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Abstract
This thesis explores the computational struc-
ture of morphological paradigms from the per-
spective of unsupervised learning. Three top-
ics are studied: (i) stem identification, (ii)
paradigmatic similarity, and (iii) paradigm
induction. All the three topics progress
in terms of the scope of data in ques-
tion. The first and second topics explore
structure when morphological paradigms are
given, first within a paradigm and then across
paradigms. The third topic asks where mor-
phological paradigms come from in the first
place, and explores strategies of paradigm in-
duction from child-directed speech. This re-
search is of interest to linguists and natural
language processing researchers, for both the-
oretical questions and applied areas.

1 Introduction

Morphological paradigms (e.g., walk-walks-walked-
walking) are of central interest to both linguists and
natural language processing researchers for the con-
nectedness (e.g., jumps, jumping sharing the lex-
eme JUMP) and predictability across words (e.g.,
inducing googles for google based on jump-jumps
etc). This thesis explores the computational struc-
ture of morphological paradigms, particularly from
the perspective of unsupervised learning for model-
ing how such structure can be induced from unstruc-
tured data. Three topics under study are as follows:

• Stem identification: The first part of the the-
sis concerns the structure within a morpho-
logical paradigm, focusing on stem identifi-
cation. The goal is to devise general and

language-independent strategies for stem ex-
traction applicable for different types of mor-
phology across languages, and goes beyond the
common substring-based approaches.

• Paradigmatic similarity: The second part of
the thesis asks what structure there is across
morphological paradigms. Paradigms often do
not inflect in the exact same pattern, which
leads to inflection classes, e.g., Spanish verbs in
distinct conjugation groups. At the same time,
paradigms inflect in remarkably similar ways,
e.g., Spanish verbs in the second plural all
end with -mos regardless the inflection classes.
This part of the thesis develops a string-based
hierarchical clustering algorithm that computa-
tionally characterizes the similarity and differ-
ences across morphological paradigms.

• Induction of morphological paradigms from
unstructured data: The third part of the thesis
seeks to induce paradigms from unstructured
data. The kind of unstructured data of interest
here is child-directed speech. Building on pre-
vious work on unsupervised learning of mor-
phological paradigms from raw text, this the-
sis develops an approach of paradigm induc-
tion that incorporates results from the previous
two parts of this thesis and has a version taking
child-directed speech data incrementally.

These three topics on morphological paradigms
progress in terms of the scope of data in question.
The first and second parts explore structure when
paradigms are given – one paradigm at a time, and
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then a list of paradigms together. The third part asks
where morphological paradigms come from in the
first place. This research will be of interest to both
linguistics (the nature of strings, morphemes, and
paradigms) and natural language processing (infor-
mation retrieval, machine translation).

2 Stem identification

Given a morphological paradigm with inflected
word forms, what is the stem of the paradigm? This
question on stem identification is part of the mor-
pheme segmentation problem, important for both
theoretical linguistics (Spencer 2012) and compu-
tational linguistics (Goldsmith 2010, Hammarström
and Borin 2011); once the stem is identified, what
is not the stem in each word form can be subject
to further segmentation and morphological analy-
sis for potential affixes. Stem identification is far
from being a trivial problem. Strictly concatenative
morphology, as exemplified by English jump-jumps-
jumped-jumping with “jump” as the stem, appears
intuitively simple. In contrast, non-concatenative
morphology, a well-known case being Arabic root-
and-pattern morphology (e.g., kataba ‘he wrote’,
yaktubu ‘he writes/will write’ with “k-t-b” as the
stem) has been treated as something fundamen-
tally different. The first part of this thesis seeks
to develop language-independent, algorithmic ap-
proaches to stem identification which are sufficiently
general to work with both concatenative and non-
concatenative morphology.

2.1 Linearity and contiguity

The problem of stem identification begins with the
definition of “stem” in a morphological paradigm.
A common and language-independent assumption
is that the stem (broadly construed, encompassing
“root” and “base”) is the maximal common material
across all word forms in the paradigm. This thesis
explores different definitions of “maximal common
material” in search of general algorithms of stem
identification for languages of different morphologi-
cal types. In particular, we examine ways of charac-
terizing strings in terms of linearity and contiguity.

As a point of departure, we take the maximal
common material to mean the maximal common
substring, a very intuitive and common assumption

in morpheme segmentation. To illustrate the idea of
a substring with respect to linearity and contiguity,
consider the string “abcde”. “a”, “bc”, and “cde” are
its substrings. “ac” is not a possible substring, be-
cause “a” and “c” are not contiguous. “ba” is not a
substring either, because “a” does not linearly come
after “b” in the string “abcde”. Because substrings
embody both linearity and contiguity, if a stem in a
morphological paradigm is the longest common sub-
string across the word forms, then this approach of
stem identification works well only for strictly con-
catenative morphology but not for anything that de-
viates from it. To solve this problem, this thesis ex-
plores various ways of defining the maximal com-
mon material with regard to linearity and contiguity.

2.2 Substrings, multisets, and subsequences
The definition of maximal common material may
depend on whether linearity and contiguity are re-
spected. Three major definitions along these two pa-
rameters are of interest; see Table 1:

Substring Multiset Subsequence
Linearity ✓ ✗ ✓

Contiguity ✓ ✗ ✗

Table 1: Three definitions of maximal common material
for stem identification in terms of linearity and contiguity

(The possibility of maintaining contiguity but aban-
doning linearity results in pairs of symbols which
appear to be less informative for stem identification.)

As noted above, defining the stem as the max-
imal common substring is suboptimal for non-
concatenative morphology. The two other strategies
consider the stem as the maximal common multiset
or subsequence, illustrated in Table 2 by the Span-
ish verb PODER ‘to be able’ conjugated in present
indicative. Taking the stem to be the maximal com-
mon multiset yields the set {p,d,e} as the stem for
the PODER paradigm. Table 2 highlights the stem
material for each word form. Certain word forms
have multiple stem analyses because of the multi-
ple occurrences of “e” in the words concerned; these
can be resolved by cross-paradigmatic comparison
in section 3 below or paradigm-internal heuristics
(e.g., choosing the stem that is the most congruent
with non-stem material compared to other words in
the paradigm, as in Ahlberg et al. 2014). In contrast,
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if the stem is the maximal common subsequence,
then there are two competing stems for the PODER

paradigm: p-d and p-e (using ‘-’ to denote linear or-
der without committing to contiguity). These two
stems are tied because they each contain two sym-
bols and are the longest possible common subse-
quences in the paradigms.

Multiset Subsequence
{p,d,e} p-d p-e

puedo puedo puedo puedo

puedes
puedes
puedes

puedes
puedes
puedes

puede
puede
puede puede

puede
puede

podemos podemos podemos podemos
podéis podeis podeis podeis

pueden
pueden
pueden

pueden
pueden
pueden

Table 2: Stem as maximal common multiset or subse-
quence for the Spanish PODER paradigm conjugated for
present indicative

The subsequence approach has clear merits. Re-
cent work—both directly and indirectly on stem
identification—appears to converge on the use of
the subsequence approach (Fullwood and O’Donnell
2013, Ahlberg et al. 2014). This is because it
can handle Arabic-type non-concatenative morphol-
ogy, infixation, circumfixation (as in German ge-X-
t), and (trivially) the jump-type strictly concatena-
tive morphology. In general, linearity appears to be
more important than contiguity in stem identifica-
tion. It must be noted, however, that probably for
the more familiar properties of substrings, linguists
are accustomed to using multi-tier substrings to han-
dle surface non-contiguity, e.g., McCarthy (1985) on
templatic morphology and Heinz and Lai (2013) on
vowel harmony.

This part of the thesis serves as the foundational
work for the later parts. For this first part, languages
of interest include those with morphology diverging
from simple concatenation, e.g., English with weak
suppletion, Spanish with stem allomorphy, Arabic
with templatic morphology, and German with cir-
cumfixation. Datasets come from standard sources
such as Wiktionary (cf. Durrett and DeNero 2013).
In terms of evaluation, a particular stem identifi-

cation algorithm can be tested for whether it pro-
vides the correct stems for paradigm generation, an
evaluation method connected to the clustering of
paradigms in section 3.

Apart from stems, stem identification necessar-
ily identifies the residual, non-stem material in each
word form in the paradigm. The non-stem material
is analogous to the affixes and stem allomorphs (e.g.,
the o∼ue alternation in PODER). It plays an impor-
tant role in terms of structure across morphological
paradigms, the subject of the next section.

3 Paradigmatic similarity

The second part of the thesis asks what structure
there is across morphological paradigms. Word
forms across paradigms do not alternate in the same
pattern. Linguists discuss this in terms of inflection
classes, which introduce differences across morpho-
logical paradigms. At the same time, however, mor-
phological patterns are also systematically similar.
This part of the thesis focuses on the modeling of
paradigm similarity and develops a string-based hi-
erarchical clustering algorithm that computationally
characterizes the similarity and differences across
morphological paradigms, with both theoretical and
practical values.

3.1 Inflection classes
Morphological paradigms often do not inflect in the
same way, which leads to inflection classes. For ex-
ample, Spanish verbs are classified into three conju-
gation groups (commonly referred to as -AR, -ER,
and -IR verbs), illustrated in Table 3 for the inflec-
tional suffixes (all person and number combinations)
in present indicative.

-AR -ER -IR
1.SG -o -o -o
2.SG -as -es -es
3.SG -a -e -e
1.PL -amos -emos -imos
2.PL -áis -éis -ı́s
3.PL -an -en -en

Table 3: Suffixes for the three Spanish conjugation
groups in present indicative

The Spanish conjugation classes show what is
common across languages that this part of the the-
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sis models: partial similarity across morphologi-
cal paradigms. Spanish is described as having three
conjugation classes for the three distinct overall suf-
fixing patterns. For example, they are completely
different for first-person plurals (-amos, -emos, and
-imos). At the same time, they share a great deal in
common. Across all three classes, the first-person
singular suffixes are -o, the second-person singular
suffixes end with -s, and so forth. Some classes
share properties to the exclusion of others: the sec-
ond and third conjugation groups share -es, -e, -en
for 2.SG, 3.SG, 3.PL respectively, but the first con-
jugation group have -as, -a, -an instead.

The similarities and differences which morpho-
logical paradigms exhibit as inflection classes are
of interest to both linguistics and natural language
processing. In linguistics, the partial similarities
across inflection classes prompt theoretical ques-
tions on the extent to which paradigms can differ
from one another (Carstairs 1987, Müller 2007).
Computationally, inflection classes introduce non-
uniformity across paradigms and must be handled
in one way or another in an automatic morphology
learning system. Previous work has opted to explic-
itly learn inflection classes (Goldsmith and O’Brien
2006) or collapse them in some way (Chan 2006,
Hammarström 2009, Monson 2009, Zeman 2009).

3.2 Clustering for paradigm similarity

This thesis aims to characterize paradigm similar-
ity in a way that is amenable to a linguistic analy-
sis and a formal model of paradigm similarity use-
ful for computational tasks related to paradigms. As
discussed above, similarities and differences criss-
cross one another in morphological paradigms and
result in inflection classes. It is therefore rea-
sonable to think of morphological paradigms as
having a string-based hierarchical structure, where
paradigms more similar to one another by the in-
flectional patterns cluster together. Haspelmath and
Sims (2010) explore just this idea using data from
Greek nouns and demonstrate how inflection classes
can be modeled as a problem of clustering, though
their work appears to be based purely on the hu-
man linguist’s intuition and is not computationally
implemented. This thesis proposes a string-based
hierarchical clustering algorithm (with morpholog-
ical paradigms as the objects of interest to cluster)

for modeling paradigm similarity, which is (i) built
on results of stem identification from section 2 and
(ii) useful for further computational tasks such as
paradigm generation.

There are multiple advantages of proposing a
clustering algorithm for morphological paradigms.
To the linguist, results of clustering paradigms can
be visualized, which will be helpful for the study of
inflectional structure of the morphology of less fa-
miliar languages (such as those based on fieldwork
data). For computational linguistics and natural lan-
guage processing, clustering provides a similarity
measure that is useful for inducing unobserved word
forms of incomplete morphological paradigms.

The proposed algorithm performs agglomerative
hierarchical clustering on a given list of morpholog-
ical paradigms. It involves stem identification (sec-
tion 2) that determines the non-stem material in the
word forms of each paradigm. The distance metric
measures similarity among the paradigms by com-
paring non-stem material, which forms the basis of
the distance matrix for hierarchical clustering.

Preliminary work (Lee 2014) suggests that clus-
tering morphological paradigms gives desirable re-
sults. To illustrate, Figure 1 shows the clustering re-
sults of our algorithm under development for several
English verbal paradigms (by orthography). For rea-
sons of space, the results of only ten English verbs
are discussed here; see Lee (2014) for details.

jump walk
move love push touch

try cry buy seek

Figure 1: Simplified clustering results for a few English
verbal paradigms, each represented by the infinitive form

In Figure 1, the two largest clusters of verbs are
the one with more regular morphology on the left
(JUMP, WALK, MOVE, LOVE, PUSH, TOUCH) and
the other on the right with verbs of more drastic in-
flectional/orthographic alternations (TRY, CRY with
the i∼y alternation, and BUY, SEEK with -ght in
past tense). The smaller clusters among the regu-
lar verbs are due to the form for third person sin-
gular in present tense (PUSH, TOUCH with an addi-
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tional ‘e’) and the verb-final ‘e’ (MOVE, LOVE with
‘e’ dropped for the -ing form). This example shows
that clustering morphological paradigms provides a
much more fine-grained characterization of inflec-
tion classes, which are usually described in non-
hierarchical terms in linguistics.

An open question here is how to evaluate the re-
sults of clustering morphological paradigms. The
major issue is that morphological paradigms are usu-
ally not hierarchically represented in standard de-
scriptions, thereby making it unclear what the gold
standard could be. One possibility is that the learned
inflection classes (based on clusters of paradigms)
be compared to those in standard grammatical de-
scriptions of the language in question. Alternatively,
the results can be evaluated indirectly by what the in-
duced structure should facilitate, namely paradigm
generation; this also evaluates stem identification in
section 2. Datasets of paradigm tables for languages
with inflection classes (English, Greek, Spanish, etc)
come from standard sources such as Wiktionary.
Paradigm generation takes a paradigm table with
held-out words for some paradigms, and the goal is
to recover the missing words using (i) stems com-
puted based on the available words in the respective
paradigms (section 2) and (ii) non-stem material as
predicted based on the cross-paradigmatic cluster in-
formation (this section).

4 Induction of morphological paradigms
from unstructured data

The discussion so far has assumed that a list of mor-
phological paradigms are available for the study of
structure within (section 2) and across (section 3)
paradigms. While this is a common practice in the
cognitive and computational modeling of morpho-
logical paradigms (Albright and Hayes 2002, Dur-
rett and DeNero 2013), it is legitimate to ask where
a list of morphological paradigms come from in the
first place. This part of the thesis attempts to provide
an answer to this question. Building on previous
work on unsupervised paradigm induction, this the-
sis will propose a language-independent, incremen-
tal paradigm learning system that induces paradigms
with child-directed speech data as the input.

4.1 Incremental paradigm induction

The unsupervised learning of morphological
paradigms has attracted a lot of interest in compu-
tational linguistics and natural language processing
(Goldsmith 2001, Schone and Jurafsky 2001, Chan
2006, Creutz and Lagus 2005, Monson 2009,
Dreyer and Eisner 2011, Ahlberg et al. 2014). Vir-
tually all previous work proposes a batch algorithm
of paradigm induction, rather than an online and
incremental learner, that takes some raw text as the
input data. This is probably cognitively implausible,
because a human child does not have access to all
input data at once. This thesis proposes an incre-
mental paradigm induction system to fill this gap
of the relative lack of work on the incremental and
unsupervised learning of morphological paradigms.

As a starting point, the proposed paradigm induc-
tion system will use one akin to Linguistica (Gold-
smith 2001) and adapt it as an incremental version.
The choice of a system like Linguistica as the point
of departure is justified, because the goal here is
to induce morphological paradigms from unstruc-
tured data but not necessarily morpheme segmenta-
tion (accomplished by other systems such as Mor-
fessor (Creutz and Lagus 2005) that focus strongly
on morphologically rich languages such as Finnish
and Turkish). Linguistica induces paradigms by
finding the optimal cut between a stem and an affix
across words that could enter into paradigmatic rela-
tions, and does not perform further morpheme seg-
mentation. A characteristic of Linguistica that will
be modified in this thesis is that of stem identifica-
tion: as it currently stands, it assumes (i) strictly con-
catenative morphology (i.e., stem as maximal com-
mon substring), and (ii) knowledge of whether the
language under investigation is suffixing or prefix-
ing. In line with the general goal of coming up with
language-independent algorithms to handle natural
language morphology, we will make use of the re-
sults from section 2 on stem identification for lan-
guages of diverse morphological types.

The input data will child-directed speech from
CHILDES (MacWhinney 2000) for North Ameri-
can English. Specifically, we will be using a dataset
of four million word tokens compiled from child-
directed speech data of age range from a few months
old to 12 years old. The proposed algorithm will
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make use of the temporal information of the child-
directed speech and read the data in small and
chronologically ordered chunks. As such, this incre-
mental version of Linguistica models child language
acquisition, and the results will be of much interest
to linguists. For evaluation, research on the child
acquisition of English morphology (Cazden 1968,
Brown 1973) provides the gold standard informa-
tion on the order of acquisition of major morpho-
logical patterns (plurals acquired before possessives,
present progressives acquired before pasts, etc).

4.2 Collapsing paradigms of different
inflection classes

A recurrent problem in unsupervised learning of
morphological paradigms is that certain induced
morphological paradigmatic patterns may appear in-
complete (due to unobserved word forms) or dis-
tinct on the surface (due to inflection classes), but
should intuitively be collapsed in some way (Gold-
smith 2009). For inflection classes, for instance, En-
glish verbs display a regular morphological pattern
as in Ø-s-ed-ing (e.g., for JUMP), but there is also
a very similar—but distinct—pattern, with e-es-ed-
ing (e.g., for MOVE with the silent ‘e’); this English
example is by orthography, but is analogous to Span-
ish verbs with inflection classes discussed above.
Ideally, it would be desirable to collapse morpho-
logical patterns, e.g., the two English morphologi-
cal patterns just mentioned as belonging to the ver-
bal category and with the correct morphosyntactic
alignment for the suffixes across the two patterns.
Previous work either ignores this issue and treats the
distinct surface patterns as is (e.g., Goldsmith 2001)
or attempts to collapse morphological patterns (e.g.,
Chan 2006, with the assumption of part-of-speech
tags being available).

This thesis will explore the possibility of collaps-
ing paradigms of different inflection classes with
no annotations (e.g., part-of-speech tags) in the in-
put data. Some sort of syntactic information will
have to be induced and combined with the induced
morphological knowledge, in the spirit of previous
work such as Higgins (2002) and Clark (2003). We
are currently using graph-theoretical approaches to
the unsupervised learning of syntactic categories.
Based on Goldsmith and Wang’s (2012) proposal of
the word manifold, a given corpus is modeled as a

graph, where the nodes are the words and the edges
connect words that are distributionally similar based
on n-grams from the corpus. The resulting graph has
distributionally (and therefore syntactically) similar
words densely connected together, e.g., modal verbs
and infinitives in Figure 2. Various graph cluster-
ing algorithms are being explored for the purposes
of word category induction.

Figure 2: A zoomed-in image of clusters of modal verbs
and infinitives in a 1,000-word graph

5 Contributions

This thesis will contribute to both the unsupervised
learning of natural language morphology as well
as bringing theoretical linguistics and computational
linguistics closer together.

On the unsupervised learning of natural language
morphology, this thesis explores structure within
and across morphological paradigms and proposes
algorithms for adducing such structure given a list
of morphological paradigms. Furthermore, we also
ask how an unsupervised learning system can in-
duce morphological paradigms from child-directed
speech, an area much less researched than previous
work on non-incremental and batch algorithms for
paradigm induction.

As for bridging theoretical linguistics and com-
putational linguistics, this thesis represents a seri-
ous attempt to do linguistics that is theoretically in-
formed from the linguist’s perspective and is compu-
tationally rigorous for implementation. Using natu-
ral language morphology as an example, this the-
sis shows the value of reproducible, accessible, and
extensible research from the computational commu-
nity that will benefit theoretical linguistics.
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