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Abstract

In this paper we study the task of movie
script summarization, which we argue could
enhance script browsing, give readers a rough
idea of the script’s plotline, and speed up read-
ing time. We formalize the process of gen-
erating a shorter version of a screenplay as
the task of finding an optimal chain of scenes.
We develop a graph-based model that selects
a chain by jointly optimizing its logical pro-
gression, diversity, and importance. Human
evaluation based on a question-answering task
shows that our model produces summaries
which are more informative compared to com-
petitive baselines.

1 Introduction

Each year, about 50,000 screenplays are registered
with the WGA1, the Writers Guild of America. Only
a fraction of these make it through to be considered
for production and an even smaller fraction to the
big screen. How do producers and directors navigate
through this vast number of scripts available? Typ-
ically, production companies, agencies, and studios
hire script readers, whose job is to analyze screen-
plays that come in, sorting the hopeful from the
hopeless. Having read the script, a reader will gen-
erate a coverage report consisting of a logline (one
or two sentences describing the story in a nutshell),
a synopsis (a two- to three-page long summary of
the script), comments explaining its appeal or prob-
lematic aspects, and a final verdict as to whether the
script merits further consideration. A script excerpt

1The WGA is a collective term representing US TV and film
writers.

We can’t get a good glimpse of his face, but
his body is plump, above average height; he
is in his mid 30’s. Together they easily
lift the chair into the truck.

MAN (O.S.)
Let’s slide it up, you mind?

CUT TO:

INT. THE PANEL TRUCK - NIGHT

He climbs inside the truck, ducking under a
small hand winch, and grabs the chair. She
hesitates again, but climbs in after him.

MAN
Are you about a size 14?

CATHERINE
(surprised)

What?

Suddenly, in the shadowy dark, he clubs her
over the back of her head with his cast.

Figure 1: Excerpt from “The Silence of the Lambs”.
The scene heading INT. THE PANEL TRUCK - NIGHT
denotes that the action takes place inside the panel truck
at night. Character cues (e.g., MAN, CATHERINE) preface
the lines the actors speak. Action lines describe what the
camera sees (e.g., We can’t get a good glimpse of
his face, but his body. . . ).

from “Silence of the Lambs”, an American thriller
released in 1991, is shown in Figure 1.

Although there are several screenwriting tools for
authors (e.g., Final Draft is a popular application
which automatically formats scripts to industry stan-
dards, keeps track of revisions, allows insertion of
notes, and writing collaboratively online), there is a
lack of any kind of script reading aids. Features of
such a tool could be to automatically grade the qual-
ity of the script (e.g., thumbs up or down), generate
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synopses and loglines, identify main characters and
their stories, or facilitate browsing (e.g., “show me
every scene where there is a shooting”). In this pa-
per we explore whether current NLP technology can
be used to address some of these tasks. Specifically,
we focus on script summarization, which we con-
ceptualize as the process of generating a shorter ver-
sion of a screenplay, ideally encapsulating its most
informative scenes. The resulting summaries can
be used to enhance script browsing, give readers a
rough idea of the script’s content and plotline, and
speed up reading time.

So, what makes a good script summary? Accord-
ing to modern film theory, “all films are about noth-
ing — nothing but character” (Monaco, 1982). Be-
yond characters, a summary should also highlight
major scenes representative of the story and its pro-
gression. With this in mind, we define a script sum-
mary as a chain of scenes which conveys a narrative
and smooth transitions from one scene to the next.
At the same time, a good chain should incorporate
some diversity (i.e., avoid redundancy), and focus
on important scenes and characters. We formalize
the problem of selecting a good summary chain us-
ing a graph-theoretic approach. We represent scripts
as (directed) bipartite graphs with vertices corre-
sponding to scenes and characters, and edge weights
to their strength of correlation. Intuitively, if two
scenes are connected, a random walk starting from
one would reach the other frequently. We find a
chain of highly connected scenes by jointly optimiz-
ing logical progression, diversity, and importance.

Our contributions in this work are three-fold: we
introduce a novel summarization task, on a new text
genre, and formalize scene selection as the problem
of finding a chain that represents a film’s story; we
propose several novel methods for analyzing script
content (e.g., identifying important characters and
their interactions); and perform a large-scale human
evaluation study using a question-answering task.
Experimental results show that our method produces
summaries which are more informative compared to
several competitive baselines.

2 Related Work

Computer-assisted analysis of literary text has a long
history, with the first studies dating back to the

1960s (Mosteller and Wallace, 1964). More re-
cently, the availability of large collections of dig-
itized books and works of fiction has enabled re-
searchers to observe cultural trends, address ques-
tions about language use and its evolution, study
how individuals rise to and fall from fame, perform
gender studies, and so on (Michel et al., 2010). Most
existing work focuses on low-level analysis of word
patterns, with a few notable exceptions. Elson et al.
(2010) analyze 19th century British novels by con-
structing a conversational network with vertices cor-
responding to characters and weighted edges corre-
sponding to the amount of conversational interac-
tion. Elsner (2012) analyzes characters and their
emotional trajectories, whereas Nalisnick and Baird
(2013) identify a character’s enemies and allies in
plays based on the sentiment of their utterances.
Other work (Bamman et al., 2013, 2014) automat-
ically infers latent character types (e.g., villains or
heroes) in novels and movie plot summaries.

Although we are not aware of any previous ap-
proaches to summarize screenplays, the field of
computer vision is rife with attempts to summa-
rize video (see Reed 2004 for an overview). Most
techniques are based on visual information and rely
on low-level cues such as motion, color, or audio
(e.g., Rasheed et al. 2005). Movie summarization is
a special type of video summarization which poses
many challenges due to the large variety of film
styles and genres. A few recent studies (Weng et al.,
2009; Lin et al., 2013) have used concepts from so-
cial network analysis to identify lead roles and role
communities in order to segment movies into scenes
(containing one or more shots) and create more in-
formative summaries. A surprising fact about this
line of work is that it does not exploit the movie
script in any way. Characters are typically identified
using face recognition techniques and scene bound-
aries are presumed unknown and are automatically
detected. A notable exception are Sang and Xu
(2010) who generate video summaries for movies,
while taking into account character interaction fea-
tures which they estimate from the corresponding
screenplay.

Our own approach is inspired by work in ego-
centric video analysis. An egocentric video offers
a first-person view of the world and is captured from
a wearable camera focusing on the user’s activities,
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# Movies AvgLines AvgScenes AvgChars
Drama 665 4484.53 79.77 60.94
Thriller 451 4333.10 91.84 52.59
Comedy 378 4303.02 66.13 57.51
Action 288 4255.56 101.82 59.99

Figure 2: ScriptBase corpus statistics. Movies can have
multiple genres, thus numbers do not add up to 1,276.

social interactions, and interests. Lu and Grauman
(2013) present a summarization model which ex-
tracts subshot sequences while finding a balance of
important subshots that are both diverse and provide
a natural progression through the video, in terms of
prominent visual objects (e.g., bottle, mug, televi-
sion). We adapt their technique to our task, and show
how to estimate character-scene correlations based
on linguistic analysis. We also interpret movies
as social networks and extract a rich set of fea-
tures from character interactions and their sentiment
which we use to guide the summarization process.

3 ScriptBase: A Movie Script Corpus

We compiled ScriptBase, a collection of
1,276 movie scripts, by automatically crawling
web-sites which host or link entire movie scripts
(e.g., imsdb.com). The retrieved scripts were then
cross-matched against Wikipedia2 and IMDB3 and
paired with corresponding user-written summaries,
plot sections, loglines and taglines (taglines are
short snippets used by marketing departments
to promote a movie). We also collected meta-
information regarding the movie’s genre, its actors,
the production year, etc. ScriptBase contains movies
comprising 23 genres; each movie is on average
accompanied by 3 user summaries, 3 loglines, and
3 taglines. The corpus spans years 1909–2013.
Some corpus statistics are shown in Figure 2.

The scripts were further post-processed with the
Stanford CoreNLP pipeline (Manning et al., 2014)
to perform tagging, parsing, named entity recogni-
tion and coreference resolution. They were also an-
notated with semantic roles (e.g., ARG0, ARG1),
using the MATE tools (Björkelund et al., 2009).
Our summarization experiments focused on come-
dies and thrillers. We randomly selected 30 movies

2http://en.wikipedia.org
3http://www.imdb.com/

s1 s2 s3 s4 s5 s6 s7 ...

s1 s2 s3 s4 s5 s6 s7 ...

//

Figure 3: Example of consecutive chain (top). Squares
represent scenes in a screenplay. The bottom chain would
not be allowed, since the connection between s3 and s5
makes it non-consecutive.

for training/development and 65 movies for testing.

4 The Scene Extraction Model

As mentioned earlier, we define script summariza-
tion as the task of selecting a chain of scenes rep-
resenting the movie’s most important content. We
interpret the term scene in the screenplay sense. A
scene is a unit of action that takes place in one loca-
tion at one time (see Figure 1). We therefore need
not be concerned with scene segmentation; scene
boundaries are clearly marked, and constitute the ba-
sic units over which our model operates.

Let M = (S,C) represent a screenplay consist-
ing of a set S = {s1,s2, . . . ,sn} of scenes, and a set
C = {c1, . . . ,cm} of characters. We are interested in
finding a list S′ = {si, . . .sk} of ordered, consecutive
scenes subject to a compression rate m (see the ex-
ample in Figure 3). A natural interpretation of m in
our case is the percentage of scenes from the orig-
inal script retained in the summary. The extracted
chain should contain (a) important scenes (i.e., crit-
ical for comprehending the story and its develop-
ment); (b) diverse scenes that cover different as-
pects of the story; and (c) scenes which highlight
the story’s progression from beginning to end. We
therefore find the chain S′ maximizing the objective
function Q(S′) which is the weighted sum of three
terms: the story progression P, scene diversity D,
and scene importance I:

S∗ = argmax
S′⊂S

Q(S′) (1)

Q(S′) = λPP(S′)+λDD(S′)+λII(S′) (2)

In the following, we define each of the three terms.
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Figure 4: Example of a bipartite graph, connecting a
movie’s scenes with participating characters.

Scene-to-scene Progression The first term in the
objective is responsible for selecting chains repre-
senting a logically coherent story. Intuitively, this
means that if our chain includes a scene where a
character commits an action, then scenes involving
affected parties or follow-up actions should also be
included. We operationalize this idea of progression
in a story in terms of how strongly the characters in
a selected scene si influence the transition to the next
scene si+1:

P(S′) =
|S′|−1

∑
i=0

∑
c∈Ci

INF(si,si+1|c) (3)

We represent screenplays as weighted, bipartite
graphs connecting scenes and characters:

B = (V,E) : V = C∪S

E = {(s,c,ws,c)|s ∈ S, c ∈C, ws,c ∈ [0,1]}∪
{(c,s,wc,s)|c ∈C, s ∈ S, wc,s ∈ [0,1]}

The set of vertices V corresponds to the union of
characters C and scenes S. We therefore add to
the bipartite graph one node per scene and one
node per character, and two directed edges for each
scene-character and character-scene pair. An exam-
ple of a bipartite graph is shown in Figure 4. We
further assume that two scenes si and si+1 are tightly
connected in such a graph if a random walk with
restart (RWR; Tong et al. 2006; Kim et al. 2014)
which starts in si has a high probability of ending
in si+1.

In order to calculate the random walk stationary
distributions, we must estimate the weights between
a character and a scene. We are interested in how
important a character is generally in the movie, and

specifically in a particular scene. For wc,s, we con-
sider the probability of a character being important,
i.e., of them belonging to the set of main characters:

wc,s = P(c ∈ main(M)), ∀(c,s,wc,s) ∈ E (4)

where P(c ∈main(M)) is some probability score as-
sociated with c being a main character in script M.
For ws,c, we take the number of interactions a char-
acter is involved in relative to the total number of
interactions in a specific scene as indicative of the
character’s importance in that scene. Interactions re-
fer to conversational interactions as well as relations
between characters (e.g., who does what to whom):

ws,c =
∑

c′∈Cs

inter(c,c′)

∑
c1,c2∈Cs

inter(c1,c2)
, ∀(s,c,ws,c) ∈ E (5)

We defer discussion of how we model probabil-
ity P(c ∈Main(M)) and obtain interaction counts to
Section 5. Weights ws,c and wc,s are normalized:

ws,c =
ws,c

∑(s,c′,w′s,c) w′s,c
, ∀(s,c,ws,c) ∈ E (6)

wc,s =
wc,s

∑(c,s′,w′c,s) w′c,s
, ∀(c,s,wc,s) ∈ E (7)

We calculate the stationary distributions of a ran-
dom walk on a transition matrix T , enumerating over
all vertices v (i.e., characters and scenes) in the bi-
partite graph B:

T (i, j) =

{
wi, j if (vi,v j,wi, j ∈ EB)
0 otherwise

(8)

We measure the influence individual characters have
on scene-to-scene transitions as follows. The sta-
tionary distribution rk for a RWR walker starting at
node k is a vector that satisfies:

rk = (1− ε)Trk + εek (9)

where T is the transition matrix of the graph, ek is a
seed vector, with all elements 0, except for element k
which is set to 1, and ε is a restart probability param-
eter. In practice, our vectors rk and ek are indexed by
the scenes and characters in a movie, i.e., they have
length |S|+ |C|, and their nth element corresponds
either to a known scene or character. In cases where
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graphs are relatively small, we can compute r di-
rectly4 by solving:

rk = ε(I− (1− ε)T )−1ek (10)

The lth element of r then equals the probability of
the random walker being in state l in the stationary
distribution. Let rc

k be the same as rk, but with the
character node c of the bipartite graph being turned
into a sink, i.e., all entries for c in the transition
matrix T are 0. We can then define how a single
character influences the transition between scenes si

and si+1 as:

INF(si,si+1|c) = rsi [si+1]− rc
si
[si+1] (11)

where rsi [si+1] is shorthand for that element in the
vector rsi that corresponds to scene si+1. We use
the INF score directly in Equation (3) to determine
the progress score of a candidate chain.

Diversity The diversity term D(S′) in our objec-
tive should encourage chains which consist of more
dissimilar scenes, thereby avoiding redundancy. The
diversity of chain S′ is the sum of the diversities of
its successive scenes:

D(S′) =
|S′|−1

∑
i=1

d(si,si+1) (12)

The diversity d(si,si+1) of two scenes si and si+1
is estimated taking into account two factors: (a) do
they have any characters in common, and (b) does
the sentiment change from one scene to the next:

d(si,si+1) =
dchar(si,si+1)+dsen(si,si+1)

2
(13)

where dchar(si,si+1) and dsen(si,si+1) respectively
denote character and sentiment similarity between
scenes. Specifically, dchar(si,si+1) is the relative
character overlap between scenes si and si+1:

dchar(si,si+1) = 1− |Csi ∩Csi+1 |
|Csi ∪Csi+1 |

(14)

dchar will be 0 if two scenes share the same charac-
ters and 1 if no characters are shared. Analogously,

4We could also solve for r recursively which would be
preferable for large graphs, since the performed matrix inver-
sion is computationally expensive.

we define dsen, the sentiment overlap between two
scenes as:

dsen(si,si+1) =1− k ·di f (si,si+1)
k− k ·di f (si,si+1)+1

(15)

di f (si,si+1) =
1

1+ |sen(si)− sen(si+1)| (16)

where the sentiment sen(s) of scene s is the aggre-
gate sentiment score of all interactions in s:

sen(s) = ∑
c,c′∈Cs

sen(inter(c,c′)) (17)

We explain how interactions and their sentiment are
computed in Section 5. Again, dsen is larger if two
scenes have a less similar sentiment. di f (si,si+1)
becomes 1 if the sentiments are identical, and
increasingly smaller for more dissimilar senti-
ments. The sigmoid-like function in Equation (15)
scales dsen within range [0,1] to take smaller values
for larger sentiment differences (factor k adjusts the
curve’s smoothness).

Importance The score I(S′) captures whether
a chain contains important scenes. We define
I(S′) as the sum of all scene-specific importance
scores imp(si) of scenes contained in the chain:

I(S′) =
|S′|
∑
i=1

imp(si) (18)

The importance imp(si) of a scene si is the ratio of
lead to support characters within that scene:

imp(si) =
∑c: c∈Csi∧c∈main(M) 1

∑c: c∈Csi
1

(19)

where Csi is the set of characters present in scene si,
and main(M) is the set of main characters in the
movie.5 I(si) is 0 if a scene does not contain any
main characters, and 1 if it contains only main char-
acters (see Section 5 for how main(M) is inferred).

Optimal Chain Selection We use Linear Pro-
gramming to efficiently find a good chain. The ob-
jective is to maximize Equation (2), i.e., the sum
of the terms for progress, diversity and importance,

5Whether scenes are important if they contain many main
characters is an empirical question in its own right. For our
purposes, we assume that this relation holds.
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subject to their weights λ. We add a constraint corre-
sponding to the compression rate, i.e., the number of
scenes to be selected and enforce their linear order
by disallowing non-consecutive combinations. We
use GLPK6 to solve the linear problem.

5 Implementation

In this section we discuss several aspects of the im-
plementation of the model presented in the previous
section. We explain how interactions are extracted
and how sentiment is calculated. We also present our
method for identifying main characters and estimat-
ing the weights ws,c and wc,s in the bipartite graph.

Interactions The notion of interaction underlies
many aspects of the model defined in the previous
section. For instance, interaction counts are required
to estimate the weights ws,c in the bipartite graph of
the progression term (see Equation (5)), and in defin-
ing diversity (see Equations (15)–(17)). As we shall
see below, interactions are also important for identi-
fying main characters in a screenplay.

We use the term interaction to refer to conversa-
tions between two characters, as well as their rela-
tions (e.g., if a character kills another). For con-
versational interactions, we simply need to iden-
tify the speaker generating an utterance and the lis-
tener. Speaker attribution comes for free in our
case, as speakers are clearly marked in the text (see
Figure 1). Listener identification is more involved,
especially when there are multiple characters in a
scene. We rely on a few simple heuristics. We as-
sume that the previous speaker in the same scene,
who is different from the current speaker, is the lis-
tener. If there is no previous speaker, we assume
that the listener is the closest character mentioned in
the speaker’s utterance (e.g., via a coreferring proper
name or a pronoun). In cases where we cannot find
a suitable listener, we assume the current speaker is
the listener.

We obtain character relations from the output of
a semantic role labeler. Relations are denoted by
verbs whose ARG0 and ARG1 roles are charac-
ter names. We extract relations from the dialogue
but also from scene descriptions. For example,
in Figure 1 the description Suddenly, [...] he

6https://www.gnu.org/software/glpk/

clubs her over the head contains the relation
clubs(MAN,CATHERINE). Pronouns are resolved to
their antecedent using the Stanford coreference res-
olution system (Lee et al., 2011).

Sentiment We labeled lexical items in screenplays
with sentiment values using the AFINN-96 lexi-
con (Nielsen, 2011), which is essentially a list of
words scored with sentiment strength within the
range [−5,+5]. The list also contains obscene words
(which are often used in movies) and some Internet
slang. By summing over the sentiment scores of in-
dividual words, we can work out the sentiment of an
interaction between two characters, the sentiment of
a scene (see Equation (17)), and even the sentiment
between characters (e.g., who likes or dislikes whom
in the movie in general).

Main Characters The progress term in our sum-
marization objective crucially relies on characters
and their importance (see the weight wc,s in Equa-
tion (4)). Previous work (Weng et al., 2009; Lin
et al., 2013) extracts social networks where nodes
correspond to roles in the movie, and edges to their
co-occurrence. Leading roles (and their communi-
ties) are then identified by measuring their centrality
in the network (i.e., number of edges terminating in
a given node).

It is relatively straightforward to obtain a so-
cial network from a screenplay. Formally, for each
movie we define a weighted and undirected graph:

G = {C,E}, : C = {c1, . . .cn},
E = {(ci,c j,w)|ci,c j ∈C, w ∈ N>0}

where vertices correspond to movie characters7,
and edges denote character-to-character interac-
tions. Figure 5 shows an example of a social net-
work for “The Silence of the Lambs”. Due to lack
of space, only main characters are displayed, how-
ever the actual graph contains all characters (42 in
this case). Importantly, edge weights are not nor-
malized, but directly reflect the strength of associa-
tion between different characters.

We do not solely rely on the social net-
work to identify main characters. We esti-
mate P(c ∈ main(M)), the probability of c being a
leading character in movie M, using a Multi Layer

7We assume one node per speaking role in the script.

1071



Mr. Gumb

Catherine

Dr. Lecter

Chilton

Clarice Crawford

Sen. Martin

480 5

3133

1

6 377

1645

44

24

1

13
1

39

Figure 5: Social network for “The Silence of the Lambs”;
edge weights correspond to absolute number of interac-
tions between nodes.

Perceptron (MLP) and several features pertaining to
the structure of the social network and the script text
itself. A potential stumbling block in treating char-
acter identification as a classification task is obtain-
ing training data, i.e., a list of main characters for
each movie. We generate a gold-standard by assum-
ing that the characters listed under Wikipedia’s Cast
section (or an equivalent section, e.g., Characters)
are the main characters in the movie.

Examples of the features we used for the clas-
sification task include the barycenter of a charac-
ter (i.e., the sum of its distance to all other charac-
ters), PageRank (Page et al., 1999), an eigenvector-
based centrality measure, absolute/relative interac-
tion weight (the sum of all interactions a character is
involved in, divided by the sum of all interactions in
the network), absolute/relative number of sentences
uttered by a character, number of times a charac-
ter is described by other characters (e.g., He is a
monster or She is nice), number of times a char-
acter talks about other characters, and type-token-
ratio of sentences uttered by the character (i.e., rate
of unique words in a character’s speech). Using
these features, the MLP achieves an F1 of 79.0% on
the test set. It outperforms other classification meth-
ods such as Naive Bayes or logistic regression. Us-
ing the full-feature set, the MLP also obtains perfor-
mance superior to any individual measure of graph
connectivity.

Aside from Equation (4), lead characters also ap-
pear in Equation (19), which determines scene im-
portance. We assume a character c ∈ main(M) if it
is predicted by the MLP with a probability ≥ 0.5.

6 Experimental Setup

Gold Standard Chains The development and
tuning of the chain extraction model presented in
Section 4 necessitates access to a gold standard of
key scene chains representing the movie’s most im-
portant content. Our experiments concentrated on a
sample of 95 movies (comedies and thrillers) from
the ScriptBase corpus (Section 3). Performing the
scene selection task for such a big corpus manually
would be both time consuming and costly. Instead,
we used distant supervision based on Wikipedia to
automatically generate a gold standard.

Specifically, we assume that Wikipedia plots are
representative of the most important content in a
movie. Using the alignment algorithm presented
in Nelken and Shieber (2006), we align script sen-
tences to Wikipedia plot sentences and assume that
scenes with at least one alignment are part of the
gold chain of scenes. We obtain many-to-many
alignments using features such as lemma overlap
and word stem similarity. When evaluated on four
movies8 (from the training set) whose content was
manually aligned to Wikipedia plots, the aligner
achieved a precision of .53 at a recall rate of .82 at
deciding whether a scene should be aligned. Scenes
are ranked according to the number of alignments
they contain. When creating gold chains at differ-
ent compression rates, we start with the best-ranked
scenes and then successively add lower ranked ones
until we reach the desired compression rate.

System Comparison In our experiments we com-
pared our scene extraction model (SceneSum)
against three baselines. The first baseline was based
on the minimum overlap (MinOv) of characters in
consecutive scenes and corresponds closely to the
diversity term in our objective. The second base-
line was based on the maximum overlap (MaxOv) of
characters and approximates the importance term in
our objective. The third baseline selects scenes at
random (averaged over 1,000 runs). Parameters for
our models were tuned on the training set, weights
for the terms in the objective were optimized to the
following values: λP = 1.0, λD = 0.3, and λI = 0.1.
We set the restart probability of our random walker

8“Cars 2”, “Shrek”, “Swordfish”, and “The Silence of the
Lambs”.
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1. Why does Trevor leave New York and where does
he move to?

2. What is KOS, who is their leader, and why is he
attending high school?

3. What happened to Cesar’s finger, how did he
eventually die?

4. Who killed Benny and how does Ellen find out?
5. Who is Rita and what becomes of her?

Table 1: Questions for the movie “One Eight Seven”.

to ε = 0.5, and the sigmoid scaling factor in our di-
versity term to k =−1.2.

Evaluation We assessed the output of our model
(and comparison systems) automatically against the
gold chains described above. We performed ex-
periments with compression rates in the range of
10% to 50% and measured performance in terms
of F1. In addition, we also evaluated the quality of
the extracted scenes as perceived by humans, which
is necessary, given the approximate nature of our
gold standard. We adopted a question-answering
(Q&A) evaluation paradigm which has been used
previously to evaluate summaries and document
compression (Morris et al., 1992; Mani et al., 2002;
Clarke and Lapata, 2010). Under the assumption
that the summary is to function as a replacement for
the full script, we can measure the extent to which
it can be used to find answers to questions which
have been derived from the entire script and are rep-
resentative of its core content. The more questions
a hypothetical system can answer, the better it is at
summarizing the script as a whole.

Two annotators were independently instructed to
read scripts (from our test set) and create Q&A pairs.
The annotators generated questions relating to the
plot of the movie and the development of its charac-
ters, requiring an unambiguous answer. They com-
pared and revised their Q&A pairs until a common
agreed-upon set of five questions per movie was
reached (see Table 1 for an example). In addition,
for every movie we asked subjects to name the main
characters, and summarize its plot (in no more than
four sentences). Using Amazon Mechanical Turk
(AMT)9, we elicited answers for eight scripts (four
comedies and thrillers) in four summarization con-

9https://www.mturk.com/

10% 20% 30% 40% 50%
MaxOv 0.40 0.50 0.58 0.64 0.71
MinOv 0.13 0.27 0.40 0.53 0.66
SceneSum 0.23 0.37 0.50 0.60 0.68
Random 0.10 0.20 0.30 0.40 0.50

Table 2: Model performance on automatically generated
gold standard (test set) at different compression rates.

ditions: using our model, the two baselines based
on minimum and maximum character overlap, and
the random system. All models were assessed at the
same compression rate of 20% which seems realis-
tic in an actual application environment, e.g., com-
puter aided summarization. The scripts were prese-
lected in an earlier AMT study where participants
were asked to declare whether they had seen the
movies in our test set (65 in total). We chose the
screenplays which had received the least viewings
so as to avoid eliciting answers based on familiar-
ity with the movie. A total of 29 participants, all
self-reported native English speakers, completed the
Q&A task. The answers provided by the subjects
were scored against an answer key. A correct an-
swer was marked with a score of one, and zero oth-
erwise. In cases where more answers were required
per question, partial scores were awarded to each
correct answer (e.g., 0.5). The score for a summary
is the average of its question scores.

7 Results

Table 2 shows the performance of SceneSum, our
scene extraction model, and the three comparison
systems (MaxOv, MinOv, Random) on the auto-
matic gold standard at five compression rates. As
can be seen, MaxOv performs best in terms of F1,
followed by SceneSum. We believe this is an ar-
tifact due to the way the gold standard was cre-
ated. Scenes with large numbers of main charac-
ters are more likely to figure in Wikipedia plot sum-
maries and will thus be more frequently aligned. A
chain based on maximum character overlap will fo-
cus on such scenes and will agree with the gold stan-
dard better compared to chains which take additional
script properties into account.

We further analyzed the scenes selected by Sce-
neSum and the comparison systems with respect to
their position in the script. Table 3 shows the av-
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Beginning Middle End
MaxOv 33.95 34.89 31.16
MinOv 34.30 33.91 31.80
SceneSum 35.30 33.54 31.16
Random 34.30 33.91 31.80

Table 3: Average percentage of scenes taken from the
beginning, middle and ends of movies, on automatic gold
standard test set.

erage percentage of scenes selected from the be-
ginning, middle, and end of the movie (based on
an equal division of the number of scenes in the
screenplay). As can be seen, the number of se-
lected scenes tends to be evenly distributed across
the entire movie. SceneSum has a slight bias to-
wards the beginning of the movie which is probably
natural, since leading characters appear early on, as
well as important scenes introducing essential story
elements (e.g., setting, points of view).

The results of our human evaluation study are
summarized in Table 4. We observe that SceneSum
summaries are overall more informative compared
to those created by the baselines. In other words,
AMT participants are able to answer more ques-
tions regarding the story of the movie when reading
SceneSum summaries. In two instances (“A Night-
mare on Elm Street 3” and “Mumford”), the over-
lap models score better, however, in this case the
movies largely consist of scenes with the same char-
acters and relatively little variation (“A Nightmare
on Elm Street 3”), or the camera follows the main
lead in his interactions with other characters (“Mum-
ford”). Since our model is not so character-centric,
it might be thrown off by non-character-based terms
in its objective, leading to the selection of unfavor-
able scenes. Table 4 also presents a break down of
the different types of questions answered by our par-
ticipants. Again, we see that in most cases a larger
percentage is answered correctly when reading Sce-
neSum summaries.

Overall, we observe that SceneSum extracts
chains which encapsulate important movie content
across the board. We should point out that al-
though our movies are broadly classified as come-
dies and thrillers, they have very different structure
and content. For example, “Little Athens” has a
very loose plotline, “Living in Oblivion” has multi-

Movies MaxOv MinOv SceneSum Random
Nightmare 3 69.18 74.49 60.24 56.33
Little Athens 34.92 31.75 36.90 33.33
Living in Oblivion 40.95 35.00 60.00 30.24
Mumford 72.86 60.00 30.00 54.29
One Eight Seven 47.30 38.89 67.86 30.16
Anniversary Party 45.39 56.35 62.46 37.62
We Own the Night 28.57 32.14 52.86 28.57
While She Was Out 72.86 75.71 85.00 45.71
All Questions 51.51 50.54 56.91 39.53
Five Questions 51.00 53.13 57.38 36.88
Plot Question 60.00 56.88 73.75 55.00
Characters Question 45.54 37.34 37.75 31.29

Table 4: Percentage of questions answered correctly.

ple dream sequences, whereas “While She was Out”
contains only a few characters and a series of im-
portant scenes towards the end. Despite this variety,
SceneSum performs consistently better in our task-
based evaluation.

8 Conclusions

In this paper we have developed a graph-based
model for script summarization. We formalized
the process of generating a shorter version of a
screenplay as the task of finding an optimal chain
of scenes, which are diverse, important, and ex-
hibit logical progression. A large-scale evaluation
based on a question-answering task revealed that our
method produces more informative summaries com-
pared to several baselines. In the future, we plan
to explore model performance in a wider range of
movie genres as well as its applicability to other
NLP tasks (e.g., book summarization or event ex-
traction). We would also like to automatically deter-
mine the compression rate which should presumably
vary according to the movie’s length and content. Fi-
nally, our long-term goal is to be able to generate
loglines as well as movie plot summaries.
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