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Abstract

Word embeddings have been found useful
for many NLP tasks, including part-of-speech
tagging, named entity recognition, and pars-
ing. Adding multilingual context when learn-
ing embeddings can improve their quality,
for example via canonical correlation analysis
(CCA) on embeddings from two languages. In
this paper, we extend this idea to learn deep
non-linear transformations of word embed-
dings of the two languages, using the recently
proposed deep canonical correlation analy-
sis. The resulting embeddings, when eval-
uated on multiple word and bigram similar-
ity tasks, consistently improve over monolin-
gual embeddings and over embeddings trans-
formed with linear CCA.

1 Introduction

Learned word representations are widely used in
NLP tasks such as tagging, named entity recogni-
tion, and parsing (Miller et al., 2004; Koo et al.,
2008; Turian et al., 2010; Täckström et al., 2012;
Huang et al., 2014; Bansal et al., 2014). The idea
in such representations is that words with similar
context have similar meaning, and hence should
be nearby in a clustering or vector space. Con-
tinuous representations are learned with neural lan-
guage models (Bengio et al., 2003; Mnih and Hin-
ton, 2007; Mikolov et al., 2013) or spectral meth-
ods (Deerwester et al., 1990; Dhillon et al., 2011).

The context used to learn these representations is
typically the set of nearby words of each word oc-
currence. Prior work has found that adding transla-
tional context results in better representations (Diab
and Resnik, 2002; Täckström et al., 2012; Bansal et
al., 2012; Zou et al., 2013). Recently, Faruqui and
Dyer (2014) applied canonical correlation analysis
(CCA) to word embeddings of two languages, and
found that the resulting embeddings represent word

similarities better than the original monolingual em-
beddings.

In this paper, we follow the same intuition as
Faruqui and Dyer (2014) but rather than learning lin-
ear transformations with CCA, we permit the cor-
related information to lie in nonlinear subspaces of
the original embeddings. We use the recently pro-
posed deep canonical correlation analysis (DCCA)
technique of Andrew et al. (2013) to learn non-
linear transformations of two languages’ embed-
dings that are highly correlated. We evaluate our
DCCA-transformed embeddings on word similarity
tasks like WordSim-353 (Finkelstein et al., 2001)
and SimLex-999 (Hill et al., 2014), and also on
the bigram similarity task of Mitchell and Lapata
(2010) (using additive composition), obtaining con-
sistent improvements over the original embeddings
and over linear CCA. We also compare tuning crite-
ria and ensemble methods for these architectures.

2 Method
We assume that we have initial word embeddings for
two languages, denoted by random vectors x ∈ RDx

and y ∈ RDy , and a set of bilingual word pairs. Our
goal is to obtain a representation for each language
that incorporates useful information from both x and
y. We consider the two input monolingual word em-
beddings as different views of the same latent se-
mantic signal. There are multiple ways to incor-
porate multilingual information into word embed-
dings. Here we follow Faruqui and Dyer (2014) in
taking a CCA-based approach, in which we project
the original embeddings onto their maximally corre-
lated subspaces. However, instead of relying on lin-
ear correlation, we learn more powerful non-linear
transformations of each view via deep networks.
Canonical Correlation Analysis A popular
method for multi-view representation learning is
canonical correlation analysis (CCA; Hotelling,
1936). Its objective is to find two vectors u ∈ RDx
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and v ∈ RDy such that projections of the two views
onto these vectors are maximally (linearly) corre-
lated:

max
u∈RDx ,v∈RDy

E
[
(u⊤x)(v⊤y)

]√
E [(u⊤x)2]

√
E [(v⊤y)2]

=
u⊤Σxyv√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-
view covariance matrices. (1) is extended to learn
multi-dimensional projections by optimizing the
sum of correlations in all dimensions, subject to
different projected dimensions being uncorrelated.
Given sample pairs {(xi,yi)}N

i=1, the empirical es-
timates of the covariance matrices are Σ̂xx =
1
N

∑N
i=1 xix⊤i + rxI, Σ̂yy = 1

N

∑N
i=1 yiy⊤i + ryI

and Σ̂xy = 1
N

∑N
i=1 xiy⊤i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;
De Bie and De Moor, 2003). Then the optimal k-
dimensional projection mappings are given in closed
form via the rank-k singular value decomposition

(SVD) of the Dx ×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy .

2.1 Deep Canonical Correlation Analysis
A linear feature mapping is often not sufficiently
powerful to faithfully capture the hidden, non-linear
relationships within the data. Recently, Andrew et
al. (2013) proposed a nonlinear extension of CCA
using deep neural networks, dubbed deep canonical
correlation analysis (DCCA) and illustrated in Fig-
ure 1. In this model, two (possibly deep) neural
networks f and g are used to extract features from
each view, and trained to maximize the correlations
between outputs in the two views, measured by a
linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-
tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv√
u⊤Σffu

√
v⊤Σggv

, (2)

where Wf and Wg are the weights of the two net-
works and Σfg, Σff and Σgg are covariance ma-
trices computed for {f(xi),g(yi)}N

i=1 in the same
way as CCA. The final transformation is the com-
position of the neural network and CCA projection,
e.g., u⊤f(x) for the first view. Unlike CCA, DCCA
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Figure 1: Illustration of deep CCA.
does not have a closed-form solution, but the param-
eters can be learned via gradient-based optimization,
with either batch algorithms like L-BFGS as in (An-
drew et al., 2013) or a mini-batch stochastic gradient
descent-like approach as in (Wang et al., 2015). We
choose the latter in this paper.

An alternative nonlinear extension of CCA is ker-
nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov
et al., 2003), which introduces nonlinearity through
kernels. DCCA scales better with data size, as
KCCA involves the SVD of an N × N matrix. An-
drew et al. (2013) showed that DCCA achieves bet-
ter correlation on held-out data than CCA/KCCA,
and Wang et al. (2015) found that DCCA outper-
forms CCA and KCCA on a speech recognition task.

3 Experiments
We use English and German as our two languages.
Our original monolingual word vectors are the same
as those used by Faruqui and Dyer (2014). They
are 640-dimensional and are estimated via latent
semantic analysis on the WMT 2011 monolingual
news corpora.1 We use German-English translation
pairs as the input to CCA and DCCA, using the
same set of 36K pairs as used by Faruqui and Dyer.
These pairs contain, for each of 36K English word
types, the single most frequently aligned German
word. They were obtained using the word aligner
in cdec (Dyer et al., 2010) run on the WMT06-
10 news commentary corpora and Europarl. After
training, we apply the learned CCA/DCCA projec-
tion mappings to the original English word embed-
dings (180K words) and use these transformed em-
beddings for our evaluation tasks.

3.1 Evaluation Tasks
We compare our DCCA-based embeddings to the
original word vectors and to CCA-based em-

1www.statmt.org/wmt11/
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beddings on several tasks. We use WordSim-
353 (Finkelstein et al., 2001), which contains 353
English word pairs with human similarity ratings.
It is divided into WS-SIM and WS-REL by Agirre
et al. (2009) to measure similarity and relatedness.
We also use SimLex-999 (Hill et al., 2014), a new
similarity-focused dataset consisting of 666 noun
pairs, 222 verb pairs, and 111 adjective pairs. Fi-
nally, we use the bigram similarity dataset from
Mitchell and Lapata (2010) which has 3 subsets,
adjective-noun (AN), noun-noun (NN), and verb-
object (VN), and dev and test sets for each. For the
bigram task, we simply add the word vectors output
by CCA or DCCA to get bigram vectors.2

All task datasets contain pairs with human sim-
ilarity ratings. To evaluate embeddings, we com-
pute cosine similarity between the two vectors in
each pair, order the pairs by similarity, and com-
pute Spearman’s correlation (ρ) between the model’s
ranking and human ranking.

3.2 Training
We normalize the 36K training pair vectors to unit
norm (as also done by Faruqui and Dyer). We
then remove the per-dimension mean and standard
deviation of this set of training pairs, as is typi-
cally done in neural network training (LeCun et al.,
1998). We do the same to the original 180K Eng-
lish word vectors (normalize to unit norm, remove
the mean/standard deviation of the size-36K train-
ing set), then apply our CCA/DCCA mappings to
these 180K vectors. The resulting 180K vectors are
further normalized to zero mean before cosine simi-
larities between test pairs are computed, as also done
by Faruqui and Dyer.

For both CCA and DCCA, we tune the
output dimensionality among factors in
{0.2, 0.4, 0.6, 0.8, 1.0} of the original embed-
ding dimension (640), and regularization (rx, ry)
from {10−6, 10−5, 10−4, 10−3}, based on the 7
tuning tasks discussed below.

For DCCA, we use standard deep neural net-
works with rectified linear units and tune the
depth (1 to 4 hidden layers) and layer widths (in
{128, 256, 512, 1024, 2048, 4096}) separately for
each language. For optimization, we use stochastic

2We also tried multiplication but it performed worse. In fu-
ture work, we will directly train on bigram translation pairs.

gradient descent (SGD) as described by Wang et al.
(2015). We tune SGD hyperparameters on a small
grid, choosing a mini-batch size of 3000, learning
rate of 0.0001, and momentum of 0.99.

3.3 Tuning
Our main results are based on tuning hyperparame-
ters (of CCA/DCCA) on 7 word similarity tasks.3

We perform additional experiments in which we
tune on the development sets for the bigram tasks.
We set aside WS-353, SimLex-999, and the test sets
of the bigram tasks as held-out test sets. We consider
two tuning criteria:
BestAvg: Choose the hyperparameters with the best
average performance across the 7 tuning tasks. This
is the only tuning criterion used for CCA.
MostBeat: For DCCA, choose the hyperparameters
that beat the best CCA embeddings on a maximum
number of the 7 tasks; to break ties here, choose the
hyperparameters with the best average performance.
The idea is that we want to find a setting that gener-
alizes to many tasks.

We also consider simple ensembles by averaging
the cosine similarities from the three best settings
under each of these two criteria.

3.4 Results
Table 1 shows our main results on the word and bi-
gram similarity tasks. All values are Spearman’s
correlation (ρ). We show the original word vector
results, the best-tuned CCA setting (CCA-1), the en-
semble of the top-3 CCA settings (CCA-Ens), and
the same for DCCA (with both tuning criteria). The
DCCA results show an overall improvement on most
tasks over linear CCA (all of the shaded DCCA re-
sults are better than all corresponding CCA results).

Each of our tuning criteria for DCCA performs
well, and almost always better than CCA. BestAvg
is better on some tasks while MostBeat is better on
others; we report both here to bring attention to and
promote discussion about the effects of tuning meth-
ods when learning representations in the absence of
supervision or in-domain tuning data.

In Table 2, we report additional bigram similarity
results obtained by tuning on the dev sets of the bi-

3RG-65 (Rubenstein and Goodenough, 1965), MC-30
(Miller and Charles, 1991), MTurk-287 (Radinsky et al., 2011),
MTurk-771, MEN (Bruni et al., 2014), Rare Word (Luong et al.,
2013), and YP-130 (Yang and Powers, 2006).
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Embeddings WS-353 WS-SIM WS-REL SL-999 AN NN VN Avg Dim
Original 46.7 56.3 36.6 26.5 26.5 38.1 34.1 32.9 640
CCA-1 67.2 73.0 63.4 40.7 42.4 48.1 37.4 42.6 384

CCA-Ens 67.5 73.1 63.7 40.4 42.0 48.2 37.8 42.7 384
DCCA-1 (BestAvg) 69.6 73.9 65.6 38.9 35.0 40.9 41.3 39.1 128

DCCA-Ens (BestAvg) 70.8 75.2 67.3 41.7 42.4 45.7 40.1 42.7 128
DCCA-1 (MostBeat) 68.6 73.5 65.7 42.3 44.4 44.7 36.7 41.9 384

DCCA-Ens (MostBeat) 69.9 74.4 66.7 42.3 43.7 47.4 38.8 43.3 384
Table 1: Main results on word and bigram similarity tasks, tuned on 7 development tasks (see text for
details). Shading indicates a result that matches or improves the best linear CCA result; boldface indicates
the best result in a given column. See Section 3.4 for discussion on NN results.

Embeddings AN NN VN Avg
CCA 42.4 48.1 37.4 42.6

Deep CCA 45.5 47.1 45.1 45.9
Table 2: Bigram results, tuned on bigram dev sets.

gram tasks themselves (as provided by Mitchell and
Lapata), since the 7 tuning tasks are not particularly
related to the bigram test sets. We see that DCCA
can achieve even stronger improvements over CCA
and overall using these related dev sets.

We note that the performance on the NN task
does not improve. The typical variance of annota-
tor scores for each bigram pair was larger for the
NN dataset than for the other bigram datasets, sug-
gesting noisier annotations. Also, we found that the
NN annotations often reflected topical relatedness
rather than functional similarity, e.g., television set
and television programme are among the most simi-
lar noun-noun bigrams. We expect that multilingual
information would help embeddings to more closely
reflect functional similarity.

For DCCA, we found that the best-performing
networks were typically asymmetric, with 1 to 2 lay-
ers on the English side and 2 to 4 on the German
side. The best network structure on the bigram VN
development set is 640-128-128 for the English view
and 640-128-512-128 for the German view, with a
final CCA projection layer with dimensionality 128
for each language.

4 Discussion
Normalization and Evaluation We note that the
cosine similarity (and thus Spearman’s ρ) between a
pair of words is not invariant to the series of simple
(affine) transformations done by the normalizations
in our procedure. For their baseline, Faruqui and
Dyer (2014) did not remove the standard deviation

better with DCCA worse with DCCA
arrive come author creator
locate find leader manager

way manner buddy companion
recent new crowd bunch

take obtain achieve succeed
boundary border attention interest

win accomplish join add
contemplate think mood emotion

Table 3: Highly-similar pairs in SimLex-999 that
improved/degraded the most under DCCA. Pairs are
sorted in decreasing order according to the amount
of improvement/degradation.

of the 36K training set for the 180K English vocabu-
lary during testing. We have accidentally found that
this normalization step alone greatly improves the
performance of the original vectors.

For example, the WS-353 correlation improves
from 46.7 to 67.1, essentially matching the linear
CCA correlations, though DCCA still outperforms
them both. This indicates that the cosine similarity
is not stable, and it is likely better to learn a dis-
tance/similarity function (using labeled tuning data)
atop the learned features such that similarities be-
tween selected pairs will match the human similari-
ties, or such that the rankings will match.

Error Analysis We analyze high-similarity word
pairs that change the most with DCCA, as compared
to both linear CCA and the original vectors.

For a word pair w, we use r(w) to refer to its
similarity rank, subscripting it whether it is com-
puted according to human ratings (rh) or if based
on cosine similarity via the original vectors (ro),
CCA-1 (rc), or DCCA-1 MostBeat (rd). We define
δa(w) = |ra(w) − rh(w)| and compute ∆(w) =
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Original CCA-1 DCCA-1 (MostBeat)
Figure 2: t-SNE visualization of synonyms (green) and antonyms (red, capitalized) of dangerous.

δd(w) − (δc(w) + δo(w)). If ∆(w) < 0, then
word pair w was closer to the human ranking using
DCCA. Table 3 shows word pairs from SimLex-999
with high human similarity ratings (≥ 7 out of 10);
column 1 shows pairs with smallest ∆ values, and
column 2 shows pairs with largest ∆ values.

Among pairs in column 1, many contain words
with several senses. Using bilingual information is
likely to focus on the most frequent sense in the bi-
text, due to our use of the most frequently-aligned
German word in each training pair. By contrast,
using only monolingual context is expected to find
an embedding that blends the contextual information
across all word senses.

Several pairs from column 2 show hypernym
rather than paraphrase relationships, e.g., author-
creator and leader-manager. Though these pairs are
rated as highly similar by annotators, linear CCA
made them less similar than the original vectors, and
DCCA made them less similar still. This matches
our intuition that bilingual information should en-
courage paraphrase-like similarity and thereby dis-
courage the similarity of hypernym-hyponym pairs.
Visualizations We visualized several synonym-
antonym word lists and often found that DCCA
more cleanly separated synonyms from antonyms
than CCA or the original vectors. An example of
the clearest improvement is shown in Fig. 2.

5 Related work
Previous work has successfully used translational
context for word representations (Diab and Resnik,
2002; Zhao et al., 2005; Täckström et al., 2012;
Bansal et al., 2012; Faruqui and Dyer, 2014), includ-
ing via hand-designed vector space models (Peirs-
man and Padó, 2010; Sumita, 2000) or via unsuper-

vised LDA and LSA (Boyd-Graber and Blei, 2009;
Zhao and Xing, 2006).

There have been other recent deep learning ap-
proaches to bilingual representations, e.g., based on
a joint monolingual and bilingual objective (Zou
et al., 2013). There has also been recent interest
in learning bilingual representations without using
word alignments (Chandar et al., 2014; Gouws et al.,
2014; Kočiskỳ et al., 2014; Vulic and Moens, 2013).

This research is also related to early examples of
learning bilingual lexicons using monolingual cor-
pora (Koehn and Knight, 2002; Haghighi et al.,
2008); the latter used CCA to find matched word
pairs. Irvine and Callison-Burch (2013) used a su-
pervised learning method with multiple monolingual
signals. Finally, other work on CCA and spectral
methods has been used in the context of other types
of views (Collobert and Weston, 2008; Dhillon et al.,
2011; Klementiev et al., 2012; Chang et al., 2013).

6 Conclusion
We have demonstrated how bilingual information
can be incorporated into word embeddings via deep
canonical correlation analysis (DCCA). The DCCA
embeddings consistently outperform linear CCA
embeddings on word and bigram similarity tasks.
Future work could compare DCCA to other non-
linear approaches discussed in §5, compare differ-
ent languages as multiview context, and extend to
aligned phrase pairs, and to unaligned data.
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