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Abstract

We present a novel approach for relation clas-
sification, using a recursive neural network
(RNN), based on the shortest path between
two entities in a dependency graph. Previ-
ous works on RNN are based on constituency-
based parsing because phrasal nodes in a parse
tree can capture compositionality in a sen-
tence. Compared with constituency-based
parse trees, dependency graphs can represent
relations more compactly. This is particu-
larly important in sentences with distant en-
tities, where the parse tree spans words that
are not relevant to the relation. In such
cases RNN cannot be trained effectively in a
timely manner. However, due to the lack of
phrasal nodes in dependency graphs, applica-
tion of RNN is not straightforward. In order
to tackle this problem, we utilize dependency
constituent units called chains. Our experi-
ments on two relation classification datasets
show that Chain based RNN provides a shal-
lower network, which performs considerably
faster and achieves better classification results.

1 Introduction

Relation extraction is the task of finding relations
between entities in text, which is useful for sev-
eral tasks such as information extraction, summa-
rization, and question answering (Wu and Weld,
2010). For instance, in the sentence: those “cancers”
were caused by radiation “exposures,” the two enti-
ties have a cause-effect relation. As reported in de-
tail (SaraWagi, 2008), one approach to the problem
involves supervised methods where the models rely

on lexical, syntactic, and semantic features to clas-
sify relations between pairs of entities. The down-
side of this approach is that one has to retrain the
model for other domains with different target rela-
tions. Thus it is not scalable to the web, where thou-
sands of (previously-unseen) relations exist (Banko
et al., 2007). To address this problem, Open Infor-
mation Extraction is proposed, which does not re-
quire supervision. In these systems (Banko et al.,
2007; Mausam et al., 2012), patterns based on lex-
ical, syntactic, POS, and dependency features are
extracted. While these patterns give good preci-
sion, they suffer from low recall (Banko and Etzioni,
2008). This is because they fail to extract patterns
which have not been pre-specified, and thereby are
unable to generalize.

Recursive Neural Network (RNN) has proven to
be highly successful in capturing semantic compo-
sitionality in text and has improved the results of
several Natural Language Processing tasks (Socher
et al., 2012; Socher et al., 2013). Previous ap-
plications of Recursive Neural Networks (RNN) to
supervised relation extraction (Socher et al., 2012;
Hashimoto et al., 2013; Khashabi, 2013) are based
on constituency-based parsers. These RNNs may
span words that do not contribute to the relation. We
investigate the incorporation of dependency parsing
into RNN that can give a more compact representa-
tion of relations.

Our contribution is introducing a compositional
account of dependency graphs that can match
RNN’s recursive nature, and can be applied to re-
lation classification. We study different data struc-
tures that incorporate dependency trees into RNNs.
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One of these structures produces a compact full bi-
nary tree that compared with the constituency-based
RNN, has higher classification accuracy and saves
up to 70% in the training time.

2 Related Work

At the core of deep learning techniques for NLP, lies
the vector based word representation, which maps
words to an n-dimensional space. Having word vec-
tors as parameters makes neural models flexible in
finding different word embeddings for separate tasks
(Collobert and Weston, 2008). Recursive Neural
Network (RNN) is a recursive deep architecture that
can learn feature representation of words, phrases
and sentences.

As an example, in (Socher et al., 2010), each
node in the parse tree is associated with a vector
and at each internal node p, there exists a compo-
sition function that takes its input from its children
c1 ∈ Rn and c2 ∈ Rn.

p = f(c1, c2) = tanh(W
[
c1
c2

]
+ b) (1)

The matrix W ∈ Rn×2n is the global composition
parameter, b is the bias term, and the output of the
function p ∈ Rn is another vector in the space of in-
puts. Socher et al. (2012) propose Matrix-Vector
Recursive Neural Network (MV-RNN), where in-
stead of using only vectors for words, an additional
matrix for each word is used to capture operator se-
mantics in language. To apply RNN to relation clas-
sification, they find the path in the parse tree between
the two entities and apply compositions bottom up.
Hashimoto et al. (2013) follow the same design but
introduce a different composition function. They
make use of word-POS pairs and use untied weights
based on phrase categories of the pair.

Socher et al. (2014) introduce a dependency-
based RNN that extracts features from a dependency
graph whose composition function has major differ-
ences from ours. Their function consists of a linear
sum of unary compositions, while our function is a
binary composition of children. Our work is also
related to (Bunescu and Mooney, 2005), where the
similarity between the words on the path connect-
ing two entities in the dependency graph is used to
devise a Kernel function.

3 Chain based RNN

While constituency-based parsing seems to be a rea-
sonable choice for compositionality in general, it
may not be the best choice for all NLP tasks. In par-
ticular, for relation classification, one may prefer to
use a structure that encodes more information about
the relations between the words in a sentence. To
this end, we use dependency-based parsing that pro-
vides a one-to-one correspondence between nodes in
a dependency graph (DG).

DGs are significantly different from constituency
parse trees since they lack phrasal nodes. More pre-
cisely, the internal nodes where the nonlinear com-
binations take place, do not exist in DGs. There-
fore, we modify the original RNN and present a
dependency-based RNN for relation classification.
In our experiments, we restrict ourselves to trees
where each dependent has only one head. We also
use the example in Figure 1 for better illustration; in
this example the arguments of the relation are child
and cradle.

wrapped

child[arg1]

the

was carefully into

cradle [arg2]

the

Figure 1: DG: the child was carefully wrapped into the cradle.

We apply compositions on the words on the short-
est path between entities. From a linguistic point of
view, this type of composition is related to the con-
cept of chain or dependency constituent unit in DGs
(Osborne, 2005).

Chain: The words A ... B ... C ... (order
irrelevant) form a chain iff A immediately
dominates (is the parent of) B and C, or if
A immediately dominates B and B imme-
diately dominates C.
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Based on this definition, child wrapped, into cradle,
wrapped into cradle, child wrapped into cradle all
qualify as a chain while child was does not. To il-
lustrate the motivation to use dependency parsing,
consider the sentence:

The hidden “camera,” found by a security
guard, was hidden in a business card-sized
“box” placed at an unmanned ATM.

The shortest path between entities is:

camera→ found← hidden← in← box

Using dependency parsing, we only need four com-
positions for this chain, which results in 86% de-
crease against constituency-based parsing.

Now with all words represented as vectors, we
need to find a reduced dimensional representation of
the chain in fixed size. To this end, we transform this
chain to a data structure, the root of which represents
the extracted features.

3.1 Fixed Structure

We cannot use an off-the-shelf syntax parser to cre-
ate a tree for the chain because the chain may not
necessarily be a coherent English statement. Thus,
we build two Directed Acyclic Graph (DAG) struc-
tures by heuristics. The idea is to start from ar-
gument(s) and recursively combine dependent-head
pairs to the (common) ancestor i.e., each head is
combined with the subtree below itself. In the sim-
plest case: a→ b results in p = f(a, b).

The subtlety of this approach lies in the treatment
of the word with two dependents. We use two meth-
ods to handle such a node: 1) including it in only
one composition as in Figure 2 or 2) including it in
two compositions and sum their results as in Figure
3.

Both structures produce a DAG where each inter-
nal node has two children and there is only one node
with two non-leaf children. We now prove that this
greedy algorithm results in a full binary tree for the
first case. We skip the proof of the algorithm for the
second case which produces a full binary DAG.
Lemma: There is at most one node with exactly two
none-leaf children in the tree.
Proof. If one of the arguments is an ancestor of
the other argument e.g., arg1 → ... → arg2, then

x7 = f(x5, x6)

x5 = f(x1, x2) x6 = f(x3, x4)

x1 = child x2 = wrapped x3 = into x4 = cradle

Figure 2: a fixed tree example

obviously every head on the chain has exactly one
dependent. Combination of each head and its sub-
tree’s output vector results in a full binary node in
the tree. If the arguments have a common ancestor
p e.g., arg1 → ... p ... ← arg2, then that particular
node has two dependents. In this case, the parent is
combined with either its left or right subtrees, and its
result is combined with the output of the other child.
No other head has this property; otherwise, p is not
the common ancestor.
Theorem: The algorithm converts a chain to a full
binary tree.
Proof. The leaves of the tree are words of the chain.
By applying the lemma, there exists one root and all
internal nodes have exactly two children.

Note that we only consider dependency trees as
the input; so each pair of arguments has a unique
common ancestor. Concretely, having a connected
graph leads to at least one such ancestor and having
only one head for each node (being a tree) leads to
exactly one such ancestor.

3.2 Predicted Tree Structure
Instead of using a deterministic approach to cre-
ate the tree, we can use Recursive Autoencoders
(RAE) to find the best representation of the chain.
This model is similar to (Socher et al., 2011) with
some modification in implementation. Socher et al.
(2011) use a semi supervised method where the ob-
jective function is a weighted sum of the supervised
and unsupervised error. We achieved better results
with a pipeline where first, during pre-training, the
unsupervised autoencoder predicts the structure of
RNN and then during training, the supervised cross
entropy error is minimized.
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x8 =
∑

i∈6,7
xi

x6 = f(x1, x2) x7 = f(x2, x5)

x1 = child x2 = wrapped

x5 = f(x3, x4)

x3 = into x4 = cradle

Figure 3: a fixed DAG example

4 Learning

To predict the label of the relation, a softmax clas-
sifier is added on top of the tree. i.e., yi =
softmax(P T

n W
label) where L ∈ Rk, k is the num-

ber of classes, and Pn is the final vector on top of
the tree for sentence n. The objective function is the
sum of cross entropy error at all the nodes, for all the
sentences in the training set.

E(θ) = −
∑

n

∑
k

tkn log yk
n +

λ

2
‖ θ ‖2 (2)

The vectors for target, predicted labels, and regular-
ization parameters are denoted by tn, yn and λ re-
spectively. We initialize the word vectors with pre-
trained 50-dimensional words from (Collobert and
Weston, 2008) and initialize other parameters by a
normal distribution with mean of 0 and standard de-
viation of 0.01. Derivatives are computed by back-
propagation through structure (Goller and Kuchler,
1996) and L-BFGS is used for optimization.

5 Experiments

In this section we discuss our experimental results
on two datasets for relation classification. To derive
the dependency tree for each sentence, we use arc-
eager MaltParser (Goldberg and Nivre, 2012). We
set the hyper-parameters through a validation set for
the first dataset and use them for the second dataset
too. Similar to the previous works, a few internal
features were also added e.g., depth of the tree, dis-
tance between entities, context words, and the type

of dependencies in our model. We found that using
dependency types inside the composition function as
in typed functions worsens the results.

5.1 SemEval-2010 Task 8
This data set consists of 10017 sentences and nine
types of relations between nominals (Hendrickx et
al., 2010). Table 1 compares the results of our tree
based chain RNN (C-RNN), DAG based chain RNN
(DC-RNN) and the autoencoder based one (C-RNN-
RAE) with other RNN models and the best system
participating (Rink and Harabagiu, 2010) in the task.
Evaluation of the systems is done by comparing the
F-measure of their best runs. The best system (Rink
and Harabagiu, 2010) uses SVM with many sets of
features. We add some external features using super-
sense sequence tagger (Ciaramita and Altun, 2006).
Adding POS tags, WordNet hypernyms, and named
entity tags (NER) of the two arguments helps C-
RNN improve the results.

We implement SDT-RNN (Socher et al., 2014)
which has similar complexity as our model but has
significantly lower F-measure. SDT-RNN also per-
forms much better when considering only the words
on the path between entities; confirming our hy-
pothesis about the effectiveness of chains. This can
be attributed to the intuitive advantage of depen-
dency trees where the shortest path between entities
captures most of the information about the relation
(Bunescu and Mooney, 2005).

As it can bee seen in Table 1, C-RNN achieves
the best results. The baseline RNN, uses a global
composition function and R50 vectors for each word.
We also use the same number of model parameters.

The advantage of our approach is that our models
are computationally less expensive compared with
other RNN models. MV-RNN (Socher et al., 2012)
uses an additional matrix R50×50 for each word,
resulting in a 50 fold increase in the number of
model parameters. POS-RNN (Hashimoto et al.,
2013) uses untied weight matrices and POS based
word vectors that results in about 100% increase in
the number of model parameters compared with C-
RNN.

Relations with long distances between entities are
harder to classify. This is illustrated in Figure 4
where MV-RNN and C-RNN are compared. Con-
sidering three bins for the distance between two en-
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Method F-measure Feature sets
RNN 74.8 -
SDT-RNN 75.12 -
MV-RNN 79.1 -
POS-RNN 79.4 -
DC-RNN 77.36 -
C-RNN-RAE 78.78 -
C-RNN 79.68 -
SVM 82.2 POS, WordNet, Levine classes,

PropBank, FrameNet, TextRun-
ner, paraphrases, Google n-grams,
NormLex-Plus, morphological fea-
tures, dependency parse features

MV-RNN 82.4 POS, NER, WordNet
C-RNN 82.66 POS, NER, WordNet

Table 1: Results on SemEval 2010 relation classification task with the
feature sets used. C-RNN outperforms all RNN based models. By in-
cluding three extra features, it achieves the state-of-the-art performance.

tities, the figure shows what fraction of test instances
are misclassified in each bin. Both classifiers make
more errors when the distance between entities is
longer than 10. The performance of the two classi-
fiers for distances less than five is quite similar while
C-RNN has the advantage in classifying more rela-
tions correctly when the distance increases.

5.2 SemEval-2013 Task 9.b
To further illustrate the advantage of C-RNN over
MV-RNN, we evaluate our work on another data set.
See Table 2. In this task, the goal is to extract inter-
actions between drug mentions in text. The corpus
(Segura-Bedmar et al., 2013) consists of 1,017 texts
that were manually annotated with a total of 5021
drug-drug interactions of four types: mechanism, ef-
fect, advise and int.

Method Precision Recall F=measure
MV-RNN 74.07 65.53 67.84
C-RNN 75.31 66.19 68.64

Table 2: Results on SemEval 2013 Drug-Drug Interaction task

5.3 Training Time
Dependency graphs can represent relations more
compactly by utilizing only the words on the shortest
path between entities. C-RNN uses a sixth of neural
computations of MV-RNN. More precisely, there is
an 83% decrease in the number of tanh evaluations.
Consequently, as demonstrated by Figure 5, C-RNN
runs 3.21 and 1.95 times faster for SemEval 2010
and SemEval 2013 respectively.
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Figure 4: Misclassification based on entities distance in three
bins. More errors occur with entities separated by more than ten
words. C-RNN performs better in bottleneck long distances.
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Figure 5: Training time measured by seconds. Experiments
were run on a cluster node with 6 core 2.66GHz cpu.

6 Conclusions

Recently, Recursive Neural Network (RNN) has
found a wide appeal in the Machine Learning com-
munity. This deep architecture has been applied in
several NLP tasks including relation classification.
We present an RNN architecture based on a com-
positional account of dependency graphs. The pro-
posed RNN model is based on the shortest path be-
tween entities in a dependency graph. The resulting
shallow network is superior for supervised learning
in terms of speed and accuracy. We improve the
classification results and save up to 70% in train-
ing time compared with a constituency-based RNN
. The limitation of our Chain based RNN is that it
assumes the named entities to be known in advance.
This requires a separate named entity recognizer and
cannot extract the entities jointly with the relation
classifier.
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