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Abstract

This work presents a flexible and efficient
discriminative training approach for statisti-
cal machine translation. We propose to use
the RPROP algorithm for optimizing a max-
imum expected BLEU objective and experi-
mentally compare it to several other updat-
ing schemes. It proves to be more effi-
cient and effective than the previously pro-
posed growth transformation technique and
also yields better results than stochastic gra-
dient descent and AdaGrad. We also report
strong empirical results on two large scale
tasks, namely BOLT Chinese→English and
WMT German→English, where our final sys-
tems outperform results reported by Setiawan
and Zhou (2013) and on matrix.statmt.org. On
the WMT task, discriminative training is per-
formed on the full training data of 4M sen-
tence pairs, which is unsurpassed in the litera-
ture.

1 Introduction

The main advantage of learning parameters in a dis-
criminative fashion is the possibility to directly opti-
mize towards a quality or error measure on the task
that is being performed. This stands in contrast to
the generative approach, where parameters are cho-
sen to maximize likelihood under a generative story,
which often bears little correspondence with the ac-
tual application of the model.

In statistical machine translation (SMT), ex-
tending the generative noisy-channel formulation
(Brown et al., 1993) as a discriminative, log-linear

combination of multiple models (Och, 2003) has be-
come the state of the art. However, most of the
component models are still estimated by heuristics
or generative training. In this paper, a flexible, effi-
cient and easy to implement discriminative training
scheme for SMT is presented. It can be applied to
any kind and any number of features. We use the
RPROP algorithm to optimize a maximum expected
BLEU objective. n-best lists approximate the infea-
sibly large space of translation hypotheses. They are
generated with the application of leave-one-out to
make them more representative with respect to un-
seen data.

We make the following main contributions:

1. We propose to apply the RPROP algorithm
for maximum expected BLEU training and per-
form an experimental comparison with growth
transformation (GT) (He and Deng, 2012;
Setiawan and Zhou, 2013), stochastic gradi-
ent descent (Auli et al., 2014) and AdaGrad
(Green et al., 2013). RPROP yields supe-
rior performance, reaching a total improve-
ment of 1.2 BLEU points over our IWSLT
German→English baseline using 5.22M fea-
tures.

2. In terms of time and memory efficiency,
RPROP clearly outperforms GT. The latter
needs to update a much larger number of fea-
tures due to its renormalization component. On
the IWSLT data, RPROP is 6.4 times faster than
GT and requires a third of the memory.

3. On the WMT German→English task, we per-
form discriminative training on 4M sentence
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pairs, which, to the best of our knowledge, is
2.4 times the size of the largest training set re-
ported in previous work (1.66M sentences in
(Simianer et al., 2012)). This proves the scala-
bility of our approach.

4. On two large scale tasks our experiments
show good improvements over strong base-
lines which include recurrent language mod-
eling components. On the Chinese→English
DARPA BOLT task, we achieve nearly twice
the improvement reported in (Setiawan and
Zhou, 2013) on the same test sets which re-
sults in a superior final system. Finally, the best
single system reported on matrix.statmt.org is
outperformed by 0.8 BLEU points on the WMT
German→English newstest2013 set.

Our experiments also prove that leave-one-out im-
pacts translation quality.

This paper is organized as follows. We review re-
lated work in Section 2 and present the translation
system in Section 3. In Section 4 we describe the
different discriminative update strategies applied in
this work and Section 5 derives the complete max-
imum expected BLEU training algorithm. Finally,
experimental results are given in Section 6 and we
conclude with Section 7.

2 Related Work

Discriminative training is one of the most active re-
search areas in SMT and it can be integrated into the
pipeline at various stages.

Och (2003) proposed to apply minimum error rate
training (MERT) to optimize the different feature
weights in the log-linear model combination on a
small development data set. This is still considered
to be the state of the art, but is only capable of opti-
mizing a handful of features. More recently, MIRA
(Watanabe et al., 2007; Chiang et al., 2008) and PRO
(Hopkins and May, 2011) have been presented as
optimization procedures that can replace MERT and
scale to thousands of parameters.

In a different line of work, Liang et al. (2006) de-
scribe a fully discriminative training pipeline, where
more than one million features are tuned on the
training data using a perceptron-style update algo-
rithm. The Direct Translation Model 2 introduced

by Ittycheriah and Roukos (2007) is similar in that
it also trains millions of features on the training
data. However, the weights are estimated based on a
maximum entropy model and the underlying trans-
lation paradigm differs from the standard phrase-
based model. Gao and He (2013) use gradient as-
cent to train Markov random field models for phrase
translation. These models are interpreted as undi-
rected phrase compatibility scores rather than trans-
lation probabilities. Thus, as in our work, they are
not subject to a sum-to-one constraint. Simianer et
al. (2012) propose a distributed setup for large-scale
discriminative training with joint feature selection.
The training corpus is divided into several shards,
on which features are updated via perceptron-style
gradient descent. The authors present results show-
ing that training on large data sets improves results
over just using a small development corpus. Another
approach based on the AdaGrad method that scales
to large numbers of sparse features is proposed in
(Green et al., 2013; Green et al., 2014). Different
from our work, the authors use either the tuning sets
or a small subsample of the training data (15k sen-
tences) for discriminative training.

A notably different idea is pursued by Yu et al.
(2013), who present a large-scale training proce-
dure that explicitly minimizes search errors. This is
achieved by force-decoding the training data and up-
dating at the point where the correct derivation drops
off the beam.

In (Blunsom et al., 2008), conditional random
fields (CRFs) are trained within a hierarchical
phrase-based translation framework. The hierar-
chical phrase-based paradigm is used to model the
search space in model estimation and search, leav-
ing the hypothesis weighting to CRF features. They
constrain search by a beam width for gradient es-
timation and update the model with the help of L-
BFGS. In a similar way Lavergne et al. (2011) use
the n-gram based approach (Casacuberta and Vidal,
2004; Mariño et al., 2006) to model the reordering,
phrase alignment, and the language model. A CRF
is applied to estimate the phrase weights. Model up-
dates are carried out by the RPROP algorithm (Ried-
miller and Braun, 1993). However, both approaches
only improve over constrained baselines.

Our work is inspired by (He and Deng, 2012; Seti-
awan and Zhou, 2013), where the authors propose to
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train the standard phrasal and lexical channel mod-
els with the growth transformation (GT) algorithm.
They use n-best lists on the training data and op-
timize a maximum expected BLEU objective, that
provides a clear training criterion, which is missing
e.g. in MIRA estimation. Auli et al. (2014) report
good results by applying the same objective func-
tion to reordering features, which are trained with
stochastic gradient descent (SGD).

Our work differs in several key aspects: (i)
We propose to apply the RPROP algorithm, which
yields superior results to GT, SGD and AdaGrad in
our experimental comparison. (ii) For the first time,
we apply maximum expected BLEU training on a
data set as large as four million sentence pairs. (iii)
We apply a leave-one-out heuristic (Wuebker et al.,
2010) to make better use of the training data. (iv)
We apply phrasal, lexical, reordering and triplet fea-
tures. (v) Finally, we do not run MERT after each
training iteration, which is expensive for large trans-
lation systems.

3 Statistical Translation System

Our work can be applied to any statistical machine
translation paradigm and we will present results on
a standard phrase-based translation system (Koehn
et al., 2003) and a hierarchical phrase-based trans-
lation system (Chiang, 2005). The translation pro-
cess is implemented as a weighted log-linear com-
bination of several models hm,Θ(E,F ), where E =
e1, . . . , eI denotes the translation hypothesis, F =
f1, . . . , fJ the source sentence, m a model index,
and Θ the model parameters. These models include
the phrase translation and lexical smoothing scores
in both directions, language model (LM) score, dis-
tortion penalty, word penalty and phrase penalty
(Och and Ney, 2004). Given a source sentence F ,
the models hm,Θ(E,F ) and the corresponding log-
linear feature weights λm, the translation decoder
searches for the best scoring translation Ê:

Ê = arg max
E

{fΘ(E,F )} (1)

fΘ(E,F ) =
∑
m∈M

λmhm,Θ(E,F ) (2)

where . . . , λm, . . . are the model weighting param-
eters. In practice, the Viterbi approximation is ap-

plied and for simplicity, in the following we will as-
sume the particular derivation for a translation hy-
pothesis to be included in the variable E. The log-
linear feature weights are optimized with minimum
error rate training (MERT) (Och, 2003).

4 Update Strategies

4.1 Previously Proposed Algorithms
The Growth Transformation (GT) or Extended
Baum-Welch Algorithm was proposed by He and
Deng (2012) for maximum expected BLEU training
of the standard phrasal and lexical channel models.
It is an algorithm to iteratively optimize polynomials
of random variables that are subject to sum-to-one
contraints and is therefore suitable for training prob-
ability distributions. The disadvantage is that each
parameter update requires a renormalization step,
which artificially blows up the number of features
that need to be changed and has a significant impact
on time and memory efficiency. The update formu-
las are derived in (He and Deng, 2012).

Stochastic Gradient Descent (SGD) is a well-
known and frequently applied training scheme,
which is used for maximum expected BLEU train-
ing of reordering models by (Auli et al., 2014). It
performs the following update:

ϑ(t+1) = ϑ(t) + η · ∇(t)
ϑ (3)

Here, the disadvantage is its high sensitivity to the
fixed learning rate η. However, as it does not subject
the features to sum-to-one-contraints, it is consider-
ably more time and memory efficient than GT.

As an improvement to SGD, AdaGrad (Duchi et
al., 2011) is designed for large, sparse feature sets
and makes use of an adaptive learning rate. It was
proposed for MT training by (Green et al., 2013).
Although its main area of application are online al-
gorithms, it is also applicable in our offline setting
and is more robust than SGD due to the adaptive
learning rate. Following (Green et al., 2013), we ap-
ply the approximation with a diagonal outer product
matrix, which is computationally cheap. This results
in the update equations

ϑ(t+1) = ϑ(t) + η ·G−
1
2

t · ∇(t)
ϑ (4)

Gt = Gt−1 + (∇(t)
ϑ )2 (5)
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4.2 RPROP
The resilient backpropagation algorithm (RPROP)
proposed by Riedmiller and Braun (1993) is a
gradient-based optimization algorithm that emprir-
ically learns the step size without taking the slope
into account, making it highly robust and avoiding
the need for a learning rate. If the gradient switches
algebraic sign compared to the previous iteration,
the last step is reverted and the step size reduced. If
the sign remains the same, the step size is increased.
Formally, given a set of parameters Θ and an ob-
jective function O(Θ), in iteration t each parameter
ϑ ∈ Θ is updated according to

ϑ(t+1) =


ϑ(t−1) , if ∇(t−1)

ϑ · ∇(t)
ϑ < 0

ϑ(t) + ∆ϑ(t) , else if ∇(t)
ϑ > 0

ϑ(t) −∆ϑ(t) , else if ∇(t)
ϑ < 0

ϑ(t) , else

where∇(t)
ϑ := δO(Θ(t))

δϑ denotes the derivative of the
objective function. The step size ∆ϑ(t) > 0 grows
or decreases depending on the sign of the gradient:

∆ϑ(t) =


η+ ·∆ϑ(t−1) , if ∇(t−1)

ϑ · ∇(t)
ϑ > 0

η− ·∆ϑ(t−1) , if ∇(t−1)
ϑ · ∇(t)

ϑ < 0
∆ϑ(t−1) , else

The strength parameters 0 < η− < 1 ≤ η+ usually
have little impact and are fixed to η− = 0.5 and
η+ = 1.2 throughout this work. The RPROP algo-
rithm is simple and easy to implement. It has proven
effective for a number of tasks, e.g. in (Wiesler et
al., 2013; Heigold et al., 2011; Lavergne et al., 2011;
Hahn et al., 2011). Different from growth transfor-
mation (cf. Sec. 4.1), it does not assume a proba-
bility distribution and performs its updates without
a sum-to-one constraint.

Compared to SGD and AdaGrad, RPROP’s prac-
tical advantage is the absence of a learning rate that
needs to be tuned. Further, we see its theoreti-
cal advantage in the empirically learned step size.
In the first iterations, RPROP’s updates are con-
siderably smaller than with the other strategies, re-
sulting in a more careful exploration of the search
space. In higher iterations, the update steps for
good features keep growing and we observe an ex-
ponential increase of the objective function. In con-
trast, GT, SGD, and AdaGrad determine the size of

their update step based on the slope of the gradient,
which we believe to be misleading given the com-
plex topology of the feature space in MT.

5 Training

5.1 Maximum Expected BLEU

Following (He and Deng, 2012), we want to opti-
mize a maximum expected BLEU objective. We de-
note the universe of possible sentences in the source
language as F and in the target language as E. The
expected BLEU score under parameter set Θ with
respect to the joint probability distribution pΘ(·, ·) is
defined as

〈β〉Θ =
∑
F∈F

∑
E∈E

pΘ(E,F )β(E) (6)

Here, β(E) is the BLEU score for target sentence E
(assuming the reference translation to be part of the
mapping β) and we use the notation 〈·〉 to denote
the expectation. Enumerating all possible source
and target sentences F , E is infeasible. Therefore,
we estimate the empirical expectation on a corpus
C ⊂ E × F. We denote the source sentences in C
as CF and the size of the corpus as N = |C|. The
joint probability pΘ(E,F ) is decomposed with the
help of the Bayes Theorem, resulting in:

〈β〉Θ =
∑
F∈CF

p(F )
∑

E∈EΘ(F )

pΘ(E|F )β(E) (7)

For p(F ) = NF
N we assume the empirical distri-

bution within the training corpus, where NF is the
count of sentence F . The summation over allE ∈ E
is sampled with a subset EΘ(F ) of the most likely
hypotheses with respect to the parameterized proba-
bility pΘ(E,F ), which in practice is an n-best list
generated by the decoder. Iterating over the cor-
pus C = {(E1, F1), . . . , (En, Fn), . . . , (EN , FN )}
finally results in

〈β〉Θ =
1
N

N∑
n=1

∑
E∈EΘ(Fn)

pΘ(E|Fn)β(E)

We use the same unclipped sentence-level BLEU-4
score with smoothed 3-gram and 4-gram precisions
as in (He and Deng, 2012), which we denote as
β(E) = BLEU(E,E∗n) with respect to the reference
translation E∗n.
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The normalized posterior translation probability
pΘ(E|F ) from source sentence F to target sentence
E approximates a maximum entropy model normal-
ized on sentence level:

pΘ(E|F ) =
e−fΘ(E,F )∑

E′∈EΘ(F ) e
−fΘ(E′,F )

(8)

The denominator of this probability does not depend
on the output sentence. Thus, the arg max of Equa-
tion 8 is equal to the arg max of the translation score
in Equation 1.

Maximum Entropy models tend to generalize
poorly, which can be circumvented by regulariza-
tion. He and Deng (2012) use Kullback-Leibler reg-
ularization, raising the need of having normalized
models hm,Θ(E,F ). We employ the more general
L2-regularization and the objective function is de-
fined as

O(Θ) = log〈β〉Θ − τ ·
∑
ϑ∈Θ

ϑ2 (9)

including the hyper parameter τ controlling the de-
gree of regularization. The derivative of the objec-
tive function, which is needed for the gradient-based
training methods, directly follows:

δO(Θ)
δϑ

= −τ · 2ϑ+
1
〈β〉Θ ·

δ〈β〉Θ
δϑ

(10)

With ∂hm,Θ(E,F )
∂ϑ = #ϑ(E,F ) the number of times

feature ϑ fires in the derivation for translation hy-
pothesis E given source sentence F , the deriva-
tive of pΘ(E|F ) is defined as (for ease of notation
EΘ(Fn) is represented by En)

∂pΘ(E|F )
∂ϑ

= −pΘ(E|F )· (11)(
#ϑ(E,F )−

∑
E′∈En

pΘ(E′|F )#ϑ(E′, F )
)

And the derivative of the expected BLEU is

δ〈β〉Θ
δϑ

=
1
N

N∑
n=1

∑
E∈En

β(E)
∂pΘ(E|Fn)

∂ϑ

= − 1
N

N∑
n=1

( ∑
E∈En

pΘ(E|F )β(E)#ϑ(E,F )

−
( ∑
E∈En

pΘ(E|F )β(E)
)
·

( ∑
E∈En

pΘ(E|F )#ϑ(E,F )
))

(12)

This can be more compactly expressed by local ex-
pectations 〈·〉n of the BLEU score and the feature
count #ϑ:

δ〈β〉Θ
δϑ

= − 1
N

N∑
n=1

(〈β#ϑ〉n − 〈β〉n〈#ϑ〉n)

In our implementation, #ϑ is moved to the front of
the equation to obtain common factors that can be
used by all parameter updates:

δ〈β〉Θ
δϑ

=
1
N

N∑
n=1

∑
E∈En

#ϑ(E,F )·

pΘ(E|F )(〈β〉n − β(E)) (13)

5.2 Leave-one-out
Although He and Deng (2012) claim that it is not
necessary, we apply a leave-one-out heuristic similar
to (Wuebker et al., 2010) when generating the n-best
lists on the training data. The authors have shown
this to effectively counteract over-fitting effects and
we argue that it helps to bring out the full potential
of our discriminative training procedure.

When we decode the training data of our transla-
tion model, very long and rare phrases can be used
to translate the sentence. The translation probabil-
ity for these phrases, which are often singletons,
are generally over-estimated by the heuristic count
model. When they are too dominant in the n-best
lists they effectively render the training data use-
less, as they are unlikely to generalize to unseen
data. The idea of leave-one-out is that for decoding
each sentence, the global counts of the relative fre-
quency estimates are reduced by the local counts ex-
tracted from the current sentence pair. This way, the
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above mentioned rare phrases are penalized and the
decoder is encouraged to use more general phrases
taken from the remainder of the training data. Sin-
gleton phrases are given a fixed penalty. In this
work, we apply leave-one-out with all update strate-
gies.

5.3 Features

Maximum expected BLEU training facilitates train-
ing of arbitrary features. In this work we apply four
types of features. (a) A discriminative phrase table,
i.e. one feature for each phrase pair. (b) Lexical fea-
tures, i.e. one feature for each source-target word
pair that appear within the same phrase. (c) Source
and target triplet features (Hasan et al., 2008), i.e.
triples of one source and two target words or one tar-
get and two source words appearing within a single
phrase pair. (d) The hierarchical lexicalized reorder-
ing model (Galley and Manning, 2008), i.e. one
feature for each combination of phrase pair, orienta-
tion (monotone (M), swap (S) or discontinuous (D))
and orientation direction (forward or backward). GT
is only applied with feature set (a), where we re-
estimate the two phrasal channel models as was done
in (He and Deng, 2012). With the other update algo-
rithms we follow the approach taken in (Auli et al.,
2014) and condense each feature type into a small
number of models for the log-linear combination,
which is afterwards tuned with MERT. (a) and (b)
result in a single additional model, (c) in two mod-
els (source and target triplets) and (d) in six models
({forward,backward}×{M,S,D}).

5.4 Efficient Implementation

The expected BLEU 〈β〉Θ is efficiently computed in
one iteration over the full n-best list. As can be
seen from Equation 13, the derivative δ〈β〉Θ

δϑ is ad-
ditive with respect to each firing instance of feature
ϑ in the n-best list. The additive factor only de-
pends on the current sentence pair. Therefore, for
each sentence of the training data we iterate through
its n-best list once to compute the expectation of the
sentence-level BLEU score 〈β〉n and then a second
time to update the current derivative for each time
the feature fires. The only thing that needs to be
kept in memory is a list of the current derivatives for
each parameter ϑ.

1. Create the baseline system and run MERT
2. Generate n-best list on training corpus
3. Compute sentence-level BLEU β(En)

for each hypothesis En in the list
4. Initialize parameters with ϑ = 0, ∀ϑ ∈ Θ
5. Iterate:

a) Compute the derivatives δO(Θ)
δϑ

b) Perform update and output Θ(t)

6. Run MERT on dev with each table Θ(t)

7. Select best Θ(t) on dev
8. Evaluate on test sets

Figure 1: The complete training algorithm.

5.5 Complete Training Algorithm

The complete training and evaluation procedure is
shown in Figure 1. We start by building a base-
line translation system with MERT-optimized model
weights λ. With the baseline system we generate n-
best lists on the training data. Now, for each trans-
lation hypothesis En of the n-best list, we compute
the sentence-level BLEU score β(En) and initialize
the parameter set for training with the count model.
Next, we run the training algorithm for a fixed num-
ber of iterations1 and output the updated feature val-
ues Θ(t) after each iteration t. Finally, we run MERT
with each Θ(t), select the best table on dev and eval-
uate on our test sets.

6 Experiments

6.1 Setup

The experiments are carried out on the IWSLT
2013 German→English shared translation task.2

For rapid experimentation, the translation model is
trained on the in-domain TED portion of the bilin-
gual data, which is also used for maximum expected
BLEU training. However, we use a large 4-gram LM
with modified Kneser-Ney smoothing (Kneser and
Ney, 1995; Chen and Goodman, 1998), trained with
the SRILM toolkit (Stolcke, 2002). As additional
data sources for the LM we use the complete News
Commentary, Europarl v7 and Common Crawl cor-
pora as well as selected parts of the Shuffled News

1Note that we keep the λ weights fixed throughout all itera-
tions of maximum expected BLEU training.

2http://www.iwslt2013.org
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IWSLT BOLT WMT
German English Chinese English German English

Sentences 138K 4.08M 4.09M
Run. Words 2.63M 2.70M 78.3M 85.9M 105M 104M
Vocabulary 75.4K 50.2K 384K 817K 659K 649K

Table 1: Statistics for the bilingual training data of the IWSLT 2013 German→English, the DARPA BOLT
Chinese→English and the WMT 2014 German→English tasks.

and LDC English Gigaword corpora. The selec-
tion is based on cross-entropy difference (Moore
and Lewis, 2010). This makes for a total of 1.7
billion running words for LM training. The base-
line further contains a hierarchical reordering model
(HRM) (Galley and Manning, 2008) and a 7-gram
word class language model (Wuebker et al., 2013).
On IWSLT, all results are averages over three inde-
pendent MERT runs, and we evaluate statistical sig-
nificance with MultEval (Clark et al., 2011).

To confirm our findings, additional experiments
are run on two large-scale tasks over strong baselines
including recurrent neural language models. On the
DARPA BOLT Chinese→English task we use our
internal evaluation system as a baseline. It is a pow-
erful hierarchical phrase-based SMT engine with 19
dense features, including an LSTM recurrent neu-
ral language model (Sundermeyer et al., 2012) and
a hierarchical reordering model (Huck et al., 2013).
The 5-gram backoff LM is in total trained on 2.9 bil-
lion running words. We use the same data for tuning
and testing as Setiawan and Zhou (2013), namely
1275 (tune) and 12393 sentences of web data taken
from LDC2010E30, the NIST MT06 evaluation set
and an additional single-reference test set from the
discussion forum (df) domain containing 1124 sen-
tence pairs. Maximum expected BLEU training is
performed on the discussion forum portion of the
training data, consisting of 67.8K sentence pairs.
On the German→English task of the 9th Workshop
on Statistical Machine Translation4, both translation
model and maximum expected BLEU training is per-
formed on all available bilingual data. Our base-
line is a phrase-based translation engine with a 4-
gram backoff LM trained on 2.5 billion words with
lmplz (Heafield et al., 2013), a recurrent neural

3named dev in (Setiawan and Zhou, 2013)
4http://statmt.org/wmt14/

IWSLT de-en # feat. test

baseline 18 30.4

GT (He and Deng, 2012) 6.08M 30.9
SGD (Auli et al., 2014) 921K 30.8
AdaGrad (Green et al., 2013) 921K 31.1
RPROP (this work) 921K 31.3
RPROP w/o leave-one-out 921K 30.7

RPROP all features 5.22M 31.6

Table 2: Results for the IWSLT 2013 German→English
task in BLEU [%]. The comparison between update
strategies is done with feature set (a) and RPROP all fea-
tures uses feature sets (a)-(d). GT, SGD, AdaGrad and
RPROP are trained with leave-one-out, unless otherwise
specified.

LM, a 7-gram word class LM and the HRM.
Bilingual data statistics for all tasks are given in

Table 1. We use the machine translation toolkit Jane
(Vilar et al., 2010; Wuebker et al., 2012) and evalu-
ate with case-insensitive BLEU [%] (Papineni et al.,
2002) in all experiments.

6.2 Experimental Results

Table 2 shows the IWSLT results. We first com-
pare the performance of the four update algorithms,
for simplicity only on the discriminative phrase ta-
ble features. Different from previous work the n-
best lists of the training data were generated with
leave-one-out, unless otherwise stated. In all cases
we tested different values for the regularization pa-
rameter τ and in the case of SGD and AdaGrad also
for the learning rate η. We selected the best con-
figurations based on a validation set (test2011). For
AdaGrad we also experimented with FOBOS regu-
larization and feature selection (Duchi and Singer,
2009), but did not observe improved results. As
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Figure 2: Expected BLEU value on IWSLT
German→English for the different update strate-
gies. Note that growth transformation (GT) applies a
different regularization term and is therefore not directly
comparable with the other techniques.

expected, we found that in all cases regularization
is not strictly necessary - results are barely affected
as long as τ is sufficiently small - and that SGD is
much more sensitive to η than AdaGrad. Further,
SGD and RPROP need around 25 iterations to reach
good results, where 5-10 iterations are sufficient for
GT and AdaGrad. For a fair comparison, however,
we run all algorithms for 40 iterations and select the
best one on a seletion set, namely iterations 19 (Ada-
Grad), 23 (GT), 29 (RPROP) and 35 (SGD). Figure
2 shows how the expected BLEU function evolves in
training with different update strategies. Although
the value for GT is not directly comparable to the
others due to a different regularization term, the re-
spective characteristics are clearly visible. SGD ex-
hibits a linear growth pattern, GT resembles a loga-
rithmic and RPROP an exponential function. After
initially overshooting and then retracting as the reg-
ularization kicks in, AdaGrad also displays logarith-
mic characteristics.

In terms of BLEU RPROP performs best, followed
by AdaGrad, GT and SGD, where the RPROP-
AdaGrad and AdaGrad-GT differences are small
(0.2% BLEU absolute) but statistically significant on
the 95% level. Altogether, RPROP improves over
the baseline by 0.9 BLEU points, which is statisti-
cally significant at the 99% level. In an additional
experiment we verified that leave-one-out has a clear

BOLT zh-en # feat. df web MT06

baseline 19 18.0 34.1 39.7
SGD 12.4M 18.0 34.3 39.8
AdaGrad 12.4M 18.3 34.7 40.1
RPROP 12.4M 18.7 34.8 40.5

Setiawan&Zhou (GT) 150M - 32.7 40.3

Table 3: Results for the BOLT Chinese→English task
in BLEU [%] on the discussion forum test set (df), the
mixed web test set and NIST MT06. The baseline is our
BOLT evaluation system and contains a recurrent neural
LM. We compare with (Setiawan and Zhou, 2013) who
applied maximum expected BLEU training with growth
transformation (GT). Note that the number of features re-
ported by Setiawan and Zhou (2013) is artificially blown
up due to renormalization.

impact on the results. The BLEU difference between
RPROP with and without leave-one-out is 0.6% ab-
solute. By adding lexical, triplet and reordering fea-
tures, we get an additional gain and observe a total
improvement of 1.2 BLEU points over the baseline
system.

Efficiency comparison. 921K discriminative
phrase table features are active in our training data.
Due to the renormalization component, this results
in a total of 6.08M features that are updated with
GT using the same data. Consequently, it is less time
and space efficient than the other algorithms. With
our implementation, GT needed around 16 hours
and 6.7G memory for 40 iterations, where RPROP,
AdaGrad and SGD finished after less than 2.5 hours
and required 2.1G memory.

For the BOLT task, we directly compare with the
GT-trained system in (Setiawan and Zhou, 2013)
using the same tune set for MERT and reporting
results on the same test sets, see Table 3. With
RPROP we achieve nearly twice the improvement
reported by Setiawan on both web and MT06 us-
ing feature sets (a)-(c)5. Our baseline on web is
already much stronger and RPROP training yields
+0.7 BLEU points, as opposed to +0.44 reported by
Setiawan. On MT06 our baseline system is slightly
worse, but with the larger gain received by RPROP
our final system outperforms the one reported by Se-

5Reordering features are not applicable to our hiero system.
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WMT de-en # feat. newstest2013

baseline 19 28.3
RPROP 45.0M 28.9

matrix.statmt.org 14 28.1

Table 4: Results for the WMT German→English task in
BLEU [%]. The baseline contains a recurrent neural LM.
We compare with the best single system that is reported
on matrix.statmt.org, which was submitted by the
Unversity of Edinburgh.

tiawan by 0.2 BLEU points. We would like to stress
that this is not a domain adaptation effect, as maxi-
mum expected BLEU training was performed on dis-
cussion forum (df) data. On the df test set, on the
other hand, we probably can observe domain adap-
tation via RPROP training. The improvement here
is 0.7% BLEU absolute with a single reference, as
opposed to four references on web and MT06. We
also report results training the same feature sets with
SGD and AdaGrad, confirming results we observed
on IWSLT. Here, SGD yields only minor improve-
ments. AdaGrad performs better, but still 0.1 - 0.4
BLEU points worse than RPROP. Running GT is in-
feasible in our hierarchical phrase-based setup.

Table 4 shows the results on the WMT task. This
is our largest setting, where max. exp. BLEU train-
ing is performed on the full training data with more
than 4M sentence pairs which, to the best of our
knowledge, is unsurpassed in the literature. Alto-
gether, training took more than one month, about
3/4 of which were for generating n-best lists by de-
coding the training data. The triplet features did not
finish in time, so we applied the feature sets (a), (b)
and (d), 45M features in total. With a renormaliza-
tion step as in GT, this number would grow to 309M.
On newstest2013, our baseline already outperforms
the best single system reported on matrix.statmt.org
by 0.2 BLEU points. The discriminatively trained
features yield an additional improvement of 0.6%
BLEU absolute on this high-end system.

7 Conclusion

We have experimentally compared several update
strategies for maximum expected BLEU training.
The RPROP algorithm proposed in this work shows

superior performance compared to AdaGrad, growth
transformation (GT) and stochastic gradient descent.
In terms of time and memory efficiency, GT is
clearly inferior to the other algorithms due to renor-
malization. Applying phrasal, lexical, triplet and re-
ordering features, the baseline is improved by 1.2%
BLEU absolute on the IWSLT German→English
task. On two large scale tasks we achieve clearly
superior performance compared to results reported
in the literature. On BOLT Chinese→English our
discriminative training yields nearly twice the im-
provement reported by Setiawan and Zhou (2013),
resulting in a superior final system. On WMT
German→English, we outperform the best single
system reported on matrix.statmt.org by 0.8% BLEU

absolute. Here, we perform maximum expexted
BLEU training on more than 4M sentence pairs,
which is the largest number reported in the literature
to date.
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