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Abstract

We present an active learning method for
coreference resolution that is novel in three re-
spects. (i) It uses bootstrapped neighborhood
pooling, which ensures a class-balanced pool
even though gold labels are not available. (ii)
It employs neighborhood selection, a selection
strategy that ensures coverage of both posi-
tive and negative links for selected markables.
(iii) It is based on a query-by-committee selec-
tion strategy in contrast to earlier uncertainty
sampling work. Experiments show that this
new method outperforms random sampling in
terms of both annotation effort and peak per-
formance.

1 Introduction

Coreference resolution (CR) – the task of determin-
ing if two expressions in natural language text re-
fer to the same real-world entity – is an important
NLP task. One popular approach to CR is super-
vised classification. This approach needs manually
labeled training data that is expensive to create. Ac-
tive learning (AL) is a technique that can reduce this
cost by setting up an interactive training/annotation
loop that selects and annotates training examples
that are maximally useful for the classifier that is
being trained. However, while AL has been proven
successful for many other NLP tasks, such as part-
of-speech tagging (Ringger et al., 2007), parsing
(Osborne and Baldridge, 2004), text classification
(Tong and Koller, 2002) and named entity recogni-
tion (Tomanek et al., 2007), AL has not been suc-
cessfully applied to coreference resolution so far.

In this paper, we present a novel approach to AL
for CR based on query-by-committee sampling and
bootstrapping and show that it performs better than
a number of baselines.

2 Related work

Coreference resolution. The perhaps most widely
used supervised learning approach to CR is the
mention-pair model (Soon et al., 2001). This model
classifies links (pairs of two mentions) as corefer-
ent or disreferent, followed by a clustering stage that
partitions entities based on the link decisions. Our
AL method is partially based on the class balancing
strategy proposed by Soon et al. (2001).

While models other than mention-pair have been
proposed (Culotta et al., 2007), none performs
clearly better as evidenced by recent shared evalu-
ations such as SemEval 2010 (Recasens et al., 2010)
and CoNLL 2011 (Pradhan et al., 2011).

Active learning. The only existing publication
on AL for CR that we are aware of is (Gasperin,
2009). She uses a mention-pair model on a biomed-
ical corpus. The classifier is Naive Bayes and the
AL method uncertainty sampling (Lewis and Gale,
1994). The results are negative: AL is not bet-
ter than random sampling. In preliminary experi-
ments, we replicated this result for our corpus and
our system: Uncertainty sampling is not better than
random sampling for CR. Uncertainty sampling can
fail if uncertainty assessments are too unstable for
successful example selection (cf. Dwyer and Holte
(2007)). This seems to be the case for the decision
trees we use. Naive Bayes is also known to give bad
uncertainty assessments (Domingos and Pazzani,
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1997). We therefore adopted a query-by-committee
approach combined with a class-balancing strategy.

3 Active learning for CR

The classifier in the mention-pair model is faced
with a severe class imbalance: there are many more
disreferent than coreferent links. To address this im-
balance, we use a neighborhood pool or N-pool as
proposed by Soon et al. (2001).

Generation of the N-pool. The neighborhood
of markable x used in N-pooling is defined as the
set consisting of the link between x and its closest
coreferent markable y(x) to the left and all disref-
erent links in between. For a particular markable x,
let y(x) be the closest coreferent markable for x to
the left of x. Between y(x) and x, there are disref-
erent markables zi, so we have a constellation like
y(x), z1, . . . , zn, x. The neighborhood of x is then
the set of links

{(y, x), (z1, x) . . . , (zn, x)}

This set is empty if x does not have a coreferent
markable to the left.

We call the set of all such neighborhoods the N-
pool. The N-pool is a subset of the entire pool of
links.

Bootstrapping the neighborhood. Soon et al.
(2001) introduce N-pooling for labeled data. In AL,
no labeled data (or very little of it) is available. In-
stead, we employ the committee of classifiers that
we use for AL example selection for bootstrapping
the N-pool. We query the committee of classifiers
from the last AL iteration and treat a link as coref-
erent if and only if the majority of the classifiers
classifies it as coreferent. We then construct the N-
pool using these bootstrapped labels to determine
the coreferent markables y(x) and then construct the
neighborhoods as described above.

If this procedure yields no coreferent links in an
iteration, we sample links left of randomly selected
markables instead of N-pooling.

Example selection granularity. We use a query-
by-committee approach to AL. The committee con-
sists of 10 instances of the link classifier of the CR
system, each trained on a randomly chosen subset of
the links that have been manually labeled so far.

In each iteration, the N-pool is recomputed and
a small subset of the N-pool is selected for label-
ing. We experiment with two selection granularities.
In neighborhood selection, entire neighborhoods are
selected and labeled in each iteration. We define the
utility of a neighborhood as the average of the vote
entropies (Argamon-Engelson and Dagan, 1999) of
its links.

In link selection, individual links with the highest
utility are selected – in most cases these will be from
different neighborhoods. Utility is again defined as
vote entropy.

Our hypothesis is that, compared to selection of
individual links, neighborhood selection yields a
more balanced sample that covers both positive and
negative links for a markable. At the same time,
neighborhood selection retains the benefits of AL
sampling: difficult (or highly informative) links are
selected.

4 Experiments

We use the mention-pair CR system SUCRE (Kob-
dani et al., 2011). The link classifier is a deci-
sion tree and the clustering algorithm a variant of
best-first clustering (Ng and Cardie, 2002). SUCRE
results were competitive in SEMEVAL 2010 (Re-
casens et al., 2010). We implemented N-pool boot-
strapping and selection methods on top of the AL
framework of Tomanek et al. (2007).

We use the English part of the SemEval-2010 CR
task data set, a subset of OntoNotes 2.0 (Hovy et al.,
2006). Training and test set sizes are about 96,000
and 24,000 words. Since we focus on the coref-
erence resolution subtask, we use the true mention
boundaries for the markables.

The pool for example selection is created by pair-
ing every markable with every preceding markable
within a window of 100 markables. This yields a
pool of 1.7 million links, of which only 1.5% are
labeled as coreferent. This drastic class imbalance
necessitates our bootstrapped class-balancing.

We run two baseline experiments for compari-
son: (i) random selection on the entire pool, with-
out any class balancing, and (ii) random selection
from a gold-label-based N-pool. We chose to use
gold neighborhood information for the baseline to
remove the influence of badly predicted neighbor-
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20,000 links 50,000 links
MUC B3 CEAF mean MUC B3 CEAF mean

(1) random entire pool 49.68 86.07 82.34 72.70 48.81 86.00 82.24 72.34
(2) N-pooling 61.60 85.00 82.85 76.48 62.60 85.99 83.44 77.33
(3) AL link selection 55.65 86.91† 83.67† 75.41 55.84 86.94† 83.70 75.49
(4) neighborhood sel. 63.07† 86.94† 84.42† 78.14† 63.81† 87.11† 84.33† 78.42†

Table 1: Performance of different methods. All measures are F1 measures.

hoods and focus on the performance of random sam-
pling. Hence, this is a very strong random baseline.
The performance with bootstrapped neighborhoods
would likely be lower.

We run 10 runs of each experiment, starting from
10 different seed sets. These seed sets contained 200
links, drawn randomly from the entire pool, for ran-
dom sampling; and 20 neighborhoods for neighbor-
hood selection, with a comparable number of links.
We verified that each seed set contained instances of
both classes.

5 Results

We determine the performance of CR depending on
the number of links used for training. The results
of the experiments are shown in Table 1 and Fig-
ures 1a to 1d. We show results for four coreference
measures: MUC, B3, entity-based CEAF (hence-
forth: CEAF), and the arithmetic mean of MUC, B3
and CEAF (as suggested by the CoNLL-2011 shared
evaluation).

In all four figures, the AL curves have reached a
plateau at 20,000 links. At this point, neighborhood
selection AL (line 4 in Table 1) outperforms random
sampling from the N-pool (line 2) for all coreference
measures, with gains from 1.47 points for MUC to
1.94 points for B3.

At 20,000 links, the N-pooling random baseline
(line 2) has not yet reached maximum performance,
but even at 50,000 links, neighborhood selection AL
still outperforms the baselines. (AL and baseline
performance will eventually converge when most
links from the pool are sampled, but this will hap-
pen much later, since the pool has 1.7 million links
in total).

†Statistically significant at p < .05 compared to baseline 2
using the sign test (N = 10, k ≥ 9 successes).

Link selection AL (line 3) outperforms the base-
lines for B3 and CEAF, but is performing markedly
worse than the N-pooling random baseline (line 2)
for MUC (due to low recall for MUC) and mean F1.
Link selection yields a CR system that proposes a
lot of singleton entities that are not coreferent with
any other entity. The MUC scoring scheme does not
give credit to singletons at all, thus the lower recall.

Neighborhood selection AL initially has low
MUC, but starts to outperform the baseline at 15,000
links (Figure 1a). For B3 and CEAF, neighborhood
selection AL outperforms the baselines much ear-
lier, at a few 1000 links (Figures 1b and 1c). It thus
shows more robust performance for all evaluation
metrics.

Neighborhood selection AL also performs at least
as well as (for B3) or better than (MUC and CEAF)
link selection AL. Learning curves of neighborhood
selection AL are consistently above the link selec-
tion curves. We therefore consider neighborhood se-
lection AL to be the preferred AL setup for CR.

6 Conclusion

We have presented a new AL method for corefer-
ence resolution. The proposed method is novel in
three respects. (i) It uses bootstrapped N-pooling,
which ensures a class-balanced pool even though
gold labels are not available. (ii) It further improves
class balancing by neighborhood selection, a selec-
tion strategy that ensures coverage of positive and
negative links per markable while still focusing on
selecting difficult links. (iii) It is based on a query-
by-committee selection strategy in contrast to ear-
lier uncertainty sampling work. Experiments show
that this new method outperforms random sampling
in terms of both annotation effort and peak perfor-
mance.
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(a) Learning curve for MUC
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(b) Learning curve for B3
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(c) Learning curve for CEAF
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(d) Learning curve for the mean of the CR measures.

Figure 1: Learning curves for AL and baseline experiments. All measures are F1 measures.
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