs.

Most work on discourse parsing focuses on the
task of discourse relation labeling between pairs of
discourse units—e.g., Marcu and Echihabi (2002)
Sporleder and Lascarides (2005) and Lin et al.
(2009)—without worrying about global structure. In
essence the problem that they treat corresponds only
to our local model. As we have argued above, this
setting makes an unwarranted assumption, as it as-
sumes independence of local attachment decisions.
There is also work on discourse structure within
a single sentence; e.g., Soricut and Marcu (2003),
Sagae (2009). Such approaches do not apply to our
data, as most of the structure in our dialogues lies
beyond the sentence level.

As for other document-level discourse parsers,
Subba and Di Eugenio (2009) use a transition-based
approach, following the paradigm of Sagae (2009).
duVerle and Prendinger (2009) and Hernault et al.
(2010) both rely on locally greedy methods. They

treat attachment prediction and relation label predic-
tion as independent problems. Feng and Hirst (2012)
extend this approach by additional feature engineer-
ing but is restricted to sentence-level parsing. Joty
et al. (2013) and Joty et al. (2015) present a text-
level discourse parser that uses Conditional Random
Fields to capture label inter-dependencies and chart
parsing for decoding and have the best results on
non-dependency based discourse parsing, with an F1
of 0.689 on unlabelled structures and 0.5587 on la-
belled structures.

The afore-cited work concerns only monologue.
Baldridge and Lascarides (2005) predicted tree dis-
course structures for 2 party “directed” dialogues
from the Verbmobil corpus by training a PCFG that
exploited the structure of the underlying task. Elsner
and Charniak (2010), Elsner and Charniak (2011)
present a combination of local coherence models ini-
tially provided for monologues showing that those
models can satisfactorily model local coherence in
chat dialogues. However, they do not present a
full discourse parsing model. Our data required a
more open domain approach and a more sophisti-
cated approach to structure. Afantenos et al. (2015)
worked on multi-party chat dialogues with the same
corpus, but they too did not consider the seman-
tics of discourse relations and replaced CDUs with
their heads using HR. While this allowed them to
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use MST decoding over local probability distribu-
tions, this meant that their implementation had in-
herent limitations because it is limited to producing
tree structures. They also used the turn constraint,
but imposed exogenously to decoding; ILP allows
us to integrate it into the structural decoding. We
achieve better results than they on treelike graphs
and we can explore the full range of non-treelike dis-
course graphs within the ILP framework. Our parser
has thus much more room to improve than those re-
stricted to MST decoding.

7 Conclusions and future work

We have presented a novel method for discourse
parsing of multiparty dialogue using ILP with lin-
guistically and empirically motivated constraints
and an objective function that integrates both attach-
ment and labelling tasks. We have shown also that
our method performs better than the competition on
multiparty dialogue data and that it can capture non-
treelike structures found in the data.

We also have a better treatment of the hierarchi-
cal structure of discourse than the competition. Our
treatment of CDUs in discourse annotations pro-
poses a new distributional translation of those an-
notations into dependency graphs, which we think
is promising for future work. After distribution,
our training corpus has a very different qualitative
look. There are treelike subgraphs and then densely
connected clusters of EDUs, indicating the presence
of CDUs. This gives us good reason to believe
that in subsequent work, we will be able to predict
CDUs and attack the problem of hierarchical dis-
course structure seriously.

References
Stergos Afantenos, Nicholas Asher, Farah Benamara,

Anas Cadilhac, Cdric Degremont, Pascal Denis,
Markus Guhe, Simon Keizer, Alex Lascarides, Oliver
Lemon, Philippe Muller, Soumya Paul, Verena Rieser,
and Laure Vieu. 2012. Developing a corpus of strate-
gic conversation in the settlers of catan. In Noriko To-
muro and Jose Zagal, editors, Workshop on Games and
NLP (GAMNLP-12), Kanazawa, Japan.

Stergos Afantenos, Eric Kow, Nicholas Asher, and
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