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Abstract

This paper suggests an architectural approach
of representing knowledge graph for complex
question-answering. There are four kinds of
entity relations added to our knowledge graph:
syntactic dependencies, semantic role labels,
named entities, and coreference links, which
can be effectively applied to answer complex
questions. As a proof of concept, we demon-
strate how our knowledge graph can be used
to solve complex questions such as arithmetics.
Our experiment shows a promising result on
solving arithmetic questions, achieving the 3-
folds cross-validation score of 71.75%.

1 Introduction

Question-answering has lately gained lots of interest
from both academic and industrial research. Services
such as Yahoo! Answers1 or Quora2 provide plat-
forms for their users to ask questions to one another;
however, answer accuracy or response rate of these
services strongly depends on the users’ willingness
of sharing their knowledge, which is not always con-
sistent. This kind of inconsistency has led many re-
searchers to focus on developing question-answering
systems that retrieve, analyze, and answer questions
without much human engagement.

Although the task of question-answering has been
been well-explored, several challenges still remain.
One of such challenges concerns about architectural
aspects of meaning representation. Thanks to years
of research on statistical parsing, several tools are

1https://answers.yahoo.com
2https://www.quora.com

already available that provide rich syntactic and se-
mantic structures from texts. Output of these tools,
however, often needs to be post-processed into more
complicated structures, such as graphs of knowledge,
in order to retrieve answers for complex questions.
These graphs consist of relations between entities
found not only within a sentence, but also across
sentences. Vertices and edges in these graphs repre-
sent linguistic units (e.g., words, phrases) and their
syntactic or semantic relations, respectively.

Robustness of handling several types of questions
is one of the key aspects about a question-answering
system; yet most of previous work had focused on
answering simple factoid questions (Yao et al., 2013;
Yih et al., 2013). Recently, researchers started fo-
cusing on solving complex questions involving arith-
metics or biological processes (Hosseini et al., 2014;
Berant et al., 2014). A complex question can be de-
scribed as a question requiring the collection and syn-
thesis of information from multiple sentences (Chali
and Joty, 2008). The more complex the questions
become, the harder it is to build a structural model
that is general enough to capture information for all
different types of questions.

This paper suggests an architectural approach of
representing entity relations as well as its application
to complex question-answering. First, we present
a systematic way of building a graph by merging
four kinds of information: syntactic dependencies,
semantic role labels, named entities, and coreference
links, generated by existing tools (Section 3). We
then demonstrate, how our graph can be coupled with
statistical learning to solve complex questions such as
arithmetic, which requires understanding of the entire
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context (Section 4). Our experiments show that it is
possible to retrieve document-level entity relations
through our graph, providing enough information to
handle such complex questions (Section 5).

2 Related Work

Punyakanok et al. (2004) presented a system using
edit distance between question and potential answer
pairs, measured by the number of required trans-
formations of their dependency trees. Heilman and
Smith (2010) presented a more sophisticated system
finding the most efficient tree transformation using a
greedy search. Cui et al. (2005) proposed a system
utilizing fuzzy relation matching guided by statisti-
cal models. Yao et al. (2013) described an approach
taking both an edit distance and sequence tagging for
selecting finer-grained answers within answer candi-
dates. All the work above leverages dependency tree
matching similar to ours; however, our approach per-
forms matching through semantic relations as well
as coreference links, and also is designed for han-
dling complex questions whereas the others mainly
focused on factoid questions.

Kushman et al. (2014) described an approach for
predicting sentence-to-equation alignments for solv-
ing arithmetic questions. Hosseini et al. (2014) pre-
sented a system predicting verb categories, and con-
structing equations from the context using these cat-
egories. Berant et al. (2014) proposed an approach
that extracted structures from biological processes,
and mapped each question to a query form. Our
work is related to the first two work; however, it is
distinguished in a way that our constructed graph is
not designed to handle just arithmetic questions, but
complex questions in general.

Our work is also related to research of aligning text
into a set of entities and instances describing states
of the world. Snyder and Barzilay (2007) presented
an approach for solving text-to-database alignment
as a structured multi-label classification. Vogel and
Jurafsky (2010) presented a learning system that fol-
lowed navigational paths based on natural language
by utilizing apprenticeship from directions on the
map paired with human language. Chambers and Ju-
rafsky (2009) presented an unsupervised learning sys-
tem for narrative schemas based on coreferent argu-
ments in chains of verbs. Pourdamghani et al. (2014)

and Pan et al. (2015) presented Abstract Meaning
Representation (AMR) consisting of multi-layered
relations for English sentences. Our semantics-based
graph shares a similar idea with AMR; however, our
graph is constructed from existing structures such as
dependency trees and semantic roles, whereas AMR
requires its won annotation, which could be manual
intensive work for building statical parsing models.

3 Semantics-based Knowledge Approach

3.1 Motivation

Our motivation arises from both the complexity and
the variety of questions and their relevant contexts.
The complexity concerns with exploiting syntactic
dependencies, semantic role labels, named entities,
and coreference links all together for finding the best
answers. For arithmetic questions, such complex-
ity comes from the flow of entity relations across
sentences and semantic polarities of verb predicates,
which are required to transform the contexts in natu-
ral language into mathematical equations.

The variety concerns with robustly handling var-
ious types of questions. It is relatively easier to de-
velop an architecture designated to handle just one
type of questions (e.g., a system to extract answers
for factoid questions) than many different types of
questions (e.g., opinions, recommendations, com-
mentaries). In this section, we present a semantic-
based knowledge approach (constructed graph) that
not only conveys relations from different layers or
linguistic theories, but also is effective for finding
answers for various types of questions.

3.2 Components

Given a document, our system first parses each sen-
tences into a dependency tree, then finds predicate-
argument structures on top of the dependency tree.
Once sentences are parsed, coreference links are
found for nodes across all trees. Finally, each depen-
dency node gets turned into an instance, which can be
linked to other related instances. Multiple instances
can be grouped together as an entity if they are coref-
erent. Our graph is semantically driven because se-
mantic predicate-argument relations take precedence
over syntactic dependencies when both exist.
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Figure 1: Example of our semantic-based graph given three sentences:
John bough a new car, The car was black SUV, and He sold his old car yesterday.

Document
A document contains a graph consisting of a set of en-
tities, instances, and relations between the instances
(Figure 1). A document can be small as a microblog
or big as the entire Wikipedia articles.

Entity
An entity can be described as a set of instances refer-
ring to the same object mostly found through corefer-
ence resolution. In Figure 1, although John, He, and
his are recognized as individual instances, they are
grouped into one entity because they all refer to John.
Maintaining these relations is crucial for answering
complex questions.

Instance
An instance is the atomic-level object in our graph
that usually represents a word-token, but can also
represent compound words (e.g., New York), multi-
word expressions, etc. The instance is linked to other
instances as a predicate, an argument, or an attribute.

Predicate & Argument
An instance is a predicate of another instance if it
forms any argument structure (Palmer et al., 2005).
Currently, our graph takes non-auxiliary verbs and
a few eventive nouns as predicates provided by a
semantic role labeler. An instance is an argument
of another if it is required to complete the meaning

of the other instance. In Figure 1, John and car are
arguments of bought because they are necessary to
give an understanding of bought. We plan to improve
these relations through semantic parsing in the future.

The predicate and argument relations represent
both semantic and syntactic relations between in-
stances in the document. Semantic role labels in
(Palmer et al., 2005) and dependency labels in (Choi
and Palmer, 2012) are used to represent semantic and
syntactic relations in our graph. Our experiments
show that these relations play a crucial role in an-
swering arithmetic questions (Section 5).

Attribute

An instance is an attribute of another if it is not an
argument but gives extra information about the other
instance. While an argument completes the meaning
of its predicate, an attribute augments the meaning
with specific information. In Figure 1, new is not
an argument but an attribute of car because this in-
formation is not required for understanding car, but
provides finer-grained information about the car.

Attributes can be shared among instances within
the same entity. In Figure 1, the attributes new and
black are shared between instances car and the car.
This is particularly useful for questions requiring in-
formation scattered across sentences. Table 1 shows
the types of attributes that we have specified so far.
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This list will be continuously updated as we add more
question types to our system.

Type Description
Locative Geographical or relative location in-

formation (e.g., New York, near my
house).

Temporal Absolute or relative temporal in-
formation (e.g., tomorrow noon, 2
years ago).

Possessive Possessor of this instance (e.g., his,
of Mary).

Quantity Absolute or relative quantity infor-
mation (e.g., two books, few books).

Quality Every other kind of attributes.

Table 1: List of attributes used in our graph.

3.3 Graph construction

Algorithm 1 shows a pseudo-code for constructing
our graph given a dependency tree, consisting of syn-
tactic and semantic relations, and coreference links.

Input: D: a dependency tree,
C: a set of coreference links.

Output: G: Graph.
foreach node N in D do

if N .skip() then
continue;

else if N .isArgument() then
P ← N .getPredicate();
L← N .getArgumentLabel();
G.addArgument(P , N , L);

else if N .isAttribute() then
A← N .getAttributeHead();
L← N .getAttributeType();
G.addAttribute(A, N , L);

else
H ← N .getSyntacticHead();
L← N .getSyntacticLabel();
G.addArgument(H , N , L);

end
if C.hasEntityFor(N ) then

E ← C.getEntityFor(N )
G.addToEntity(E, N );

end
Algorithm 1: Graph constructing algorithm.

Every node in the dependency tree has exactly one
syntactic head and can be a semantic argument of
zero to many predicates. For each node, it first checks
if this node should be added to the graph (i.g., aux-
iliary verbs are not added). If it should, it checks
it is a semantic argument of some predicate. If not,
it checks if it is an attribute of some instance. By
default, it becomes an argument of its syntactic head.
Finally, it gets added to an entity if it is coreferent
to some other instance. Moreover, our graph is also
designed to support weights of vertices and edges.
Now, we assign a value of 1 as a weight for every
element, but we plan to extend our work by determin-
ing the importance of different weights for specific
semantic relations. We believe that an intelligent
weighting system will improve the overall accuracy
of the system by enhancing the matching process.

4 Case Study

4.1 Arithmetic questions

This section demonstrates our approach to the appli-
cation of complex question-answering, targeted on
arithmetic questions. The purpose of this section is
to show a proof of concept that our graph can be
effectively applied to answer such questions. For
our experiments, we take a set of arithmetic ques-
tions used for elementary and middle school students.
These questions consist of simple arithmetic opera-
tions such as addition and subtraction. Table 2 shows
a sample of these questions.

The main challenge of this task is mostly related
to the contiguous representation of state changes.
The question at the end concerns about either the
start state, the transitions, or the end state of a spe-
cific theme (e.g., pizza, kitten). Therefore, simplis-
tic string matching approaches, which would have
worked well on factoid questions, would not perform
well on this type of questions. Another challenge
is found by coreference mentions in these questions.
Arithmetic questions generally consist of multiple
sentences such that coreference resolution plays a
crucial role for getting high accuracy. These issues
are further discussed in Section 5.4.

4.2 Verb polarity sequence classification

We turn the task of arithmetic question-answering
into a sequence classification of verb polarities. We

143



Knowledge Graph

Verb filtering

P1 P2 P4

v2v1

x = P1*I1 + P2*I2 + … + Pn*In

vn…
f0 fm… f0 fm… f0 fm…

…

(a) Flow of execution in our system for solving arithmetic
questions. First, the verb filtering process is applied to
select verbs in all sentences (Vi), which share the same
semantic argument with the question. Given the selected
verbs, their features (fi) are extracted and the polarities (Pi)
are predicted by a statistical model. Finally, the equation X
is formed, where polarities are multiplied by the quantities
of the arguments.

31 24+ x=

Sara has 31 red and 15 green balloons. 
Sandy has 24 red balloons. 

How many red balloons do they have 
in total? 

+ 
has 
31 
red 

ballons

0 
has 
15 

green 
ballons

+ 
has 
24 
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? 
has 

red 
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(b) Flow of execution for the example document. First,
verbs are filtered and selected for the polarity selection.
Next, all necessary information (numericals, themes etc.) is
collected and organized into states. Finally, based on the
verbs polarity, equation is being formed.

Figure 2: Flow of execution in general (a) and for an example document (b).

believe the verbs need to be classified in sequence
because the same verb can convey different polarities
in different contexts. Three types of verb polarities
are used: +, -, and 0. Given the list of sentences
in each question and the equation associated with
it (Table 2), we map each verb with its polarity by
comparing their quantities. ‘+’ and ‘-’ are assigned
to verbs whose arguments show a plus sign or a minus
sign in the equation, respectively. ‘0’ is assigned to
verbs whose arguments do not appear in the equation.
This information is used to build a statistical model,
which is used for decoding.

Arithmetic questions often contain verbs whose
arguments are not relevant to the final question. For
instance, in “Jason has 43 blue and 16 red marbles.
Tom has 24 blue marbles. How many blue marbles
do they have in all?”, “16 red marbles” is more like a
noise to answer this question. Our approach classifies
such verbs as 0 so that they do not participate into
the final equation. Once the equation is form, it is
trivial to solve the problem using simple algebra.

Our approach is distinguished from some of the
previous work where each verb is categorized into
multiple classes (Hosseini et al., 2014) in a sense that
our verb classes are automatically derived from the
equations (no extra annotation is needed). Further-

more, our approach can be extended to more compli-
cated operations such as multiplication and division
as long as the correct equations are provided. The
dataset used in Kushman et al. (2014) contains this
type of questions and we plan to apply our approach
on this dataset as the future work.

Question Equation
A restaurant served 9 pizzas x = 9 + 6
during lunch and 6 during dinner
today. How many pizzas were
served today?
Tim’s cat had kittens. He gave 3 x = 3 + 6 + 9
to Jessica and 6 to Sara. He now
has 9 kittens. How many kittens
did he have to start with?

Table 2: Sample of arithmetic questions.

5 Experiments

5.1 Data

For our experiments, we use the arithmetic dataset
provided by the Allen Institute.3 The dataset con-
sists of 395 arithmetic questions together with their

3allenai.org/content/data/
arithmeticquestions.pdf
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equations and answers. We parsed all data using
the dependency parser, the semantic role labeler, the
named entity tagger, and the coreference resolution in
ClearNLP (Choi and McCallum, 2013; Choi, 2012).4

We then split the dataset into 3-folds for cross valida-
tion in a way that the polarity distributions are similar
across different sets (Table 3).

5.2 Features

The following features are used for our experiments:

• Semantic role labels; especially numbered argu-
ments as in PropBank (Palmer et al., 2005).
• Sequence of verbs and arguments whose seman-

tic roles are recognized as ‘themes’.
• Frequency of verbs and theme arguments in the

current context.
• Similarity between verbs and theme arguments

across sentences.
• Distance of the verb to the final question.

Given our graph, it was trivial to extract all features.

5.3 Machine learning

To build statistical models, we use a stochastic adap-
tive subgradient algorithm called ADAGRAD that
uses per-coordinate learning rates to exploit rarely
seen features while remaining scalable (Duchi et al.,
2011). This is suitable for NLP tasks where rarely
seen features often play an important role and train-
ing data consists of a large number of instances with
high dimensional features. We use the implementa-
tion of ADAGRAD in ClearNLP using the hinge-loss,
and take their default hyper-parameters (learning rate:
a = 0.01, termination criterion: r = 0.1).

5.4 Evaluation

Table 3 shows the distributions of each fold and the
accuracy of our system in answering arithmetic ques-
tions. Our cross-validation score is 71.75%, which
is promising given how complex these questions are.
Hosseini et al. (2014) were able to achieve 77.7% ac-
curacy on the same dataset, which is higher than our
result. However, our main goal for these experiments
remains as to prove that our graph can be utilized to
answer complex questions.

4http://www.clearnlp.com

We also analyzed errors found in our experiment. The
majority of errors were caused by errors from depen-
dency parsing, semantic role labeling, or coreference
resolution. For instance, verbs are not recognized
correctly in some dependency trees, which becomes
a major factor of decreasing accuracy. Also, seman-
tic role labels sometimes were incorrectly assigned,
which extremely influenced the accuracy of our sys-
tem. As mentioned earlier, coreference resolution
remains as one of the main challenges in handling
complex questions. We will explore ways of im-
proving these NLP tools, hoping to achieve higher
accuracy for answering complex questions.

1st fold 2nd fold 3rd fold
# of questions 118 118 118

# of verbs 418 423 420
# of + verbs 326 330 328
# of - verbs 51 51 51
# of 0 verbs 41 42 41

Accuracy 67.80 76.27 71.19

Table 3: Distributions and accuracies of all folds.

6 Conclusion and future work

This paper presents semantics-based knowledge ap-
proach for answering different types of complex
questions. As a proof of concept, we demonstrate
the application of our graph for arithmetic question-
answering. By using the grounded knowledge in our
graph, our system was able to extract appropriate
features and build a statistical model for recogniz-
ing verb polarities that effectively solved arithmetic
questions. Our system shows a promising result for
answering arithmetic questions. Although we view
the problem of solving arithmetic questions as a sig-
nificant step towards complex question-answering,
numerous challenges still remain, not only in the
sub-domain of arithmetic questions, but also in other
types of complex questions.

In the future, we plan to extend our work by explor-
ing new features for the statistical model. Also, we
plan to make improvement in dependency parsing,
semantic role labeling, and coreference resolution
through error analysis of our question-answering sys-
tem. Finally, we will try to apply our knowledge
approach to other types of complex questions.
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