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Abstract

Most work on weakly-supervised learning for
part-of-speech taggers has been based on un-
realistic assumptions about the amount and
quality of training data. For this paper, we
attempt to create true low-resource scenarios
by allowing a linguist just two hours to anno-
tate data and evaluating on the languages Kin-
yarwanda and Malagasy. Given these severely
limited amounts of either type supervision
(tag dictionaries) or token supervision (labeled
sentences), we are able to dramatically im-
prove the learning of a hidden Markov model
through our method of automatically general-
izing the annotations, reducing noise, and in-
ducing word-tag frequency information.

1 Introduction

The high performance achieved by part-of-speech
(POS) taggers trained on plentiful amounts of la-
beled word tokens is a success story of computa-
tional linguistics (Manning, 2011). However, re-
search on learning taggers using type supervision
(e.g. tag dictionaries or morphological transducers)
has had a more checkered history. The setting is
a seductive one: by labeling the possible parts-of-
speech for high frequency words, one might learn
accurate taggers by incorporating the type informa-
tion as constraints to a semi-supervised generative
learning model like a hidden Markov model (HMM).
Early work showed much promise for this strategy
(Kupiec, 1992; Merialdo, 1994), but successive ef-
forts in recent years have continued to peel away and
address layers of unrealistic assumptions about the

size, coverage, and quality of the tag dictionaries
that had been used (Toutanova and Johnson, 2008;
Ravi and Knight, 2009; Hasan and Ng, 2009; Gar-
rette and Baldridge, 2012). This paper attempts to
strip away further layers so we can build better intu-
itions about the effectiveness of type-supervised and
token-supervised strategies in a realistic setting of
POS-tagging for low-resource languages.

In most previous work, tag dictionaries are ex-
tracted from a corpus of annotated tokens. To ex-
plore the type-supervised scenario, these have been
used as a proxy for dictionaries produced by lin-
guists. However, this overstates their effectiveness.
Researchers have often manually pruned tag dictio-
naries by removing low-frequency word/tag pairs;
this violates the assumption that frequency informa-
tion is not available. Others have also created tag
dictionaries by extracting every word/tag pair in a
large, labeled corpus, including the test data—even
though actual applications would never have such
complete lexical knowledge. Dictionaries extracted
from corpora are also biased towards including only
the most likely tag for each word type, resulting in
a cleaner dictionary than one would find in real sce-
nario. Finally, tag dictionaries extracted from anno-
tated tokens benefit from the annotation process of
labeling and review and refinement over an extended
collaboration period. Such high quality annotations
are simply not available for most low-resource lan-
guages.

This paper describes an approach to learning
a POS-tagger that can be applied in a truly low-
resource scenario. Specifically, we discuss tech-
niques that allow us to learn a tagger given only
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the amount of labeled data that a human annotator
could provide in two hours. Here, we evaluate on
the languages Malagasy and Kinyarwanda, as well
as English as a control language. Furthermore, we
are interested in whether type-supervision or token-
supervision is more effective, given the strict time
constraint; accordingly, we had annotators produce
both a tag dictionary and a set of labeled sentences.

The data produced under our conditions differs in
several ways from the labeled data used in previous
work. Most obviously, there is less of it. Instead
of using hundreds of thousands of labeled tokens
to construct a tag dictionary (and hundreds of thou-
sands more as unlabeled (raw) data for training), we
only use the 1k-2k labeled tokens or types provided
by our annotators within the timeframe. Our train-
ing data is also much noisier than the data from a
typical corpus: the annotations were produced by
a single non-native-speaker working alone for two
hours. Therefore, dealing with the size and quality
of training data were core challenges to our task.

To learn a POS-tagger from so little labeled data,
we developed an approach that starts by generalizing
the initial annotations to the entire raw corpus. Our
approach uses label propagation (LP) (Talukdar and
Crammer, 2009) to infer tag distributions on unla-
beled tokens. We then apply a novel weighted vari-
ant of the model minimization procedure originally
developed by Ravi and Knight (2009) to estimate se-
quence and word-tag frequency information from an
unlabeled corpus by approximating the minimal set
of tag bigrams needed to explain the data. This com-
bination of techniques turns a tiny, unweighted, ini-
tial tag dictionary into a weighted tag dictionary that
covers the entire corpus’s vocabulary. This weighted
information limits the potential damage of tag dic-
tionary noise and bootstraps frequency information
to approximate a good starting point for the learning
of an HMM using expectation-maximization (EM),
and far outperforms just using EM on the raw an-
notations themselves.

2 Data

Our experiments use Kinyarwanda (KIN), Malagasy
(MLG), and English (ENG). KIN is a Niger-Congo
language spoken in Rwanda. MLG is an Austrone-
sian language spoken in Madagascar. Both KIN and

MLG are low-resource and KIN is morphologically-
rich. For each language, the word tokens are divided
into four sets: training data to be labeled by anno-
tators, raw training data, development data, and test
data. For consistency, we use 100k raw tokens for
each language.

Data sources For ENG, we used the Penn Tree-
bank (PTB) (Marcus et al., 1993). Sections 00-04
were used as raw data, 05-14 as a dev set, and 15-24
(473K tokens) as a test set. The PTB uses 45 dis-
tinct POS tags. The KIN texts are transcripts of testi-
monies by survivors of the Rwandan genocide pro-
vided by the Kigali Genocide Memorial Center. The
MLG texts are articles from the websites1 Lakroa and
La Gazette and Malagasy Global Voices,2 a citizen
journalism site.3 Texts in both KIN and MLG were
tokenized and labeled with POS tags by two linguis-
tics graduate students, each of which was studying
one of the languages. The KIN and MLG data have
14 and 24 distinct POS tags, respectively, and were
developed by the annotators.

Time-bounded annotation One of our main goals
is to evaluate POS-tagging for low-resource lan-
guages in experiments that correspond better to a
real-world scenario than previous work. As such, we
collected two forms of annotation, each constrained
by a two-hour time limit. The annotations were done
by the same linguists who had annotated the KIN

and MLG data mentioned above. Our experiments
are thus relevant to the reasonable context in which
one has access to a linguist who is familiar with the
target language and a given set of POS tags.

The first annotation task was to directly produce a
dictionary of words to their possible POS tags—i.e.,
collecting an actual tag dictionary of the form that is
typically simulated in POS-tagging experiments. For
each language, we compiled a list of word types, or-
dered starting with most frequent, and presented it
to the annotator with a list of admissible POS tags.
The annotator had two hours to specify POS tags for
as many words as possible. The word types and fre-
quencies used for this task were taken from the raw
training data and did not include the test sets. This

1www.lakroa.mg and www.lagazette-dgi.com
2mg.globalvoicesonline.org/
3The public-domain data is available at github.com/

dhgarrette/low-resource-pos-tagging-2013
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data is used for what will call type-supervised train-
ing. The second task was annotating full sentences
with POS tags, again for two hours. We refer to this
as token-supervised training.

Having both sets of annotations allows us to in-
vestigate the relative value of each with respect to
training taggers. Token-supervision provides valu-
able frequency and tag context information, but
type-supervision produces larger dictionaries. This
can be seen in Table 1, where the dictionary size
column in the table gives the number of unique
word/tag pairs derived from the data.

We also wanted to directly compare the two an-
notators to see how the differences in their relative
annotation speeds and quality would affect the over-
all ability to learn an accurate tagger. We thus had
them complete the same two tasks for English. As
can be seen in Table 1, there are clear differences
between the two annotators. Most notably, annota-
tor B was faster at annotating full sentences while
annotator A was faster at annotating word types.

3 Approach

Our approach to learning POS-taggers is based on
Garrette and Baldridge (2012), which properly sep-
arated test data from learning data, unlike much pre-
vious work. The input to our system is a raw cor-
pus and either a human-generated tag dictionary or
human-tagged sentences. The majority of the sys-
tem is the same for both kinds of labeled training
data, but the following description will point out dif-
ferences. The system has four main parts, in order:

1. Tag dictionary expansion
2. Weighted model minimization
3. Expectation maximization (EM) HMM training
4. MaxEnt Markov Model (MEMM) training

3.1 Tag dictionary expansion

In a low-resource setting, most word types will not
be found in the initial tag dictionary. EM-HMM train-
ing uses the tag dictionary to limit ambiguity, so a
sparse tag dictionary is problematic because it does
not sufficiently confine the parameter space.4 Small

4This is of course not the case for purely unsupervised tag-
gers, though we also note that it is not at all clear they are actu-
ally learning taggers for part-of-speech.

sent. tok. dict.
KIN human sentences A 90 1537 750
KIN human TD A 1798
MLG human sentences B 92 1805 666
MLG human TD B 1067
ENG human sentences A 86 1897 903
ENG human TD A 1644
ENG human sentences B 107 2650 959
ENG human TD B 1090

Table 1: Statistics for Kinyarwanda, Malagasy, and
English data annotated by annotators A and B.

dictionaries also interact poorly with the model min-
imization of Ravi et al. (2010): if there are too many
unknown words, and every tag must be considered
for them, then the minimal model will simply be the
one that assumes that they all have the same tag.

For these reasons, we automatically expand an
initial small dictionary into one that has coverage for
most of the vocabulary. We use label propagation
(LP)—specifically, the Modified Adsorption (MAD)
algorithm (Talukdar and Crammer, 2009)5—which
is a graph-based technique for spreading labels be-
tween related items. Our graphs connect token
nodes to each other via feature nodes and are seeded
with POS-tag labels from the human-annotated data.

Defining the LP graph Our LP graph has several
types of nodes, as shown in Figure 1. The graph
contains a TOKEN node for each token of the la-
beled corpus (when available) and raw corpus. Each
word type has one TYPE node that is connected to
its TOKEN nodes. Both kinds of nodes are con-
nected with feature nodes. The PREVWORD x and
NEXTWORD x nodes represent the features of a to-
ken being preceded by or followed by word type x in
the corpus. These bigram features capture extremely
simple syntactic information. To capture shallow
morphological relatedness, we use prefix and suffix
nodes that connect word types that share prefix or
suffix character sequences up to length 5. For each
node-feature pair, the connecting edge is weighted
as 1/N where N is the number of nodes connected
to the particular feature.

5The open-source MAD implementation is provided through
Junto: github.com/parthatalukdar/junto
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TOKEN A 1 1 TOKEN walks 2 3

SUFFIX1 e

TOKEN barks 1 3

SUFFIX1 s

PREVWORD dog

SUFFIX2 he

TYPE A

TOKEN The 2 1 TOKEN walks 3 3TOKEN The 3 1

PREVWORD manNEXTWORD .

TYPE barksTYPE The

SUFFIX2 ksDICTPOS D

NEXTWORD dog

DICTPOS N DICTPOS V

TYPE walks

NEXTWORD manPREVWORD 〈b〉

Figure 1: Subsets of the LP graph showing regions of connected nodes. Graph represents the sentences “A
dog barks .”, “The dog walks .”, and “The man walks .”

We also explored the effectiveness of using an ex-
ternal dictionary in the graph since this is one of the
few available sources of information for many low-
resource languages. Though a standard dictionary
probably will not use the same POS tag set that we
are targeting, it nevertheless provides information
about the relatedness of various word types. Thus,
we use nodes DICTPOS p that indicate that a particu-
lar word type is listed as having POS p in the dictio-
nary. Crucially, these tags bear no particular con-
nection to the tags we are predicting: we still tar-
get the tags defined by the linguist who annotated
the types or tokens used, which may be more or
less granular than those provided in the dictionary.
As external dictionaries, we use English Wiktionary
(614k entries), malagasyworld.org (78k entries),
and kinyarwanda.net (3.7k entries).6

Seeding the graph is straightforward. With token-
supervision, labels for tokens are injected into the
corresponding TOKEN nodes with a weight of 1.0.
In the type-supervised case, any TYPE node that ap-
pears in the tag dictionary is injected with a uniform
distribution over the tags in its tag dictionary entry.

Toutanova and Johnson (2008) (also, Ravi and
Knight (2009)) use a simple method for predict-
ing possible tags for unknown words: a set of 100
most common suffixes are extracted and then mod-
els of P(tag|suffix) are built and applied to unknown
words. However, these models suffer with an ex-
tremely small set of labeled data. Our method uses
character affix feature nodes along with sequence
feature nodes in the LP graph to get distributions
over unknown words. Our technique thus subsumes

6Wiktionary (wiktionary.org) has only 3,365 en-
tries for Malagasy and 9 for Kinyarwanda.

theirs as it can infer tag dictionary entries for words
whose suffixes do not show up in the labeled data (or
with enough frequency to be reliable predictors).

Extracting a result from LP LP assigns a label
distribution to every node. Importantly, each indi-
vidual TOKEN gets its own distribution instead of
sharing an aggregation over the entire word type.
From this graph, we extract a new version of the
raw corpus that contains tags for each token. This
provides the input for model minimization.

We seek a small set of likely tags for each token,
but LP gives each token a distribution over the entire
set of tags. Most of the tags are simply noise, some
of which we remove by normalizing the weights and
excluding tags with probability less than 0.1. Af-
ter applying this cutoff, the weights of the remain-
ing tags are re-normalized. We stress that this tag
dictionary cutoff is not like those used in past re-
search, which were done with respect to frequen-
cies obtained from labeled tokens: we use either no
word-tag frequency information (type-supervision)
or very small amounts of word-tag frequency infor-
mation indirectly through LP (token-supervision).7

Some tokens might not have any associated tag
labels after LP. This occurs when there is no
path from a TOKEN node to any seeded nodes or
when all tags for the TOKEN node have weights less
than the threshold. Since we require a distribution
for every token, we use a default distribution for
such cases. Specifically, we use the unsupervised
emission probability initialization of Garrette and
Baldridge (2012), which captures both the estimated
frequency of a tag and its openness using only a

7See Banko and Moore (2004) for further discussion of these
issues.
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〈b〉 The man saw the saw 〈b〉

〈b〉
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Figure 2: Weighted, greedy model minimization
graph showing a potential state between the stages
of the tag bigram choosing algorithm. Solid edges:
selected bigrams. Dotted edges: holes in the path.

small tag dictionary and unlabeled text.
Finally, we ensure that tokens of words in the

original tag dictionary are only assigned tags from
its entry. With this filter, LP of course does not add
new tags to known words (without it, we found per-
formance drops). If the intersection of the small tag
dictionary entry and the token’s resulting distribu-
tion from LP (after thresholding) is empty, we fall
back to the filtered and renormalized default distri-
bution for that token’s type.

The result of this process is a sequence of (ini-
tially raw) tokens, each associated with a distribu-
tion over a subset of tags. From this we can extract
an expanded tag dictionary for use in subsequent
stages that, crucially, provides tag information for
words not covered by the human-supplied tag dic-
tionary. This expansion is simple: an unknown word
type’s set of tags is the union of all tags assigned to
its tokens. Additionally, we add the full entries of
word types given in the original tag dictionary.

3.2 Weighted model minimization

EM-HMM training depends crucially on having a
clean tag dictionary and a good starting point for the
emission distributions. Given only raw text and a
tag dictionary, these distributions are difficult to es-
timate, especially in the presence of a very sparse
or noisy tag dictionary. Ravi and Knight (2009) use
model minimization to remove tag dictionary noise
and induce tag frequency information from raw text.
Their method works by finding a minimal set of tag
bigrams needed to explain a raw corpus.

Model minimization is a natural fit for our system
since we start with little or no frequency informa-
tion and automatic dictionary expansion introduces

noise. We extend the greedy model minimization
procedure of Ravi et al. (2010), and its enhance-
ments by Garrette and Baldridge (2012), to develop
a novel weighted minimization procedure that uses
the tag weights from LP to find a minimal model
that is biased toward keeping tag bigrams that have
consistently high weights across the entire corpus.
The new weighted minimization procedure fits well
in our pipeline by allowing us to carry the tag dis-
tributions forward from LP instead of simply throw-
ing that information away and using a traditional tag
dictionary.

In brief, the procedure works by creating a graph
such that each possible tag of each raw-corpus token
is a vertex (see Figure 2). Any edge that would con-
nect two tags of adjacent tokens is a potential tag bi-
gram choice. The algorithm first selects tag bigrams
until every token is covered by at least one bigram,
then selects tag bigrams that fill gaps between exist-
ing edges until there is a complete bigram path for
every sentence in the raw corpus.8

Ravi et al. (2010) select tag bigrams that cover
the most new words (stage 1) or fill the most holes
in the tag paths (stage 2). Garrette and Baldridge
(2012) introduced the tie-breaking criterion that bi-
gram choices should seek to introduce the small-
est number of new word/tag pairs possible into the
paths. Our criteria adds to this by using the tag
weights on each token: a tag bigram b is chosen by
summing up the node weights of any not-yet cov-
ered words touched by the tag bigram b, dividing
this sum by one plus the number of new word/tag
pairs that would be added by b, and choosing the b
that maximizes this value.9

Summing node weights captures the intuition of
Ravi et al. (2010) that good bigrams are those which
have high coverage of new words: each newly cov-
ered node contributes additional (partial) counts.
However, by using the weights instead of full counts,
we also account for the confidence assigned by LP.
Dividing by the number of new word/tag pairs added
focuses on bigrams that reuse existing tags for words

8Ravi et al. (2010) include a third phase of iterative model
fitting; however, we found this stage to be not only expensive,
but also unhelpful because it frequently yields negative results.

9In the case of token-supervision, we pre-select all tag bi-
grams appearing in the labeled corpus since these are assumed
to be known high-quality tag bigrams and word/tag pairs.
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and thereby limits the addition of new tags for each
word type.

At the start of model minimization, there are no
selected tag bigrams, and thus no valid path through
any sentence in the corpus. As bigrams are selected,
we can begin to cover subsequences and eventually
full sentences. There may be multiple valid taggings
for a sentence, so after each new bigram is selected,
we run the Viterbi algorithm over the raw corpus us-
ing the set of selected tag bigrams as a hard con-
straint on the allowable transitions. This efficiently
identifies the highest-weight path through each sen-
tence, if one exists. If such a path is found, we re-
move the sentence from the corpus and store the tags
from the Viterbi tagging. The algorithm terminates
when a path is found for every raw corpus sentence.
The result of weighted model minimization is this
set of tag paths. Since each path represents a valid
tagging of the sentence, we use this output as a nois-
ily labeled corpus for initializing EM in stage three.

3.3 Tagger training

Stage one provides an expansion of the initial la-
beled data and stage two turns that into a corpus of
noisily labeled sentences. Stage three uses the EM

algorithm initialized by the noisy labeling and con-
strained by the expanded tag dictionary to produce
an HMM.10 The initial distributions are smoothed
with one-count smoothing (Chen and Goodman,
1996). If human-tagged sentences are available as
training data, then we use their counts to supplement
the noisy labeled text for initialization and we add
their counts into every iteration’s result.

The HMM produced by stage three is not used
directly for tagging since it will contain zero-
probabilities for test-corpus words that were unseen
during training. Instead, we use it to provide a
Viterbi labeling of the raw corpus, following the
“auto-supervision” step of Garrette and Baldridge
(2012). This material is then concatenated with the
token-supervised corpus (when available), and used
to train a Maximum Entropy Markov Model tag-
ger.11 The MEMM exploits subword features and

10An added benefit of this strategy is that the EM algorithm
with the expanded dictionary runs much more quickly than
without it since it does not have to consider every possible tag
for unknown words, averaging 20x faster on PTB experiments.

11We use OpenNLP: opennlp.apache.org.

generally produces 1-2% better results than an HMM

trained on the same material.

4 Experiments12

Experimental results are shown in Table 2. Each ex-
periment starts with an initial data set provided by
annotator A or B. Experiment (1) simply uses EM

with the initial small tag dictionary to learn a tag-
ger from the raw corpus. (2) uses LP to infer an ex-
panded tag dictionary and tag distributions over raw
corpus tokens, but then takes the highest-weighted
tag from each token for use as noisily-labeled train-
ing data to initialize EM. (3) performs greedy model-
minimization on the LP output to derive that noisily-
labeled corpus. Finally, (4) is the same as (3), but
additionally uses external dictionary nodes in the LP

graph. In the case of token-supervision, we also in-
clude (0), in which we simply used the tagged sen-
tences as supervised data for an HMM without EM

(followed by MEMM training).
The results show that performance improves with

our LP and minimization techniques compared to
basic EM-HMM training. LP gives large across-the-
board improvements over EM training with only the
original tag dictionary (compare columns 1 & 2).
Weighted model minimization further improves re-
sults for type-supervision settings, but not for token
supervision (compare 2 & 3).

Using an external dictionary in the LP graph has
little effect for KIN, probably due to the available
dictionary’s very small size. However, MLG with
its larger dictionary obtains an improvement in both
scenarios. Results on ENG are mixed; this may be
because the PTB tagset has 45 tags (far more than
the dictionary) so the external dictionary nodes in
the LP graph may consequently serve to collapse dis-
tinctions (e.g. singular and plural) in the larger set.

Our results show differences between token- and
type-supervised annotations. Tag dictionary expan-
sion is helpful no matter what the annotations look
like: in both cases, the initial dictionary is too
small for effective EM learning, so expansion is nec-
essary. However, model minimization only ben-
efits the type-supervised scenarios, leaving token-
supervised performance unchanged. This suggests

12Our code is available at github.com/dhgarrette/
low-resource-pos-tagging-2013
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Human Annotations 0. No EM 1. EM only 2. With LP 3. LP+min 4. LP(ed)+min
Initial data T K U T K U T K U T K U T K U

KIN tokens A 72 90 58 55 82 32 71 86 58 71 86 58 71 86 58
KIN types A 63 77 32 78 83 69 79 83 70 79 83 70
MLG tokens B 74 89 49 68 87 39 74 89 49 74 89 49 76 90 53
MLG types B 71 87 46 72 81 57 74 86 56 76 86 60
ENG tokens A 63 83 38 62 83 37 72 85 55 72 85 55 72 85 56
ENG types A 66 76 37 75 81 56 76 83 56 74 81 55
ENG tokens B 70 87 44 70 87 43 78 90 60 78 90 60 78 89 61
ENG types B 69 83 38 75 82 61 78 85 61 78 86 61

Table 2: Experimental results. Three languages are shown: Kinyarwanda (KIN), Malagasy (MLG), and
English (ENG). The letters A and B refer to the annotator. LP(ed) refers to label propagation including nodes
from an external dictionary. Each result given as percentages for Total (T), Known (K), and Unknown (U).

that minimization is working as intended: it induces
frequency information when none is provided. With
token-supervision, the annotator provides some in-
formation about which tag transitions are best and
which emissions are most likely. This is miss-
ing with type-supervision, so model minimization is
needed to bootstrap word/tag frequency guesses.

This leads to perhaps our most interesting result:
in a time-critical annotation scenario, it seems better
to collect a simple tag dictionary than tagged sen-
tences. While the tagged sentences certainly contain
useful information regarding tag frequencies, our
techniques can learn this missing information auto-
matically. Thus, having wider coverage of word type
information, and having that information be focused
on the most frequent words, is more important. This
can be seen as a validation of the last two decades
of work on (simulated) type-supervision learning for
POS-tagging—with the caveat that the additional ef-
fort we do is needed to realize the benefit.

Our experiments also allow us to compare how the
data from different annotators affects the quality of
taggers learned. Looking at the direct comparison
on English data, annotator B was able to tag more
sentences than A, but A produced more tag dictio-
nary entries in the type-supervision scenario. How-
ever, it appears, based on the EM-only training, that
the annotations provided by B were of higher quality
and produced more accurate taggers in both scenar-
ios. Regardless, our full training procedure is able
to substantially improve results in all scenarios.

Table 3 gives the recall and precision of the tag

Tag Dictionary Source R P
(1) human-annotated TD 18.42 29.33
(2) LP output 35.55 2.62
(3) model min output 30.49 4.63

Table 3: Recall (R) and precision (P) for tag dictio-
naries versus the test data in a “MLG types B” run.

dictionaries for MLG for settings 1, 2 and 3. The ini-
tial, human-provided tag dictionary unsurprisingly
has the highest precision and lowest recall. LP ex-
pands that data to greatly improve recall with a large
drop in precision. Minimization culls many entries
and improves precision with a small relative loss in
recall. Of course, this is only a rough indicator of
the quality of the tag dictionaries since the word/tag
pairs of the test set only partially overlap with the
raw training data and annotations.

Because gold-standard annotations are available
for the English sentences, we also ran oracle ex-
periments using labels from the PTB corpus (es-
sentially, the kind of data used in previous work).
We selected the same amount of labeled tokens or
word/tag pairs as were obtained by the annotators.
We found similar patterns of improved performance
by using LP expansion and model minimization,
and all accuracies are improved compared to their
human-annotator equivalents (about 2-6%). Overall
accuracy for both type and token supervision comes
to 78-80%.
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#Errors 11k 6k 5k 4k 3k
Gold TO NNP NN JJ NNP
Model IN NN JJ NN JJ

Table 4: Top errors from an “ENG types B” run.

Error Analysis One potential source of errors
comes directly from the annotators themselves.
Though our approach is designed to be robust to an-
notation errors, it cannot correct all mistakes. For
example, for the “ENG types B” experiment, the an-
notator listed IN (preposition) as the only tag for
word type “to”. However, the test set only ever as-
signs tag TO for this type. This single error accounts
for a 2.3% loss in overall tagging accuracy (Table 4).

In many situations, however, we are able to auto-
matically remove improbable tag dictionary entries,
as shown in Table 5. Consider the word type “for”.
The annotator has listed RP (particle) as a potential
tag, but only five out of 4k tokens have this tag. With
RP included, EM becomes confused and labels a ma-
jority of the tokens as RP when nearly all should be
labeled IN. We are able to eliminate RP as a possi-
bility, giving excellent overall accuracy for the type.
Likewise for the comma type, the annotator has in-
correctly given “:” as a valid tag, and LP, which
uses the tag dictionary, pushes this label to many to-
kens with high confidence. However, minimization
is able to correct the problem.

Finally, the word type “opposition” provides an
example of the expected behavior for unknown
words. The type is not in the tag dictionary, so
EM assumes all tags are valid and uses many labels.
LP expands the starting dictionary to cover the type,
limiting it to only two tags. Minimization then de-
termines that NN is the best tag for each token.

5 Related work

Goldberg et al. (2008) trained a tagger for Hebrew
using a manually-created lexicon which was not de-
rived from an annotated corpus. However, their lexi-
con was constructed by trained lexicographers over a
long period of time and achieves very high coverage
of the language with very good quality. In contrast,
our annotated data was created by untrained linguis-
tics students working alone for just two hours.

Cucerzan and Yarowsky (2002) learn a POS-

for *IN *RP JJ NN CD
(1) EM 1,221 2764 9 5
(2) LP 4,003
(3) min 4,004 1
gold 3,999 5
, (comma) *, *: JJS PTD VBP
(1) EM 24,708 4 3 3
(2) LP 15,505 9226 1
(3) min 24,730
gold 24,732
opposition NN JJ DT NNS VBP
(1) EM 24 4 1 4 4
(2) LP 41 4
(3) min 45
gold 45

Table 5: Tag assignments in different scenarios. A
star indicates an entry in the human-provided TD.

tagger from existing linguistic resources, namely a
dictionary and a reference grammar, but these re-
sources are not available, much less digitized, for
most under-studied languages.

Subramanya et al. (2010) apply LP to the prob-
lem of tagging for domain adaptation. They con-
struct an LP graph that connects tokens in low- and
high-resource domains, and propagate labels from
high to low. This approach addresses the prob-
lem of learning appropriate tags for unknown words
within a language, but it requires that the language
have at least one high-resource domain as a source
of high quality information. For low-resource lan-
guages that have no significant annotated resources
available in any domain, this technique cannot be
applied.

Das and Petrov (2011) and Täckström et al.
(2013) learn taggers for languages in which there
are no POS-annotated resources, but for which par-
allel texts are available between that language and a
high-resource language. They project tag informa-
tion from the high-resource language to the lower-
resource language via alignments in the parallel text.
However, large parallel corpora are not available for
most low-resource languages. These are also ex-
pensive resources to create and would take consid-
erably more effort to produce than the monolingual
resources that our annotators were able to generate
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in a two-hour timeframe. Of course, if they are avail-
able, such parallel text links could be incorporated
into our approach.

Furthermore, their approaches require the use of
a universal tag set shared between both languages.
As such, their approach is only able to induce POS

tags for the low-resource language if the same tag
set is used to tag the high-resource language. Our
approach does not rely on any such universal tag
set; we learn whichever tags the human annotator
chooses to use when they provide their annotations.
In fact, in our experiments we learn much more de-
tailed tag sets than the fairly coarse universal tag set
used by Das and Petrov (2011) or Täckström et al.
(2013): we learn a tagger for the full Penn Treebank
tag set of 45 tags versus the 12 tags in the universal
set.

Ding (2011) constructed an LP graph for learning
POS tags on Chinese text by propagating labels from
an initial tag dictionary to a larger set of data. This
LP graph contained Wiktionary word/POS relation-
ships as features as well as Chinese-English word
alignment information and used it to directly esti-
mate emission probabilities to initialize an EM train-
ing of an HMM.

Li et al. (2012) train an HMM using EM and an
initial tag dictionary derived from Wiktionary. Like
Das and Petrov (2011), they use a universal POS tag
set, so Wiktionary can be directly applied as a wide-
coverage tag dictionary in their case. Additionally,
they evaluate their approach on languages for which
Wiktionary has high coverage—which would cer-
tainly not get far with Kinyarwanda (9 entries). Our
approach does not rely on a high-coverage tag dic-
tionary nor is it restricted to use with a small tag set.

6 Conclusions and future work

With just two hours of annotation, we obtain 71-78%
accuracy for POS-tagging across three languages us-
ing both type and token supervision. Without tag
dictionary expansion and model minimization, per-
formance is much worse, from 63-74%. We dramat-
ically improve performance on unknown words: the
range of 37-58% improves to 53-70%.

We also have a provisional answer to whether an-
notation should be on types or tokens: use type-
supervision if you also expand and minimize. These

methods can identify missing word/tag entries and
estimate frequency information, and they produce as
good or better results compared to starting with to-
ken supervision. The case of Kinyarwanda was most
dramatic: 71% accuracy for token-supervision com-
pared to 79% for type-supervision. Studies using
more annotators and across more languages would
be necessary to make any stronger claim about the
relative efficacy of the two strategies.
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