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Abstract

We extend the SKIP-GRAM model of Mikolov
et al. (2013a) by taking visual information into
account. Like SKIP-GRAM, our multimodal
models (MMSKIP-GRAM) build vector-based
word representations by learning to predict
linguistic contexts in text corpora. However,
for a restricted set of words, the models are
also exposed to visual representations of the
objects they denote (extracted from natural
images), and must predict linguistic and visual
features jointly. The MMSKIP-GRAM mod-
els achieve good performance on a variety of
semantic benchmarks. Moreover, since they
propagate visual information to all words, we
use them to improve image labeling and re-
trieval in the zero-shot setup, where the test
concepts are never seen during model training.
Finally, the MMSKIP-GRAM models discover
intriguing visual properties of abstract words,
paving the way to realistic implementations of
embodied theories of meaning.

1 Introduction

Distributional semantic models (DSMs) derive
vector-based representations of meaning from pat-
terns of word co-occurrence in corpora. DSMs have
been very effectively applied to a variety of seman-
tic tasks (Clark, 2015; Mikolov et al., 2013b; Turney
and Pantel, 2010). However, compared to human
semantic knowledge, these purely textual models,
just like traditional symbolic AI systems (Harnad,
1990; Searle, 1984), are severely impoverished, suf-
fering of lack of grounding in extra-linguistic modal-
ities (Glenberg and Robertson, 2000). This observa-

tion has led to the development of multimodal dis-
tributional semantic models (MDSMs) (Bruni et al.,
2014; Feng and Lapata, 2010; Silberer and Lapata,
2014), that enrich linguistic vectors with perceptual
information, most often in the form of visual fea-
tures automatically induced from image collections.

MDSMs outperform state-of-the-art text-based
approaches, not only in tasks that directly require
access to visual knowledge (Bruni et al., 2012), but
also on general semantic benchmarks (Bruni et al.,
2014; Silberer and Lapata, 2014). However, current
MDSMs still have a number of drawbacks. First,
they are generally constructed by first separately
building linguistic and visual representations of the
same concepts, and then merging them. This is ob-
viously very different from how humans learn about
concepts, by hearing words in a situated perceptual
context. Second, MDSMs assume that both linguis-
tic and visual information is available for all words,
with no generalization of knowledge across modal-
ities. Third, because of this latter assumption of
full linguistic and visual coverage, current MDSMs,
paradoxically, cannot be applied to computer vision
tasks such as image labeling or retrieval, since they
do not generalize to images or words beyond their
training set.

We introduce the multimodal skip-gram models,
two new MDSMs that address all the issues above.
The models build upon the very effective skip-gram
approach of Mikolov et al. (2013a), that constructs
vector representations by learning, incrementally, to
predict the linguistic contexts in which target words
occur in a corpus. In our extension, for a subset
of the target words, relevant visual evidence from
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natural images is presented together with the cor-
pus contexts (just like humans hear words accompa-
nied by concurrent perceptual stimuli). The model
must learn to predict these visual representations
jointly with the linguistic features. The joint objec-
tive encourages the propagation of visual informa-
tion to representations of words for which no direct
visual evidence was available in training. The result-
ing multimodally-enhanced vectors achieve remark-
ably good performance both on traditional seman-
tic benchmarks, and in their new application to the
“zero-shot” image labeling and retrieval scenario.
Very interestingly, indirect visual evidence also af-
fects the representation of abstract words, paving the
way to ground-breaking cognitive studies and novel
applications in computer vision.

2 Related Work

There is by now a large literature on multimodal
distributional semantic models. We focus here on
a few representative systems. Bruni et al. (2014)
propose a straightforward approach to MDSM in-
duction, where text- and image-based vectors for the
same words are constructed independently, and then
“mixed” by applying the Singular Value Decompo-
sition to their concatenation. An empirically supe-
rior model has been proposed by Silberer and La-
pata (2014), who use more advanced visual repre-
sentations relying on images annotated with high-
level “visual attributes”, and a multimodal fusion
strategy based on stacked autoencoders. Kiela and
Bottou (2014) adopt instead a simple concatena-
tion strategy, but obtain empirical improvements by
using state-of-the-art convolutional neural networks
to extract visual features, and the skip-gram model
for text. These and related systems take a two-
stage approach to derive multimodal spaces (uni-
modal induction followed by fusion), and they are
only tested on concepts for which both textual and
visual labeled training data are available (the pio-
neering model of Feng and Lapata (2010) did learn
from text and images jointly using Topic Models,
but was shown to be empirically weak by Bruni et
al. (2014)).

Howell et al. (2005) propose an incremental mul-
timodal model based on simple recurrent networks
(Elman, 1990), focusing on grounding propagation

from early-acquired concrete words to a larger vo-
cabulary. However, they use subject-generated fea-
tures as surrogate for realistic perceptual informa-
tion, and only test the model in small-scale simula-
tions of word learning. Hill and Korhonen (2014),
whose evaluation focuses on how perceptual infor-
mation affects different word classes more or less
effectively, similarly to Howell et al., integrate per-
ceptual information in the form of subject-generated
features and text from image annotations into a skip-
gram model. They inject perceptual information
by merging words expressing perceptual features
with corpus contexts, which amounts to linguistic-
context re-weighting, thus making it impossible to
separate linguistic and perceptual aspects of the in-
duced representation, and to extend the model with
non-linguistic features. We use instead authentic im-
age analysis as proxy to perceptual information, and
we design a robust way to incorporate it, easily ex-
tendible to other signals, such as feature norm or
brain signal vectors (Fyshe et al., 2014).

The recent work on so-called zero-shot learning
to address the annotation bottleneck in image la-
beling (Frome et al., 2013; Lazaridou et al., 2014;
Socher et al., 2013) looks at image- and text-based
vectors from a different perspective. Instead of com-
bining visual and linguistic information in a com-
mon space, it aims at learning a mapping from
image- to text-based vectors. The mapping, induced
from annotated data, is then used to project images
of objects that were not seen during training onto
linguistic space, in order to retrieve the nearest word
vectors as labels. Multimodal word vectors should
be better-suited than purely text-based vectors for
the task, as their similarity structure should be closer
to that of images. However, traditional MDSMs can-
not be used in this setting, because they do not cover
words for which no manually annotated training im-
ages are available, thus defeating the generalizing
purpose of zero-shot learning. We will show be-
low that our multimodal vectors, that are not ham-
pered by this restriction, do indeed bring a signifi-
cant improvement over purely text-based linguistic
representations in the zero-shot setup.

Multimodal language-vision spaces have also
been developed with the goal of improving cap-
tion generation/retrieval and caption-based image
retrieval (Karpathy et al., 2014; Kiros et al., 2014;
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Mao et al., 2014; Socher et al., 2014). These meth-
ods rely on necessarily limited collections of cap-
tioned images as sources of multimodal evidence,
whereas we automatically enrich a very large corpus
with images to induce general-purpose multimodal
word representations, that could be used as input
embeddings in systems specifically tuned to caption
processing. Thus, our work is complementary to this
line of research.

3 Multimodal Skip-gram Architecture

3.1 Skip-gram Model
We start by reviewing the standard SKIP-GRAM

model of Mikolov et al. (2013a), in the version
we use. Given a text corpus, SKIP-GRAM aims
at inducing word representations that are good at
predicting the context words surrounding a target
word. Mathematically, it maximizes the objective
function:

1
T

T∑
t=1

 ∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

 (1)

where w1, w2, ..., wT are words in the training
corpus and c is the size of the window around
target wt, determining the set of context words to
be predicted by the induced representation of wt.
Following Mikolov et al., we implement a subsam-
pling option randomly discarding context words as
an inverse function of their frequency, controlled by
hyperparameter t. The probability p(wt+j |wt), the
core part of the objective in Equation 1, is given by
softmax:

p(wt+j |wt) =
e
u′wt+j

T uwt∑W
w′=1 e

u′
w′

T uwt

(2)

where uw and u′w are the context and target vector
representations of word w respectively, and W is
the size of the vocabulary. Due to the normaliza-
tion term, Equation 2 requires O(|W |) time com-
plexity. A considerable speedup to O(log |W |), is
achieved by using the hierarchical version of Equa-
tion 2 (Morin and Bengio, 2005), adopted here.

3.2 Injecting visual knowledge
We now assume that word learning takes place in a
situated context, in which, for a subset of the target
words, the corpus contexts are accompanied by a

the cute

cat

sat on the matlittle CAT

+

=

maximize context prediction maximize similarity

map to visual space

Figure 1: “Cartoon” of MMSKIP-GRAM-B. Lin-
guistic context vectors are actually associated to
classes of words in a tree, not single words. SKIP-
GRAM is obtained by ignoring the visual objective,
MMSKIP-GRAM-A by fixing Mu→v to the identity
matrix.

visual representation of the concepts they denote
(just like in a conversation, where a linguistic
utterance will often be produced in a visual scene
including some of the word referents). The visual
representation is also encoded in a vector (we
describe in Section 4 below how we construct
it). We thus make the skip-gram “multimodal” by
adding a second, visual term to the original linguis-
tic objective, that is, we extend Equation 1 as follow:

1
T

T∑
t=1

(Lling(wt) + Lvision(wt)) (3)

where Lling(wt) is the text-based skip-gram ob-
jective

∑
−c≤j≤c,j 6=0 log p(wt+j |wt), whereas the

Lvision(wt) term forces word representations to take
visual information into account. Note that if a word
wt is not associated to visual information, as is
systematically the case, e.g., for determiners and
non-imageable nouns, but also more generally for
any word for which no visual data are available,
Lvision(wt) is set to 0.

We now propose two variants of the visual objec-
tive, resulting in two distinguished multi-modal ver-
sions of the skip-gram model.

3.3 Multi-modal Skip-gram Model A
One way to force word embeddings to take visual
representations into account is to try to directly
increase the similarity (expressed, for example,
by the cosine) between linguistic and visual rep-
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resentations, thus aligning the dimensions of the
linguistic vector with those of the visual one (recall
that we are inducing the first, while the second is
fixed), and making the linguistic representation of a
concept “move” closer to its visual representation.
We maximize similarity through a max-margin
framework commonly used in models connecting
language and vision (Weston et al., 2010; Frome et
al., 2013). More precisely, we formulate the visual
objective Lvision(wt) as:
−

∑
w′∼Pn(w)

max(0, γ− cos(uwt , vwt)+ cos(uwt , vw′)) (4)

where the minus sign turns a loss into a cost, γ is
the margin, uwt is the target multimodally-enhanced
word representation we aim to learn, vwt is the cor-
responding visual vector (fixed in advance) and vw′

ranges over visual representations of words (fea-
tured in our image dictionary) randomly sampled
from distribution Pn(wt). These random visual rep-
resentations act as “negative” samples, encouraging
uwt to be more similar to its own visual representa-
tion than to that of other words. The sampling distri-
bution is currently set to uniform, and the number of
negative samples controlled by hyperparameter k.

3.4 Multi-modal Skip-gram Model B
The visual objective in MMSKIP-GRAM-A has the
drawback of assuming a direct comparison of lin-
guistic and visual representations, constraining them
to be of equal size. MMSKIP-GRAM-B lifts this
constraint by including an extra layer mediating be-
tween linguistic and visual representations (see Fig-
ure 1 for a sketch of MMSKIP-GRAM-B). Learning
this layer is equivalent to estimating a cross-modal
mapping matrix from linguistic onto visual repre-
sentations, jointly induced with linguistic word em-
beddings. The extension is straightforwardly imple-
mented by substituting, into Equation 4, the word
representation uwt with zwt = Mu→vuwt , where
Mu→v is the cross-modal mapping matrix to be in-
duced. To avoid overfitting, we also add an L2 reg-
ularization term for Mu→v to the overall objective
(Equation 3), with its relative importance controlled
by hyperparamer λ.

4 Experimental Setup

The parameters of all models are estimated by back-
propagation of error via stochastic gradient descent.

Our text corpus is a Wikipedia 2009 dump compris-
ing approximately 800M tokens.1 To train the multi-
modal models, we add visual information for 5,100
words that have an entry in ImageNet (Deng et al.,
2009), occur at least 500 times in the corpus and
have concreteness score ≥ 0.5 according to Turney
et al. (2011). On average, about 5% tokens in the
text corpus are associated to a visual representation.
To construct the visual representation of a word, we
sample 100 pictures from its ImageNet entry, and
extract a 4096-dimensional vector from each picture
using the Caffe toolkit (Jia et al., 2014), together
with the pre-trained convolutional neural network of
Krizhevsky et al. (2012). The vector corresponds
to activation in the top (FC7) layer of the network.
Finally, we average the vectors of the 100 pictures
associated to each word, deriving 5,100 aggregated
visual representations.

Hyperparameters For both SKIP-GRAM and the
MMSKIP-GRAM models, we fix hidden layer size
to 300. To facilitate comparison between MMSKIP-
GRAM-A and MMSKIP-GRAM-B, and since the for-
mer requires equal linguistic and visual dimension-
ality, we keep the first 300 dimensions of the visual
vectors. For the linguistic objective, we use hierar-
chical softmax with a Huffman frequency-based en-
coding tree, setting frequency subsampling option
t= 0.001 and window size c= 5, without tuning.
The following hyperparameters were tuned on the
text9 corpus:2 MMSKIP-GRAM-A: k=20, γ=0.5;
MMSKIP-GRAM-B: k=5, γ=0.5, λ=0.0001.

5 Experiments

5.1 Approximating human judgments

Benchmarks A widely adopted way to test DSMs
and their multimodal extensions is to measure how
well model-generated scores approximate human
similarity judgments about pairs of words. We put
together various benchmarks covering diverse as-
pects of meaning, to gain insights on the effect of
perceptual information on different similarity facets.
Specifically, we test on general relatedness (MEN,
Bruni et al. (2014), 3K pairs), e.g., pickles are re-
lated to hamburgers, semantic (≈ taxonomic) simi-

1http://wacky.sslmit.unibo.it
2http://mattmahoney.net/dc/textdata.html
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larity (Simlex-999, Hill et al. (2014), 1K pairs; Sem-
Sim, Silberer and Lapata (2014), 7.5K pairs), e.g.,
pickles are similar to onions, as well as visual sim-
ilarity (VisSim, Silberer and Lapata (2014), same
pairs as SemSim with different human ratings), e.g.,
pickles look like zucchinis.

Alternative Multimodal Models We compare
our models against several recent alternatives. We
test the vectors made available by Kiela and Bottou
(2014). Similarly to us, they derive textual features
with the skip-gram model (from a portion of the
Wikipedia and the British National Corpus) and use
visual representations extracted from the ESP data-
set (von Ahn and Dabbish, 2004) through a convo-
lutional neural network (Oquab et al., 2014). They
concatenate textual and visual features after normal-
izing to unit length and centering to zero mean. We
also test the vectors that performed best in the evalu-
ation of Bruni et al. (2014), based on textual features
extracted from a 3B-token corpus and SIFT-based
Bag-of-Visual-Words visual features (Sivic and Zis-
serman, 2003) extracted from the ESP collection.
Bruni and colleagues fuse a weighted concatenation
of the two components through SVD. We further re-
implement both methods with our own textual and
visual embeddings as CONCATENATION and SVD
(with target dimensionality 300, picked without tun-
ing). Finally, we present for comparison the results
on SemSim and VisSim reported by Silberer and La-
pata (2014), obtained with a stacked-autoencoders
architecture run on textual features extracted from
Wikipedia with the Strudel algorithm (Baroni et al.,
2010) and attribute-based visual features (Farhadi et
al., 2009) extracted from ImageNet.

All benchmarks contain a fair amount of words
for which we did not use direct visual evidence. We
are interested in assessing the models both in terms
of how they fuse linguistic and visual evidence when
they are both available, and for their robustness in
lack of full visual coverage. We thus evaluate them
in two settings. The visual-coverage columns of Ta-
ble 1 (those on the right) report results on the subsets
for which all compared models have access to direct
visual information for both words. We further report
results on the full sets (“100%” columns of Table
1) for models that can propagate visual information
and that, consequently, can meaningfully be tested

on words without direct visual representations.

Results The state-of-the-art visual CNN FEA-
TURES alone perform remarkably well, outperform-
ing the purely textual model (SKIP-GRAM) in two
tasks, and achieving the best absolute performance
on the visual-coverage subset of Simlex-999. Re-
garding multimodal fusion (that is, focusing on
the visual-coverage subsets), both MMSKIP-GRAM

models perform very well, at the top or just below
it on all tasks, with comparable results for the two
variants. Their performance is also good on the
full data sets, where they consistently outperform
SKIP-GRAM and SVD (that is much more strongly
affected by lack of complete visual information).
They’re just a few points below the state-of-the-art
MEN correlation (0.8), achieved by Baroni et al.
(2014) with a corpus 3 larger than ours and exten-
sive tuning. MMSKIP-GRAM-B is close to the state
of the art for Simlex-999, reported by the resource
creators to be at 0.41 (Hill et al., 2014). Most im-
pressively, MMSKIP-GRAM-A reaches the perfor-
mance level of the Silberer and Lapata (2014) model
on their SemSim and VisSim data sets, despite the
fact that the latter has full visual-data coverage and
uses attribute-based image representations, requir-
ing supervised learning of attribute classifiers, that
achieve performance in the semantic tasks compa-
rable or higher than that of our CNN features (see
Table 3 in Silberer and Lapata (2014)). Finally, if
the multimodal models (unsurprisingly) bring about
a large performance gain over the purely linguistic
model on visual similarity, the improvement is con-
sistently large also for the other benchmarks, con-
firming that multimodality leads to better semantic
models in general, that can help in capturing differ-
ent types of similarity (general relatedness, strictly
taxonomic, perceptual).

While we defer to further work a better un-
derstanding of the relation between multimodal
grounding and different similarity relations, Table
2 provides qualitative insights on how injecting
visual information changes the structure of se-
mantic space. The top SKIP-GRAM neighbours of
donuts are places where you might encounter them,
whereas the multimodal models relate them to other
take-away food, ranking visually-similar pizzas at
the top. The owl example shows how multimodal
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Model MEN Simlex-999 SemSim VisSim
100% 42% 100% 29% 100% 85% 100% 85%

KIELA AND BOTTOU - 0.74 - 0.33 - 0.60 - 0.50
BRUNI ET AL. - 0.77 - 0.44 - 0.69 - 0.56
SILBERER AND LAPATA - - - - 0.70 - 0.64 -
CNN FEATURES - 0.62 - 0.54 - 0.55 - 0.56
SKIP-GRAM 0.70 0.68 0.33 0.29 0.62 0.62 0.48 0.48
CONCATENATION - 0.74 - 0.46 - 0.68 - 0.60
SVD 0.61 0.74 0.28 0.46 0.65 0.68 0.58 0.60
MMSKIP-GRAM-A 0.75 0.74 0.37 0.50 0.72 0.72 0.63 0.63
MMSKIP-GRAM-B 0.74 0.76 0.40 0.53 0.66 0.68 0.60 0.60

Table 1: Spearman correlation between model-generated similarities and human judgments. Right columns
report correlation on visual-coverage subsets (percentage of original benchmark covered by subsets on first
row of respective columns). First block reports results for out-of-the-box models; second block for visual
and textual representations alone; third block for our implementation of multimodal models.

Target SKIP-GRAM MMSKIP-GRAM-A MMSKIP-GRAM-B
donut fridge, diner, candy pizza, sushi, sandwich pizza, sushi, sandwich
owl pheasant, woodpecker, squirrel eagle, woodpecker, falcon eagle, falcon, hawk
mural sculpture, painting, portrait painting, portrait, sculpture painting, portrait, sculpture
tobacco coffee, cigarette, corn cigarette, cigar, corn cigarette, cigar, smoking
depth size, bottom, meter sea, underwater, level sea, size, underwater
chaos anarchy, despair, demon demon, anarchy, destruction demon, anarchy, shadow

Table 2: Ordered top 3 neighbours of example words in purely textual and multimodal spaces. Only donut
and owl were trained with direct visual information.

models pick taxonomically closer neighbours of
concrete objects, since often closely related things
also look similar (Bruni et al., 2014). In particular,
both multimodal models get rid of squirrels and
offer other birds of prey as nearest neighbours.
No direct visual evidence was used to induce the
embeddings of the remaining words in the table, that
are thus influenced by vision only by propagation.
The subtler but systematic changes we observe in
such cases suggest that this indirect propagation
is not only non-damaging with respect to purely
linguistic representations, but actually beneficial.
For the concrete mural concept, both multimodal
models rank paintings and portraits above less
closely related sculptures (they are not a form of
painting). For tobacco, both models rank cigarettes
and cigar over coffee, and MMSKIP-GRAM-B
avoids the arguably less common “crop” sense
cued by corn. The last two examples show how the
multimodal models turn up the embodiment level
in their representation of abstract words. For depth,
their neighbours suggest a concrete marine setup

over the more abstract measurement sense picked
by the MMSKIP-GRAM neighbours. For chaos,
they rank a demon, that is, a concrete agent of chaos
at the top, and replace the more abstract notion of
despair with equally gloomy but more imageable
shadows and destruction (more on abstract words
below).

5.2 Zero-shot image labeling and retrieval

The multimodal representations induced by our
models should be better suited than purely text-
based vectors to label or retrieve images. In particu-
lar, given that the quantitative and qualitative results
collected so far suggest that the models propagate
visual information across words, we apply them to
image labeling and retrieval in the challenging zero-
shot setup (see Section 2 above).3

3We will refer here, for conciseness’ sake, to image label-
ing/retrieval, but, as our visual vectors are aggregated represen-
tations of images, the tasks we’re modeling consist, more pre-
cisely, in labeling a set of pictures denoting the same object and
retrieving the corresponding set given the name of the object.

158



Setup We take out as test set 25% of the 5.1K
words we have visual vectors for. The multimodal
models are re-trained without visual vectors for
these words, using the same hyperparameters as
above. For both tasks, the search for the correct
word label/image is conducted on the whole set of
5.1K word/visual vectors.

In the image labeling task, given a visual vector
representing an image, we map it onto word space,
and label the image with the word corresponding
to the nearest vector. To perform the vision-to-
language mapping, we train a Ridge regression by 5-
fold cross-validation on the test set (for SKIP-GRAM

only, we also add the remaining 75% of word-image
vector pairs used in estimating the multimodal mod-
els to the Ridge training data).4

In the image retrieval task, given a linguis-
tic/multimodal vector, we map it onto visual space,
and retrieve the nearest image. For SKIP-GRAM, we
use Ridge regression with the same training regime
as for the labeling task. For the multimodal mod-
els, since maximizing similarity to visual represen-
tations is already part of their training objective, we
do not fit an extra mapping function. For MMSKIP-
GRAM-A, we directly look for nearest neighbours
of the learned embeddings in visual space. For
MMSKIP-GRAM-B, we use the Mu→v mapping
function induced while learning word embeddings.

Results In image labeling (Table 3) SKIP-GRAM

is outperformed by both multimodal models, con-
firming that these models produce vectors that are
directly applicable to vision tasks thanks to visual
propagation. The most interesting results however
are achieved in image retrieval (Table 4), which
is essentially the task the multimodal models have
been implicitly optimized for, so that they could be
applied to it without any specific training. The strat-
egy of directly querying for the nearest visual vec-
tors of the MMSKIP-GRAM-A word embeddings
works remarkably well, outperforming on the higher
ranks SKIP-GRAM, which requires an ad-hoc map-
ping function. This suggests that the multimodal

4We use one fold to tune Ridge λ, three to estimate the map-
ping matrix and test in the last fold. To enforce strict zero-shot
conditions, we exclude from the test fold labels occurring in
the LSVRC2012 set that was employed to train the CNN of
Krizhevsky et al. (2012), that we use to extract visual features.

P@1 P@2 P@10 P@20 P@50
SKIP-GRAM 1.5 2.6 14.2 23.5 36.1
MMSKIP-GRAM-A 2.1 3.7 16.7 24.6 37.6
MMSKIP-GRAM-B 2.2 5.1 20.2 28.5 43.5

Table 3: Percentage precision@k results in the zero-
shot image labeling task.

P@1 P@2 P@10 P@20 P@50
SKIP-GRAM 1.9 3.3 11.5 18.5 30.4
MMSKIP-GRAM-A 1.9 3.2 13.9 20.2 33.6
MMSKIP-GRAM-B 1.9 3.8 13.2 22.5 38.3

Table 4: Percentage precision@k results in the zero-
shot image retrieval task.

embeddings we are inducing, while general enough
to achieve good performance in the semantic tasks
discussed above, encode sufficient visual informa-
tion for direct application to image analysis tasks.
This is especially remarkable because the word vec-
tors we are testing were not matched with visual
representations at model training time, and are thus
multimodal only by propagation. The best perfor-
mance is achieved by MMSKIP-GRAM-B, confirm-
ing our claim that its Mu→v matrix acts as a multi-
modal mapping function.

5.3 Abstract words

We have already seen, through the depth and chaos
examples of Table 2, that the indirect influence of
visual information has interesting effects on the rep-
resentation of abstract terms. The latter have re-
ceived little attention in multimodal semantics, with
Hill and Korhonen (2014) concluding that abstract
nouns, in particular, do not benefit from propagated
perceptual information, and their representation is
even harmed when such information is forced on
them (see Figure 4 of their paper). Still, embod-
ied theories of cognition have provided considerable
evidence that abstract concepts are also grounded
in the senses (Barsalou, 2008; Lakoff and John-
son, 1999). Since the word representations produced
by MMSKIP-GRAM-A, including those pertaining
to abstract concepts, can be directly used to search
for near images in visual space, we decided to ver-
ify, experimentally, if these near images (of concrete
things) are relevant not only for concrete words, as

159



expected, but also for abstract ones, as predicted by
embodied views of meaning.

More precisely, we focused on the set of 200
words that were sampled across the USF norms con-
creteness spectrum by Kiela et al. (2014) (2 words
had to be excluded for technical reasons). This
set includes not only concrete (meat) and abstract
(thought) nouns, but also adjectives (boring), verbs
(teach), and even grammatical terms (how). Some
words in the set have relatively high concreteness
ratings, but are not particularly imageable, e.g.:
hot, smell, pain, sweet. For each word in the set,
we extracted the nearest neighbour picture of its
MMSKIP-GRAM-A representation, and matched it
with a random picture. The pictures were selected
from a set of 5,100, all labeled with distinct words
(the picture set includes, for each of the words as-
sociated to visual information as described in Sec-
tion 4, the nearest picture to its aggregated visual
representation). Since it is much more common for
concrete than abstract words to be directly repre-
sented by an image in the picture set, when search-
ing for the nearest neighbour we excluded the pic-
ture labeled with the word of interest, if present (e.g.,
we excluded the picture labeled tree when picking
the nearest neighbour of the word tree). We ran a
CrowdFlower5 survey in which we presented each
test word with the two associated images (random-
izing presentation order of nearest and random pic-
ture), and asked subjects which of the two pictures
they found more closely related to the word. We
collected minimally 20 judgments per word. Sub-
jects showed large agreement (median proportion of
majority choice at 90%), confirming that they under-
stood the task and behaved consistently.

We quantify performance in terms of proportion
of words for which the number of votes for the near-
est neighbour picture is significantly above chance
according to a two-tailed binomial test. We set sig-
nificance at p<0.05 after adjusting all p-values with
the Holm correction for running 198 statistical tests.
The results in Table 5 indicate that, in about half
the cases, the nearest picture to a word MMSKIP-
GRAM-A representation is meaningfully related to
the word. As expected, this is more often the case for
concrete than abstract words. Still, we also observe a

5http://www.crowdflower.com

global |words| unseen |words|
all 48% 198 30% 127
concrete 73% 99 53% 30
abstract 23% 99 23% 97

Table 5: Subjects’ preference for nearest visual
neighbour of words in Kiela et al. (2014) vs. random
pictures. Figure of merit is percentage proportion
of significant results in favor of nearest neighbour
across words. Results are reported for the whole set,
as well as for words above (concrete) and below (ab-
stract) the concreteness rating median. The unseen
column reports results when words exposed to direct
visual evidence during training are discarded. The
words columns report set cardinality.

freedom theory

god together place

wrong

Figure 2: Examples of nearest visual neighbours of
some abstract words: on the left, cases where sub-
jects preferred the neighbour to the random foil; on
the right, cases where they did not.

significant preference for the model-predicted near-
est picture for about one fourth of the abstract terms.
Whether a word was exposed to direct visual evi-
dence during training is of course making a big dif-
ference, and this factor interacts with concreteness,
as only two abstract words were matched with im-
ages during training.6 When we limit evaluation to
word representations that were not exposed to pic-
tures during training, the difference between con-
crete and abstract terms, while still large, becomes
less dramatic than if all words are considered.

Figure 2 shows four cases in which subjects ex-
pressed a strong preference for the nearest visual
neighbour of a word. Freedom, god and theory are
strikingly in agreement with the view, from embod-
ied theories, that abstract words are grounded in rel-

6In both cases, the images actually depict concrete senses of
the words: a memory board for memory and a stop sign for stop.
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evant concrete scenes and situations. The together
example illustrates how visual data might ground ab-
stract notions in surprising ways. For all these cases,
we can borrow what Howell et al. (2005) say about
visual propagation to abstract words (p. 260):

Intuitively, this is something like trying to explain
an abstract concept like love to a child by using
concrete examples of scenes or situations that are
associated with love. The abstract concept is never
fully grounded in external reality, but it does inherit
some meaning from the more concrete concepts to
which it is related.

Of course, not all examples are good: the last col-
umn of Figure 2 shows cases with no obvious rela-
tion between words and visual neighbours (subjects
preferred the random images by a large margin).

The multimodal vectors we induce also display an
interesting intrinsic property related to the hypothe-
sis that grounded representations of abstract words
are more complex than for concrete ones, since ab-
stract concepts relate to varied and composite situa-
tions (Barsalou and Wiemer-Hastings, 2005). A nat-
ural corollary of this idea is that visually-grounded
representations of abstract concepts should be more
diverse: If you think of dogs, very similar images of
specific dogs will come to mind. You can also imag-
ine the abstract notion of freedom, but the nature of
the related imagery will be much more varied. Re-
cently, Kiela et al. (2014) have proposed to measure
abstractness by exploiting this very same intuition.
However, they rely on manual annotation of pictures
via Google Images and define an ad-hoc measure
of image dispersion. We conjecture that the repre-
sentations naturally induced by our models display
a similar property. In particular, the entropy of our
multimodal vectors, being an expression of how var-
ied the information they encode is, should correlate
with the degree of abstractness of the corresponding
words. As Figure 3(a) shows, there is indeed a dif-
ference in entropy between the most concrete (meat)
and most abstract (hope) words in the Kiela et al. set.

To test the hypothesis quantitatively, we mea-
sure the correlation of entropy and concreteness
on the 200 words in the Kiela et al. (2014) set.7

Figure 3(b) shows that the entropies of both the
7Since the vector dimensions range over the real number

line, we calculate entropy on vectors that are unit-normed af-
ter adding a small constant insuring all values are positive.

(a)

Model ρ

WORD FREQUENCY 0.22
KIELA ET AL. -0.65
SKIP-GRAM 0.05
MMSKIP-GRAM-B 0.04
MMSKIP-GRAM-A -0.75
MMSKIP-GRAM-B* -0.71

(b)

Figure 3: (a) Distribution of MMSKIP-GRAM-A
vector activation for meat (blue) and hope (red). (b)
Spearman ρ between concreteness and various mea-
sures on the Kiela et al. (2014) set.

MMSKIP-GRAM-A representations and those gen-
erated by mapping MMSKIP-GRAM-B vectors onto
visual space (MMSKIP-GRAM-B*) achieve very
high correlation (but, interestingly, not MMSKIP-
GRAM-B). This is further evidence that multimodal
learning is grounding the representations of both
concrete and abstract words in meaningful ways.

6 Conclusion

We introduced two multimodal extensions of SKIP-
GRAM. MMSKIP-GRAM-A is trained by directly
optimizing the similarity of words with their visual
representations, thus forcing maximum interaction
between the two modalities. MMSKIP-GRAM-B in-
cludes an extra mediating layer, acting as a cross-
modal mapping component. The ability of the mod-
els to integrate and propagate visual information re-
sulted in word representations that performed well in
both semantic and vision tasks, and could be used as
input in systems benefiting from prior visual knowl-
edge (e.g., caption generation). Our results with ab-
stract words suggest the models might also help in
tasks such as metaphor detection, or even retriev-
ing/generating pictures of abstract concepts. Their
incremental nature makes them well-suited for cog-
nitive simulations of grounded language acquisition,
an avenue of research we plan to explore further.
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