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Abstract

We examine the application of data-driven
paraphrasing to natural language understand-
ing. We leverage bilingual parallel corpora
to extract a large collection of syntactic para-
phrase pairs, and introduce an adaptation
scheme that allows us to tackle a variety of
text transformation tasks via paraphrasing. We
evaluate our system on the sentence compres-
sion task. Further, we use distributional sim-
ilarity measures based on context vectors de-
rived from large monolingual corpora to anno-
tate our paraphrases with an orthogonal source
of information. This yields significant im-
provements in our compression system’s out-
put quality, achieving state-of-the-art perfor-
mance. Finally, we propose a refinement of
our paraphrases by classifying them into nat-
ural logic entailment relations. By extend-
ing the synchronous parsing paradigm towards
these entailment relations, we will enable our
system to perform recognition of textual en-
tailment.

1 Introduction

In this work, we propose an extension of current
paraphrasing methods to tackle natural language un-
derstanding problems. We create a large set of para-
phrase pairs in a data-driven fashion, rank them
based on a variety of similarity metrics, and attach
an entailment relation to each pair, facilitating nat-
ural logic inference. The resulting resource has po-
tential applications to a variety of NLP applications,
including summarization, query expansion, question
answering, and recognizing textual entailment.

Specifically, we build on Callison-Burch (2007)’s
pivot-based paraphrase extraction method, which
uses bilingual parallel data to learn English phrase
pairs that share the same meaning. Our approach ex-
tends the pivot method to learn meaning-preserving

syntactic transformations in English. We repre-
sent these using synchronous context-free grammars
(SCFGs). This representation allows us to re-use
a lot of machine translation machinery to perform
monolingual text-to-text generation. We demon-
strate the method on a sentence compression task
(Ganitkevitch et al., 2011).

To improve the system, we then incorporate fea-
tures based on monolingual distributional similar-
ity. This orthogonal source of signal allows us to
re-scores the bilingually-extracted paraphrases us-
ing information drawn from large monolingual cor-
pora. We show that the monolingual distributional
scores yield significant improvements over a base-
line that scores paraphrases only with bilingually-
extracted features (Ganitkevitch et al., 2012).

Further, we propose a semantics for paraphras-
ing by classifying each paraphrase pair with one
of the entailment relation types defined by natural
logic (MacCartney, 2009). Natural logic is used
to perform inference over pairs of natural language
phrases, like our paraphrase pairs. It defines a set of
relations including, equivalence (≡), forward- and
backward-entailments (@, A), antonyms (∧), and
others. We will build a classifier for our paraphrases
that uses features extracted from annotated resources
like WordNet and distributional information gath-
ered over large text corpora to assign one or more
entailment relations to each paraphrase pair. We will
evaluate the entailment assignments by applying this
enhanced paraphrasing system to the task of recog-
nizing textual entailment (RTE).

2 Extraction of Syntactic Paraphrases
from Bitexts

A variety of different types of corpora have been
used to automatically induce paraphrase collections
for English (see Madnani and Dorr (2010) for a sur-
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... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

Figure 1: An example of pivot-based phrasal paraphrase
extraction – we assume English phrases that translate to
a common German phrase to be paraphrases. Thus we
extract “imprisoned” as a paraphrase of “thrown into jail.”

vey of these methods). Bannard and Callison-Burch
(2005) extracted phrasal paraphrases from bitext by
using foreign language phrases as a pivot: if two
English phrases e1 and e2 both translate to a for-
eign phrase f , they assume that e1 and e2 are para-
phrases of one another. Figure 1 gives an example
of a phrasal paraphrase extracted by Bannard and
Callison-Burch (2005).

Since “thrown into jail” is aligned to multiple
German phrases, and since each of those German
phrases align back to a variety of English phrases,
the method extracts a wide range of possible para-
phrases including good paraphrase like: imprisoned
and thrown into prison. It also produces less good
paraphrases like: in jail and put in prison for, and
bad paraphrases, such as maltreated and protec-
tion, because of noisy/inaccurate word alignments
and other problems. To rank these, Bannard and
Callison-Burch (2005) derive a paraphrase probabil-
ity p(e1|e2):

p(e2|e1) ≈
∑

f

p(e2|f)p(f |e1), (1)

where the p(ei|f) and p(f |ei) are translation proba-
bilities estimated from the bitext (Brown et al., 1990;
Koehn et al., 2003).

We extend this method to extract syntactic para-
phrases (Ganitkevitch et al., 2011). Table 1
shows example paraphrases produced by our sys-
tem. While phrasal systems memorize phrase pairs
without any further generalization, a syntactic para-
phrasing system can learn more generic patterns.
These can be better applied to unseen data. The
paraphrases implementing the possessive rule and

Possessive rule
NP → the NN of the NNP the NNP ’s NN
NP → the NP made by NN the NN ’s NP

Dative shift
VP → give NN to NP give NP the NN
VP → provide NP1 to NP2 give NP2 NP1

Partitive constructions
NP → CD of the NN CD NN
NP → all NN all of the NN

Reduced relative clause
SBAR/S → although PRP VBP that although PRP VBP

ADJP → very JJ that S JJ S

Table 1: A selection of example paraphrase patterns ex-
tracted by our system. These rules demonstrate that, us-
ing the pivot approach from Figure 1, our system is capa-
ble of learning meaning-preserving syntactic transforma-
tions in English.

the dative shift shown in Table 1 are good examples
of this: the two noun-phrase arguments to the ex-
pressions are abstracted to nonterminals while each
rule’s lexicalization provides an appropriate frame
of evidence for the transform.

2.1 Formal Representation

In this proposal we focus on a paraphrase
model based on synchronous context-free gram-
mar (SCFG). The SCFG formalism (Aho and Ull-
man, 1972) was repopularized for statistical ma-
chine translation by (Chiang, 2005). An probabilis-
tic SCFG G contains rules r of the form r = C →
〈γ, α,∼, w〉. A rule r’s left-hand side C is a nonter-
minal, while its right-hands sides γ and α can be
mixed strings of words and nonterminal symbols.
There is a one-to-one correspondency between the
nonterminals in γ and α. Each rule is assigned a
cost wr ≥ 0, reflecting its likelihood.

To compute the cost wr of the application of a
rule r, we define a set of feature functions ~ϕ =
{ϕ1...ϕN} that are combined in a log-linear model.
The model weights are set to maximize a task-
dependent objective function.

2.2 Syntactic Paraphrase Rules via Bilingual
Pivoting

Our paraphrase acquisition method is based on the
extraction of syntactic translation rules in statistical
machine translation (SMT). In SMT, SCFG rules are
extracted from English-foreign sentence pairs that
are automatically parsed and word-aligned. For a
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CR Meaning Grammar
Reference 0.80 4.80 4.54

ILP 0.74 3.44 3.41
PP 0.78 3.53 2.98

PP + n-gram 0.80 3.65 3.16
PP + syntax 0.79 3.70 3.26

Random Deletions 0.78 2.91 2.53

Table 2: Results of the human evaluation on longer com-
pressions: pairwise compression ratios (CR), meaning
and grammaticality scores. Bold indicates a statistically
significant best result at p < 0.05. The scores range from
1 to 5, 5 being perfect.

foreign phrase the corresponding English phrase is
found via the word alignments. This phrase pair
is turned into an SCFG rule by assigning a left-
hand side nonterminal symbol, corresponding to
the syntactic constituent that dominates the English
phrase. To introduce nonterminals into the right-
hand sides of the rule, we can replace correspond-
ing sub-phrases in the English and foreign phrases
with nonterminal symbols. Doing this for all sen-
tence pairs in a bilingual parallel corpus results in a
translation grammar that serves as the basis for syn-
tactic machine translation.

To create a paraphrase grammar from a transla-
tion grammar, we extend the syntactically informed
pivot approach of (Callison-Burch, 2008) to the
SCFG model: for each pair of translation rules r1
and r2 with matching left-hand side nonterminal C
and foreign language right-hand side γ: r1 = C →
〈γ, α1,∼1, ~ϕ1〉 and r2 = C → 〈γ, α2,∼2, ~ϕ2〉,
we pivot over γ and create a paraphrase rule rp:
rp = C → 〈α1, α2,∼, ~ϕ〉. We estimate the cost
for rp following Equation 1.

2.3 Task-Based Evaluation

Sharing its SCFG formalism permits us to re-use
much of SMT’s machinery for paraphrasing appli-
cations, including decoding and minimum error rate
training. This allows us to easily tackle a variety of
monolingual text-to-text generation tasks, which can
be cast as sentential paraphrasing with task-specific
constraints or goals.

For our evaluation, we apply our paraphrase sys-
tem to sentence compression. However, to success-
fully use paraphrases for sentence compression, we
need to adapt the system to suit the task. We intro-
duce a four-point adaptation scheme for text-to-text

twelve

cartoons insulting the prophet mohammad
CD NNS JJ DT NNP

NP

NP VP NP
DT+NNP

12

the prophet mohammad

CD NNS JJ DT NNP
NP

NP VP
NP

DT+NNP

cartoons offensiveof the that are to

Figure 2: An example of a synchronous paraphrastic
derivation in sentence compression.

generation via paraphrases, suggesting:

• The use task-targeted features that capture in-
formation pertinent to the text transformation.
For sentence compression the features include
word count and length-difference features.

• An objective function that takes into account
the contraints imposed by the task. We use
PRÉCIS, an augmentation of the BLEU metric,
which introduces a verbosity penalty.

• Development data that represents the precise
transformations we seek to model. We use a set
of human-made example compressions mined
from translation references.

• Optionally, grammar augmentations that allow
for the incorporation of effects that the learned
paraphrase grammar cannot capture. We exper-
imented with automatically generated deletion
rules.

Applying the above adaptations to our generic para-
phraser (PP), quickly yields a sentence compression
system that performs on par with a state-of-the-art
integer linear programming-based (ILP) compres-
sion system (Clarke and Lapata, 2008). As Table 2
shows, human evaluation results suggest that our
system outperforms the contrast system in meaning
retention. However, it suffers losses in grammatical-
ity. Figure 2 shows an example derivation produced
as a result of applying our paraphrase rules in the
decoding process.

3 Integrating Monolingual Distributional
Similarity into Bilingually Extracted
Paraphrases

Distributional similarity-based methods (Lin and
Pantel, 2001; Bhagat and Ravichandran, 2008) rely
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on the assumption that similar expressions appear
in similar contexts – a signal that is orthogonal to
bilingual pivot information we have considered thus
far. However, the monolingual distributional signal
is noisy: it suffers from problems such as mistaking
cousin expressions or antonyms (such as 〈rise, fall〉
or 〈boy , girl〉) for paraphrases. We circumvent this
issue by starting with a paraphrase grammar ex-
tracted from bilingual data and reranking it with in-
formation based on distributional similarity (Gan-
itkevitch et al., 2012).

3.1 Distributional Similarity

In order to compute the similarity of two expressions
e1 and e2, their respective occurrences across a cor-
pus are aggregated in context vectors ~c1 and ~c2. The
~ci are typically vectors in a high-dimensional fea-
ture space with features like counts for words seen
within a window of an ei. For parsed data more so-
phisticated features based on syntax and dependency
structure around an occurrence are possible. The
comparison of e1 and e2 is then made by comput-
ing the cosine similarity between ~c1 and ~c2.

Over large corpora the context vectors for even
moderately frequent ei can grow unmanageably
large. Locality sensitive hashing provides a way of
dealing with this problem: instead of retaining the
explicit sparse high-dimensional ~ci, we use a ran-
dom projection h(·) to convert them into compact bit
signatures in a dense b-dimensional boolean space
in which approximate similarity calculation is pos-
sible.

3.2 Integrating Similarity with Syntactic
Paraphrases

In order to incorporate distributional similarity in-
formation into the paraphrasing system, we need
to calculate similarity scores for the paraphrastic
SCFG rules in our grammar. For rules with purely
lexical right-hand sides e1 and e2 this is a simple
task, and the similarity score sim(e1, e2) can be di-
rectly included in the rule’s feature vector ~ϕ. How-
ever, if e1 and e2 are long, their occurrences be-
come sparse and their similarity can no longer be
reliably estimated. In our case, the right-hand sides
of our rules also contain non-terminal symbols and
re-ordered phrases, so computing a similarity score
is not straightforward.

the long-term

achieve25

goals 23

plans 97

investment 10

confirmed64

revise43 the long-term

the long-term
the long-term

the long-term
the long-term

..
..

L-achieve = 25

L-confirmed = 64

L-revise = 43

⇣
R-goals = 23

R-plans  = 97

R-investment = 10

⇣
the long-term

⌘
=~sig

⇣

Figure 3: An example of the n-gram feature extraction
on an n-gram corpus. Here, “the long-term” is seen pre-
ceded by “revise” (43 times) and followed by “plans” (97
times).

Our solution is to decompose the discontinuous
patterns that make up the right-hand sides of a rule r
into pairs of contiguous phrases, for which we then
look up distributional signatures and compute sim-
ilarity scores. To avoid comparing unrelated pairs,
we require the phrase pairs to be consistent with a to-
ken alignment a, defined and computed analogously
to word alignments in machine translation.

3.3 Data Sets and Types of Distributional
Signatures

We investigate the impact of the data and feature set
used to construct distributional signatures. In partic-
ular we contrast two approaches: a large collection
of distributional signatures with a relatively simple
feature set, and a much smaller set of signatures with
a rich, syntactically informed feature set.

The larger n-gram model is drawn from a web-
scale n-gram corpus (Brants and Franz, 2006; Lin et
al., 2010). Figure 3 illustrates this feature extraction
approach. The resulting collection comprises distri-
butional signatures for the 200 million most frequent
1-to-4-grams in the n-gram corpus.

For the syntactically informed model, we use
the constituency and dependency parses provided
in the Annotated Gigaword corpus (Napoles et al.,
2012). Figure 4 illustrates this model’s feature ex-
traction for an example phrase occurrence. Using
this method we extract distributional signatures for
over 12 million 1-to-4-gram phrases.

3.4 Evaluation

For evaluation, we follow the task-based approach
taken in Section 2 and apply the similarity-scored
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long-term investment holding on to

det
amod

the

JJ NN VBG IN TO DT

NP
PP

VP

⇣ ⇣
the long-term

⌘
=~sig

⇣
dep-det-R-investment

pos-L-TO 

pos-R-NN  

lex-R-investment 

lex-L-to 

dep-amod-R-investment

syn-gov-NP syn-miss-L-NN 

lex-L-on-to 

pos-L-IN-TO  

dep-det-R-NN dep-amod-R-NN

Figure 4: An example of the syntactic feature-set. The
phrase “the long-term” is annotated with position-aware
lexical and part-of-speech n-gram features, labeled de-
pendency links, and features derived from the phrase’s
CCG label (NP/NN ).

paraphrases to sentence compression. The distri-
butional similarity scores are incorporated into the
paraphrasing system as additional rule features into
the log-linear model. The task-targeted parameter
tuning thus results in a reranking of the rules that
takes into consideration, the distributional informa-
tion, bilingual alignment-based paraphrase probabil-
ities, and compression-centric features.

Table 2 shows comparison of the bilingual base-
line paraphrase grammar (PP), the reranked gram-
mars based on signatures extracted from the Google
n-grams (n-gram), the richer signatures drawn from
Annotated Gigaword (Syntax), and Clarke and La-
pata (2008)’s compression system (ILP). In both
cases, the inclusion of distributional similarity in-
formation results in significantly better output gram-
maticality and meaning retention. Despite its lower
coverage (12 versus 200 million phrases), the syn-
tactic distributional similarity outperforms the sim-
pler Google n-gram signatures.

3.5 PPDB

To facilitate a more widespread use of paraphrases,
we release a collection of ranked paraphrases ob-
tained by the methods outlined in Sections 2 and 3
to the public (Ganitkevitch et al., 2013).

4 Paraphrasing with Natural Logic

In the previously derived paraphrase grammar it is
assumed that all rules imply the semantic equiva-
lence of two textual expressions. The varying de-
grees of confidence our system has in this relation-

ship are evidenced by the paraphrase probabilities
and similarity scores. However, the grammar can
also contain rules that in fact represent a range of se-
mantic relationships, including hypernym- hyponym
relationships, such as India – this country.

To better model such cases we propose an anno-
tation of each paraphrase rule with explicit relation
labels based on natural logic. Natural logic (Mac-
Cartney, 2009) defines a set of pairwise relations be-
tween textual expressions, such as equivalence (≡),
forward (@) and backward (A) entailment, negation
∧) and others. These relations can be used to not
only detect semantic equivalence, but also infer en-
tailment. Our resulting system will be able to tackle
tasks like RTE, where the more a fine-grained reso-
lution of semantic relationships is crucial to perfor-
mance.

We favor a classification-based approach to this
problem: for each pair of paraphrases in the gram-
mar, we extract a feature vector that aims to capture
information about the semantic relationship in the
rule. Using a manually annotated development set
of paraphrases with relation labels, we train a clas-
sifier to discriminate between the different natural
logic relations.

We propose to leverage both labeled and unla-
beled data resources to extract useful features for
the classification. Annotated resources like Word-
Net can be used to derive a catalog of word and
phrase pairs with known entailment relationships,
for instance 〈India, country ,@〉. Using word align-
ments between our paraphrase pairs, we can estab-
lish what portions of a pair have labels in WordNet
and retain corresponding features.

To leverage unlabeled data, we propose extending
our notion of distributional similarity. Previously,
we used cosine similarity to compare the signatures
of two phrases. However, cosine similarity is a sym-
metric measure, and it is unlikely to prove helpful
for determining the (asymmetric) entailment direc-
tionality of a paraphrase pair (i.e. whether it is a
hypo- or hypernym relation). We therefore propose
to extract a variety of asymmetric similarity fea-
tures from distributional contexts. Specifically, we
seek a measure that compares both the similarity and
the “breadth” of two vectors. Assuming that wider
breadth implies a hypernym, i.e. a @-entailment, the
scores produced by such a measure can be highly
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twelve illustrations insulting

muhammad

CD NNS JJ

NP

NP

VP

NP

the prophet

NNS JJ

NP

NP
VP

NP

cartoons offensiveeditorial that were to12

CD

VB

NP

S

caused unrest

VB

NP

S

sparked  riots bywere 

NP

in Denmark

PP

NP PPJJ

JJ

""

NP

NP

of the

Paraphrase rules Entailment classification
CD → twelve | 12 twelve ≡ 12
JJ → ε | editorial ε A editorial
NNS → illustrations | cartoons illustrations A cartoons
JJ → insulting | offensive insulting ≡ / @ offensive
NP → the prophet | muhammad the prophet ≡ muhammad
VB → caused | sparked caused A sparked
NP → unrest | riots unrest A riots
PP → ε | in Denmark ε A in Denmark
NP → CD(≡) NNS(A) | CD(≡) of the NNS(A) twelve illustrations A 12 of the cartoons

Figure 5: Our system will use synchronous parsing and paraphrase grammars to perform natural language inference.
Each paraphrase transformation will be classified with a natural logic entailment relation. These will be joined bottom-
up, as illustrated by the last rule, where the join of the smaller constituents ≡ ./ A results in A for the larger phrase
pairs. This process will be propagated up the trees to determine if the hypothesis can be inferred from the premise.

informative for our classification problem. Asym-
metric measures like Tversky indices (Tolias et al.,
2001) appear well-suited to the problem. We will
investigate application of Tversky indices to our dis-
tributional signatures and their usefulness for entail-
ment relation classification.

4.1 Task-Based Evaluation
We propose evaluating the resulting system on tex-
tual entailment recognition. To do this, we cast the
RTE task as a synchronous parsing problem, as illus-
trated in Figure 5. We will extend the notion of syn-
chronous parsing towards resolving entailments, and
define and implement a compositional join operator
./ to compute entailment relations over synchronous
derivations from the individual rule entailments.

While the assumption of a synchronous parse
structure is likely to be valid for translations and
paraphrases, we do not expect it to straightforwardly
hold for entailment recognition. We will thus in-
vestigate the limits of the synchronous assumption
over RTE data. Furthermore, to expand the sys-
tem’s coverage in a first step, we propose a simple
relaxation of the synchronousness requirement via
entailment-less “glue rules.” These rules, similar to
out-of-vocabulary rules in translation, will allow us

to include potentially unrelated or unrecognized por-
tions of the input into the synchronous parse.

5 Conclusion

We have described an extension of the state of the art
in paraphrasing in a number of important ways: we
leverage large bilingual data sets to extract linguis-
tically expressive high-coverage paraphrases based
on an SCFG formalism. On an example text-to-
text generation task, sentence compression, we show
that an easily adapted paraphrase system achieves
state of the art meaning retention. Further, we in-
clude a complementary data source, monolingual
corpora, to augment the quality of the previously
obtained paraphrase grammar. The resulting sys-
tem is shown to perform significantly better than
the purely bilingual paraphrases, in both meaning
retention and grammaticality, achieving results on
par with the state of the art. Finally, we propose
an extension of SCFG-based paraphrasing towards
a more fine grained semantic representation using a
classification-based approach. In extending the syn-
chronous parsing methodology, we outline the ex-
pansion of the paraphraser towards a system capable
of tackling entailment recognition tasks.
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