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Abstract

Automatically describing visual content is an
extremely difficult task, with hard AI prob-
lems in Computer Vision (CV) and Natural
Language Processing (NLP) at its core. Pre-
vious work relies on supervised visual recog-
nition systems to determine the content of im-
ages. These systems require massive amounts
of hand-labeled data for training, so the num-
ber of visual classes that can be recognized is
typically very small. We argue that these ap-
proaches place unrealistic limits on the kinds
of images that can be captioned, and are un-
likely to produce captions which reflect hu-
man interpretations.

We present a framework for image caption
generation that does not rely on visual recog-
nition systems, which we have implemented
on a dataset of online shopping images and
product descriptions. We propose future work
to improve this method, and extensions for
other domains of images and natural text.

1 Introduction

As the number of images on the web continues to in-
crease, the task of automatically describing images
becomes especially important. Image captions can
provide background information about what is seen
in the image, can improve accessibility of websites
for visually-impaired users, and can improve im-
age retrieval by providing text to search user queries
against. Typically, online search engines rely on col-
located textual information to resolve queries, rather
than analyzing visual content directly. Likewise,
earlier image captioning research from the Natural

Language Processing (NLP) community use collo-
cated information such as news articles or GPS co-
ordinates, to decide what information to include in
the generated caption (Deschacht and Moens, 2007;
Aker and Gaizauskas, 2010; Fan et al., 2010; Feng
and Lapata, 2010a).

However, in some instances visual recognition is
necessary because collocated information is miss-
ing, irrelevant, or unreliable. Recognition is a clas-
sic Computer Vision (CV) problem including tasks
such as recognizing instances of object classes in
images (such as car, cat, or sofa); classifying
images by scene (such as beach or forest); or
detecting attributes in an image (such as wooden
or feathered). Recent works in image caption
generation represent visual content via the output
of trained recognition systems for a pre-defined set
of visual classes. They then use linguistic models
to correct noisy initial detections (Kulkarni et al.,
2011; Yang et al., 2011), and generate more natural-
sounding text (Li et al., 2011; Mitchell et al., 2012;
Kuznetsova et al., 2012).

A key problem with this approach is that it as-
sumes that image captioning is a grounding prob-
lem, with language acting only as labels for visual
meaning. One good reason to challenge this assump-
tion is that it imposes unrealistic constraints on the
kinds of images that can be automatically described.
Previous work only recognizes a limited number of
visual classes – typically no more than a few dozen
in total – because training CV systems requires a
huge amount of hand-annotated data. For example,
the PASCAL VOC dataset1 has 11,530 training im-

1http://pascallin.ecs.soton.ac.uk/
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ages with 27,450 labeled objects, in order to learn
only 20 object classes. Since training visual recog-
nition systems is such a burden, “general-domain”
image captioning datasets are limited by the current
technology. For example, the SBU-Flickr dataset
(Ordonez et al., 2011), which contains 1 million im-
ages and captions, is built by first querying Flickr
using a pre-defined set of queries, then further filter-
ing to remove instances where the caption does not
contain at least two words belonging to their term
list. Furthermore, detections are too noisy to gener-
ate a good caption for the majority of images. For
example, Kuznetsova et al. (2012) select their test
set according to which images receive the most con-
fident visual object detection scores.

We instead direct our attention to the domain-
specific image captioning task, assuming that we
know a general object or scene category for the
query image, and that we have access to a dataset of
images and captions from the same domain. While
some techniques may be unrealistic in assuming that
high-quality collocated text is always available, as-
suming that there is no collocated information at
all is equally unrealistic. Data sources such as
file names, website text, Facebook likes, and web
searches all provide clues to the content of an im-
age. Even an image file by itself carries metadata
on where and when it was taken, and the camera
settings used to take it. Since visual recognition is
much easier for domain-specific tasks, there is more
potential for natural language researchers to do re-
search that will impact the greater community.

Finally, labeling visual content is often not
enough to provide an adequate caption. The mean-
ing of an image to a user is more than just listing the
objects in the image, and can even change for dif-
ferent users. This problem is commonly known as
“bridging the semantic gap”:

“The semantic gap is the lack of coinci-
dence between the information that one
can extract from the visual data and the
interpretation that the same data have for
a user in a given situation. A linguis-
tic description is almost always contex-
tual, whereas an image may live by itself.”
(Smeulders et al., 2000)

challenges/VOC/

General-domain models of caption generation fail to
capture context because they assume that all the rel-
evant information has been provided in the image.
However, training models on data from the same do-
main gives implicit context about what information
should be provided in the generated text.

This thesis proposes a framework for image cap-
tioning that does not require supervision in the form
of hand-labeled examples. We train a topic model on
a corpus of images and captions in the same domain,
in order to jointly learn image features and natural
language descriptions. The trained topic model is
used to estimate the likelihood of words appearing
in a caption, given an unseen query image. We then
use these likelihoods to rewrite an extracted human-
written caption to accurately describe the query im-
age. We have implemented our framework using a
dataset of online shopping images and captions, and
propose to extend this model to other domains, in-
cluding natural images.

2 Framework

In this section, we provide an overview of our im-
age captioning framework, as it is currently imple-
mented. As shown in Figure 1, the data that we use
are a set of images and captions in a specific do-
main, and a query image that is from the same do-
main, but is not included in the training data. The
training data is used in two ways: for sentence ex-
traction from the captions of training images that
are visually similar to the query image overall; and
for training a topic model of individual words and
local image features, in order to capture fine-grained
details. Finally, a sentence compression algorithm
is used to remove details from the extracted captions
that do not fit the query image.

The work that we have done so far has been imple-
mented using the Attribute Discovery Dataset (Berg
et al., 2010), a publicly available dataset of shop-
ping images and product descriptions.2 Here, we
run our framework on the women’s shoes section,
which has over 14000 images and captions, rep-
resenting a wide variety of attributes for texture,
shapes, materials, colors, and other visual quali-
ties. The women’s shoes section is formally split

2http://tamaraberg.com/
attributesDataset/index.html
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Figure 1: Overview of our framework for image caption generation.

into ten subcategories, such as wedding shoes,
sneakers, and rainboots. However, many of
the subcategories contain multiple visually distinct
kinds of shoes. We do not make use of the sub-
categories, instead we group all of the categories of
shoe images together. The shoes in the images are
mostly posed against solid color backgrounds, while
the captions have much more variability in length
and linguistic quality.

For our thesis work, we intend to extend our cur-
rent framework to different domains of data, includ-
ing natural images. However, it is important to point
out that no part of the framework as it is currently
implemented is specific to describing shoes or shop-
ping images. This will be described in Section 4.

2.1 Sentence Extraction

GIST (Oliva and Torralba, 2001) is a global image
descriptor which describes how gradients are ori-
ented in different regions of an image. It is com-
monly used for classifying background scenes in
images, however images in the Attribute Discovery
Dataset do not have “backgrounds” per se. Instead,
we treat the overall shape of the object as the “scene”
and extract a caption sentence using GIST nearest
neighbors between the query image and the images
in the training set. Because similar objects and at-
tributes tend to appear in similar scenes, we expect
that at least some of the extracted caption will de-
scribe local attributes that are also in the query im-
age. The rest of our framework finds and removes
the parts of the extracted caption that are not accu-
rate to the query image.

2.2 Topic Model
Image captions often act as more than labels of vi-
sual content. Some visual ideas can be described
using several different words, while others are typ-
ically not described at all. Likewise, some words
describe background information that is not shown
visually, or contextual information that is interpreted
by the user. Rather than modeling images and text
such that one generates the other, we a topic model
based on LDA (Blei et al., 2003) where both an im-
age and its caption are generated by a shared latent
distribution of topics.

Previous work by (Feng and Lapata, 2010b)
shows that topic models where image features or re-
gions generate text features (such as Blei and Jor-
dan (2003)) are not appropriate for modeling images
with captions or other collocated text. We use a topic
model designed for multi-lingual data, specifically
the Polylingual Topic Model (Mimno et al., 2009).
This model was developed for correlated documents
in different languages that are topically similar, but
are not direct translations, such as Wikipedia or
news articles in different languages. We train the
topic model with images and text as two languages.
For query images, we estimate the topic distribu-
tion that generated just the image, and then In the
model, images and their captions are represented us-
ing bag-of-words, a commonly-used technique for
document representation in both CV and NLP re-
search. The textual features are non-function words
in the model, including words that describe specific
objects or attributes (such as boot, snake-skin,
buckle, and metallic) in addition to words that
describe more abstract attributes and affordances
(such as professional, flirty, support,
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Original: Go all-out glam in the shimmer-
ing Dyeables Roxie sandals. Metallic faux
leather upper in a dress thong sandal style
with a round open toe. ...

Original: Find the softness of shearling combined with sup-
port in this clog slipper. The cork footbed mimics the foot’s
natural shape, offering arch support, while a flexible outsole
flexes with your steps and resists slips. ...

Original: Perforated leather with cap toe and
bow detail.

Extracted: Shimmering snake-
embossed leather upper in a slingback
evening dress sandal style with a round
open toe .

Extracted: This sporty sneaker clog
keeps foot cool and comfortable and
fully supported.

Extracted: Italian patent leather peep-
toe ballet flat with a signature tailored
grosgrain bow .

System: Shimmering upper in a sling-
back evening dress sandal style with a
round open toe .

System: This clog keeps foot comfort-
able and supported.

System: leather ballet flat with a signa-
ture tailored grosgrain bow .

Table 1: Some examples of shoes images from the Attribute Discovery Dataset and performance with our image
captioning model. Left: Correctly removes explicitly visual feature “snake-embossed leather” from extraction; leaves
in correct visual attributes “shimmering”, “slingback”, and “round open toe”. Center: Extracted sentence with some
contextually visual attributes; the model correctly infers that “sporty” and “cool” are not likely given an image of a
wool bedroom slipper, but “comfortable” and “supported” are likely because of the visible cork soles. Right: Extracted
sentence with some non-visual attributes; model removes “Italian” but keeps “signature tailored”.

and waterproof). For “image words”, we com-
pute features at several points in the image such as
the color values of pixels, the angles of edges or
corners, and response to various filters, and cluster
them into discrete image words. However, the in-
formation that an image word conveys is very dif-
ferent than the information conveyed in a text word,
so models which require direct correspondence be-
tween features in the two modalities would not be
appropriate here.

We train the topic model with images and text as
two languages. We estimate the probabilities of tex-
tual words given a query image by first estimating
the topic distribution that generated the image, and
then using the same distribution to find the probabil-
ities of textual words given the query image. How-
ever, we also perform an annotation task similarly
to Feng and Lapata (2010b), in order to evaluate
the topic model on its own. Our method has a 30-
35% improvement in finding words from the held-
out image caption, compared to previous methods
and baselines.

2.3 Sentence Compression via Caption
Generation

We describe an ILP for caption generation, draw-
ing inspiration from sentence compression work by
Clarke and Lapata (2008). The ILP has three in-
puts: the extracted caption; the prior probabilities
words appearing in captions, p(w); and their pos-
terior probabilities of words appearing in captions
given the query image, p(w|query). The latter is
estimated using the topic model we have just de-
scribed. The output of the ILP is a compressed im-
age caption where the inaccurate words have been
deleted.
Objective: The formal ILP objective3 is to max-
imize a weighted linear combination of two mea-
sures. The first we define as

∑n
i=1 δi · I(wi), where

wi, ..., wn are words in the extracted caption, δi is a
binary decision variable which is true if we include
wi in the compressed output, and I(wi) is a score for
the accuracy of each word. For non-function words,

3To formulate this problem as a linear program, the proba-
bilities are actually log probabilities, but we omit the logs in this
paper to save space.
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I(wi) = p(w|query)−p(w), which can have a pos-
itive or negative value. We do not use p(wi|query)
directly in order to distinguish between cases where
p(wi|query) is low because wi is inaccurate, and
cases where p(wi|query) is low because p(wi) is
low generally. Function words do not affect the ac-
curacy of the generated caption, so I(wi) = 0.

The second measure in the objective is a tri-
gram language model, described in detail in Clarke
(2008). In the original sentence compression task,
the language model is a component as it naturally
prefers shorter output sentences. However, our ob-
jective is not to generate a shorter caption, but to
generate a more accurate caption. However, we still
include the language model in the objective, with a
weighting factor ε, as it helps remove unnecessary
function words and help reduce the search space of
possible sentence compressions.
Constraints: The ILP constraints include sequen-
tial constraints to ensure the mathematical validity
of the model, and syntactic constraints that ensure
the grammatical correctness of the compressed sen-
tence. We do not have space here to describe all
of the constraints, but basically, using the “semantic
head” version of the headfinder from Collins (1999),
we constrain that the head word of the sentence and
the head word of the sentence’s object cannot be
deleted, and for any word that we include in the out-
put sentence, we must include its head word as well.
We also have constraints that define valid use of co-
ordinating conjunctions and punctuation.

We evaluate generated captions using automatic
metrics such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). These metrics are commonly
used in summarization and translation research and
have been previously used in image captioning re-
search to compare automatically generated captions
to human-written captions for each image (Ordonez
et al., 2011; Yang et al., 2011; Kuznetsova et al.,
2012). Although human-written captions may use
synonyms to describe a visual object or attribute, or
even describe entirely different attributes than what
is described in the generated captions, computing
the automatic metrics over a large test set finds sta-
tistically significant improvements in the accuracy
of the extracted and compressed captions over ex-
traction alone.

For our proposed work (Section 4), we also plan

to perform manual evaluations of our captions based
on their content and language quality. However,
cross-system comparisons would be more difficult
because our method uses an entirely different kind
of data. In order to compare our work to related
methods (Section 3), we would have to train for vi-
sual recognition systems for hundreds of visual at-
tributes, which would mean having to hand-label the
entire dataset.

3 Related Work in Image Captioning

In addition to visual recognition, caption genera-
tion is a very challenging problem. In some ap-
proaches, sentences are constructed using templates
or grammar rules, where content words are selected
according to the output of visual recognition systems
(Kulkarni et al., 2011; Yang et al., 2011; Mitchell et
al., 2012). Function words, as well as words like
verbs and prepositions which are difficult to rec-
ognize visually, may be selected using a language
model trained on non-visual text. There is also simi-
lar work that uses large-scale ngram models to make
the generated output sound more natural (Li et al.,
2011).

In other approaches, captions are extracted in
whole or in part from similar images in a database.
For example, Farhadi et al. (2010) and Ordonez et
al. (2011) build semantic representations for visual
content of query images, and extract captions from
database images with similar content. Kuznetsova et
al. (2012) extract phrases corresponding to classes of
objects and scenes detected in the query image, and
combine extracted phrases into a single sentence.
Our work is different than these approaches, because
we directly measure how visually relevant individual
words are, rather than only using visual similarity to
extract sentences or phrases.

Our method is most similar to that of Feng and
Lapata (2010a), who generate captions for news im-
ages. Like them, we train an LDA-like model on
both images and text to find latent topics that gener-
ate both. However, their model requires both an im-
age and collocated text (a news article) to estimate
the topic distribution for an unseen image, while our
topic model only needs related text for the training
data. They also use the news article to help gen-
erate captions, which means that optimizing their
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generated output for content and grammaticality is
a much easier problem. Although their model com-
bines phrases and n-grams from different sentences
to form an image caption, they only consider the text
from a single news article for extraction, and they
can assume that the text is mostly accurate and rele-
vant to the content of the image.

In this sense, our method is more like Kuznetsova
et al. (2012), which also uses an Integer Linear Pro-
gram (ILP) to rapidly optimize how well their gen-
erated caption fits the content of the image model.
However, it is easier to get coherent image captions
from our model since we are not combining parts
of sentences from multiple sources. Since we build
our output from extracted sentences, not phrases, our
ILP requires fewer grammaticality and coherence
constraints than it would for building new sentences
from scratch. We also model how relevant each in-
dividual word is to the query image, while they ex-
tract phrases based on visual similarity of detected
objects in the images.

4 Proposed Work

One clear direction for future work is to extend our
image captioning framework to natural images. By
“natural images” we refer to images of everyday
scenes seen by people, unlike the shopping images,
where objects tend to be posed in similar positions
against plain backgrounds. Instead of domains such
as handbags and shoes, we propose to cluster the
training data based on visual scene domains such as
mountains, beaches, and living rooms. We are par-
ticularly interested in the scene attributes and clas-
sifiers by Patterson and Hays (2012) which builds
an attribute-based taxonomy of scene types using
crowd-sourcing, rather than categorical scene types
which are typically used.

Visual recognition is generally much more diffi-
cult in natural scenes than in posed images, since
lighting and viewpoints are not consistent, and ob-
jects may be occluded by other objects or truncated
by the edge of the image. However, we are opti-
mistic because we do not need to solve the general
visual recognition task, since our model only learns
how visual objects and attributes appear in specific
domains of scenes, a much easier problem. Addi-
tionally, the space of likely objects and attributes to

detect is limited by what typically appears in that
type of scene. Finally, we can use the fact that our
image captioning method is not grounded in our fa-
vor, and assume that if an object is partially occluded
or truncated in an image, than it is less likely that
the photographer considered that object to be inter-
esting, so it is not as important whether that object
is described in the caption or not.

Finally, there is also much that could be done to
improve the text generation component on its own.
Our framework currently extracts only a single cap-
tion sentence to compress, while recent work in
summarization has focused on the problem of learn-
ing how to jointly extract and compress (Martins and
Smith, 2009; Berg-Kirkpatrick et al., 2011). Since
a poor extraction choice can make finding an accu-
rate compression impossible, we should also study
different methods of extraction to learn about what
kinds of features are most likely to help us find good
sentences. As mentioned in Section 2.1, we have
already found that global feature descriptors are bet-
ter than bag of image word descriptors for extract-
ing sentences to use in image caption compressions
in the shopping dataset. As we extend our frame-
work to other domains of images, we are interested
in finding whether scene-based descriptors and clas-
sifiers in general are better at finding good sentences
than local descriptors, and whether there is a con-
nection between region and phrase-based detectors
correlating better with sentence and phrase-length
text, while local image descriptors are more related
to single words. Finding patterns like this in visual
text in general would be helpful for many other tasks
besides image captioning.
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