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Abstract

In a conventional telephone conversation be-
tween two speakers of the same language, the
interaction is real-time and the speakers pro-
cess the information stream incrementally. In
this work, we address the problem of incre-
mental speech-to-speech translation (S2S) that
enables cross-lingual communication between
two remote participants over a telephone. We
investigate the problem in a novel real-time
Session Initiation Protocol (SIP) based S2S
framework. The speech translation is per-
formed incrementally based on generation of
partial hypotheses from speech recognition.
We describe the statistical models comprising
the S2S system and the SIP architecture for
enabling real-time two-way cross-lingual dia-
log. We present dialog experiments performed
in this framework and study the tradeoff in ac-
curacy versus latency in incremental speech
translation. Experimental results demonstrate
that high quality translations can be generated
with the incremental approach with approxi-
mately half the latency associated with non-
incremental approach.

1 Introduction

In recent years, speech-to-speech translation (S2S)
technology has played an increasingly important
role in narrowing the language barrier in cross-
lingual interpersonal communication. The improve-
ments in automatic speech recognition (ASR), statis-
tical machine translation (MT), and, text-to-speech
synthesis (TTS) technology has facilitated the serial
binding of these individual components to achieve
S2S translation of acceptable quality.

Prior work on S2S translation has primarily fo-
cused on providing either one-way or two-way trans-
lation on a single device (Waibel et al., 2003; Zhou

et al., 2003). Typically, the user interface requires
the participant(s) to choose the source and target lan-
guage apriori. The nature of communication, either
single user talking or turn taking between two users
can result in a one-way or cross-lingual dialog inter-
action. In most systems, the necessity to choose the
directionality of translation for each turn does take
away from a natural dialog flow. Furthermore, single
interface based S2S translation (embedded or cloud-
based) is not suitable for cross-lingual communica-
tion when participants are geographically distant, a
scenario more likely in a global setting. In such a
scenario, it is imperative to provide real-time and
low latency communication.

In a conventional telephone conversation between
two speakers of the same language, the interaction
is real-time and the speakers process the informa-
tion stream incrementally. Similarly, cross-lingual
dialog between two remote participants will greatly
benefit through incremental translation. While in-
cremental decoding for text translation has been
addressed previously in (Furuse and Iida, 1996;
Sankaran et al., 2010), we address the problem in
a speech-to-speech translation setting for enabling
real-time cross-lingual dialog. We address the prob-
lem of incrementality in a novel session initiation
protocol (SIP) based S2S translation system that en-
ables two people to interact and engage in cross-
lingual dialog over a telephone (mobile phone or
landline). Our system performs incremental speech
recognition and translation, allowing for low latency
interaction that provides an ideal setting for remote
dialog aimed at accomplishing a task.

We present previous work in this area in Section 2
and introduce the problem of incremental translation
in Section 3. We describe the statistical models used
in the S2S translation framework in Section 4 fol-
lowed by a description of the SIP communication
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framework for real-time translation in Section 5. In
Section 6, we describe the basic call flow of our sys-
tem following which we present dialog experiments
performed using our framework in Section 8. Fi-
nally, we conclude in Section 9 along with directions
for future work.

2 Previous Work

Most previous work on speech-to-speech transla-
tion systems has focused on a single device model,
i.e., the user interface for translation is on one de-
vice (Waibel et al., 1991; Metze et al., 2002; Zhou
et al., 2003; Waibel et al., 2003). The device typi-
cally supports multiple source-target language pairs.
A user typically chooses the directionality of transla-
tion and a toggle feature is used to switch the direc-
tionality. However, this requires physical presence
of the two conversants in one location.

On the other hand, text chat between users over
cell phones has become increasingly popular in the
last decade. While the language used in the inter-
action is typically monolingual, there have been at-
tempts to use statistical machine translation to en-
able cross-lingual text communication (Chen and
Raman, 2008). But this introduces a significant
overhead as the users need to type in the responses
for each turn. Moreover, statistical translation sys-
tems are typically unable to cope with telegraphic
text present in chat messages. A more user friendly
approach would be to use speech as the modality for
communication.

One of the first attempts for two-way S2S trans-
lation over a telephone between two potentially re-
mote participants was made as part of the Verbmobil
project (Wahlster, 2000). The system was restricted
to certain topics and speech was the only modality.
Furthermore, the spontaneous translation of dialogs
was not incremental. One of the first attempts at in-
cremental text translation was demonstrated in (Fu-
ruse and Iida, 1996) using a transfer-driven machine
translation approach. More recently, an incremen-
tal decoding framework for text translation was pre-
sented in (Sankaran et al., 2010). To the best of
our knowledge, incremental speech-to-speech trans-
lation in a dialog setting has not been addressed in
prior work. In this work, we address this problem
using first of a kind SIP-based large vocabulary S2S

translation system that can work with both smart-
phones and landlines. The speech translation is per-
formed incrementally based on generation of partial
hypotheses from speech recognition. Our system
displays the recognized and translated text in an in-
cremental fashion. The use of SIP-based technology
also supports an open form of cross-lingual dialog
without the need for attention phrases.

3 Incremental Speech-to-Speech
Translation

In most statistical machine translation systems, the
input source text is translated in entirety, i.e., the
search for the optimal target string is constrained
on the knowledge of the entire source string. How-
ever, in applications such as language learning and
real-time speech-to-speech translation, incremen-
tally translating the source text or speech can pro-
vide seamless communication and understanding
with low latency. Let us assume that the input string
(either text or speech recognition hypothesis) is f =
f1, · · · , fJ and the target string is e = e1, · · · , eI .
Among all possible target sentences, we will choose
the one with highest probability:

ê(f) = arg max
e

Pr(e|f) (1)

In an incremental translation framework, we do not
observe the entire string f . Instead, we observe Qs

sequences, S = s1 · · · sk · · · sQs , i.e., each sequence
sk = [fjk

fjk+1 · · · fj(k+1)−1], j1 = 1, jQs+1 =

J + 11. Let the translation of each foreign sequence
sk be denoted by tk = [eikeik+1 · · · ei(k+1)−1], i1 =
1, iQs+1 = I +1. Given this setting, we can perform
decoding using three different approaches. Assum-
ing that each partial source input is translated inde-
pendently, i.e., chunk-wise translation, we get,

ˆ̂e(f) = arg max
t1

Pr(t1|s1) · · · arg max
tk

Pr(tk|sk)

(2)

We call the decoding in Eq. 2 as partial decoding.
The other option is to translate the partial source in-

1For simplicity, we assume that the incremental and non-
incremental hypotheses are equal in length
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put conditioned on the history, i.e.,

ˆ̂e(f) = arg max
t1

Pr(t1|s1) · · ·

arg max
tk

Pr(tk|s1, · · · , sk, t
∗
1, · · · , t∗k−1) (3)

where t∗i denotes the best translation for source se-
quence si. We term the result obtained through Eq. 3
as continue-partial. The third option is to wait for
all the partials to be generated and then decode the
source string which we call complete decoding, i.e.,

ˆ̂e(f) = arg max
e

Pr(e|s1, · · · , sk) (4)

Typically, the hypothesis ê will be more accurate
than ˆ̂e as the translation process is non-incremental.
In the best case, one can obtain ˆ̂e = ê. While the de-
coding described in Eq. 2 has the lowest latency, it
is likely to result in inferior performance in compari-
son to Eq. 1 that will have higher latency. One of the
main issues in incremental speech-to-speech trans-
lation is that the translated sequences need to be im-
mediately synthesized. Hence, there is tradeoff be-
tween the amount of latency versus accuracy as the
synthesized audio cannot be revoked in case of long
distance reordering. In this work, we focus on incre-
mental speech translation and defer the problem of
incremental synthesis to future work. We investigate
the problem of incrementality using a novel SIP-
based S2S translation system, the details of which
we discuss in the subsequent sections.

4 Speech-to-Speech Translation
Components

In this section, we describe the training data, pre-
processing steps and statistical models used in the
S2S system.

4.1 Automatic Speech Recognition

We use the AT&T WATSONSM real-time speech
recognizer (Goffin et al., 2004) as the speech recog-
nition module. WATSONSM uses context-dependent
continuous density hidden Markov models (HMM)
for acoustic modeling and finite-state networks for
network optimization and search. The acoustic mod-
els are Gaussian mixture tied-state three-state left-
to-right HMMs. All the acoustic models in this work

were initially trained using the Maximum Likeli-
hood Estimation (MLE) criterion, and followed by
discriminative training through Minimum Phone Er-
ror (MPE) criterion. We also employed Gaussian
Selection (Bocchieri, 1993) to decrease the real-time
factor during the recognition procedure.

The acoustic models for English and Span-
ish were mainly trained on short utterances in
the respective language, acquired from SMS and
search applications on smartphones. The amount
of training data for the English acoustic model
is around 900 hours of speech, while the data
for training the Spanish is approximately half that
of the English model. We used a total of 107
phonemes for the English acoustic model, com-
posed of digit-specific, alpha-specific, and general
English phonemes. Digit-specific and alpha-specific
phonemes were applied to improve the recognition
accuracy of digits and alphas in the speech. The
number of phonemes for Spanish was 34, and, no
digit- or alpha-specific phonemes were included.
The pronunciation dictionary for English is a hand-
labeled dictionary, with pronunciation for unseen
words being predicted using custom rules. A rule-
based dictionary was used for Spanish.

We use AT&T FSM toolkit (Mohri et al., 1997)
to train a trigram language model (LM). The lan-
guage model was linearly interpolated from 18 and
17 components for English and Spanish, respec-
tively. The data for the the LM components was
obtained from several sources that included LDC,
Web, and monolingual portion of the parallel data
described in section 4.2. An elaborate set of lan-
guage specific tokenization and normalization rules
was used to clean the corpora. The normalization
included spelling corrections, conversion of numer-
als into words while accounting for telephone num-
bers, ordinal, and, cardinal categories, punctuation,
etc. The interpolation was performed by tuning the
language model weights on a development set us-
ing perplexity metric. The development set was 500
sentences selected randomly from the IWSLT cor-
pus (Paul, 2006). The training vocabulary size for
English acoustic model is 140k and for the language
model is 300k. For the Spanish model, the train-
ing vocabulary size is 92k, while for testing, the
language model includes 370k distinct words. In
our experiments, the decoding and LM vocabularies
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were the same.

4.2 Machine Translation

The phrase-based translation experiments reported
in this work was performed using the Moses2

toolkit (Koehn et al., 2007) for statistical machine
translation. Training the translation model starts
from the parallel sentences from which we learn
word alignments by using GIZA++ toolkit (Och
and Ney, 2003). The bidirectional word alignments
obtained using GIZA++ were consolidated by us-
ing the grow-diag-final option in Moses. Subse-
quently, we learn phrases (maximum length of 7)
from the consolidated word alignments. A lexical-
ized reordering model (msd-bidirectional-fe option
in Moses) was used for reordering the phrases in
addition to the standard distance based reordering
(distortion-limit of 6). The language models were
interpolated Kneser-Ney discounted trigram models,
all constructed using the SRILM toolkit (Stolcke,
2002). Minimum error rate training (MERT) was
performed on a development set to optimize the fea-
ture weights of the log-linear model used in trans-
lation. During decoding, the unknown words were
preserved in the hypotheses.

The parallel corpus for phrase-based transla-
tion was obtained from a variety of sources: eu-
roparl (Koehn, 2005), jrc-acquis corpus (Steinberger
et al., 2006), opensubtitle corpus (Tiedemann and
Lars Nygaard, 2004), web crawling as well as hu-
man translation. The statistics of the data used for
English-Spanish is shown in Table 1. About 30% of
the training data was obtained from the Web (Ran-
garajan Sridhar et al., 2011). The development set
(identical to the one used in ASR) was used in
MERT training as well as perplexity based optimiza-
tion of the interpolated language model. The lan-
guage model for MT and ASR was constructed from
identical data.

4.3 Text-to-speech synthesis

The translated sentence from the machine trans-
lation component is synthesized using the AT&T
Natural VoicesTM text-to-speech synthesis en-
gine (Beutnagel et al., 1999). The system uses unit
selection synthesis with half phones as the basic

2http://www.statmt.org/moses

en-es
Data statistics en es
# Sentences 7792118 7792118
# Words 98347681 111006109
Vocabulary 501450 516906

Table 1: Parallel data used for training translation
models

units. The database was recorded by professional
speakers of the language. We are currently using fe-
male voices for English as well as Spanish.

5 SIP Communication Framework for
Real-time S2S Translation

The SIP communication framework for real-time
language translation comprises of three main com-
ponents. Session Initiation Protocol (SIP) is becom-
ing the de-facto standard for signaling control for
streaming applications such as Voice over IP. We
present a SIP communication framework that uses
Real-time Transport Protocol (RTP) for packetiz-
ing multimedia content and User Datagram Proto-
col (UDP) for delivering the content. In this work,
the content we focus on is speech and text infor-
mation exchanged between two speakers in a cross-
lingual dialog. For two users conversing in two dif-
ferent languages (e.g., English and Spanish), the me-
dia channels between them will be established as
shown in Figure 1. In Figure 1, each client (UA) is
responsible for recognition, translation, and synthe-
sis of one language input. E.g., the English-Spanish
UA recognizes English text, converts it into Spanish,
and produces output Spanish audio. Similarly, the
Spanish-English UA is responsible for recognition
of Spanish speech input, converting it into English,
and producing output English audio. We describe
the underlying architecture of the system below.

5.1 Architecture

1. End point SIP user agents: These are the SIP
end points that exchange SIP signaling mes-
sages with the SIP Application server (AS) for
call control.

2. SIP User Agents: Provide a SIP interface to the
core AT&T WATSONSM engine that incorpo-
rates acoustic and language models for speech
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Figure 1: SIP communication framework used for real-time speech-to-speech translation. The example
shows the setup between two participants in English(en) and Spanish (es)

recognition.

3. SIP Application Server (AS): A standard SIP
B2BUA (back to back user agent) that receives
SIP signaling messages and forwards them to
the intended destination. The machine transla-
tion component (server running Moses (Koehn
et al., 2007)) is invoked from the AS.

In our communication framework, the SIP AS re-
ceives a call request from the calling party. The AS
infers the language preference of the calling party
from the user profile database and forwards the call
to the called party. Based on the response, AS in-
fers the language preference of the called party from
the user profile database. If the languages of the
calling and called parties are different, the AS in-
vites two SIP UAs into the call context. The AS ex-
changes media parameters derived from the calling
and called party SIP messages with that of the SIP
UAs. The AS then forwards the media parameters
of the UAs to the end user SIP agents.

The AS, the end user SIP UAs, and the SIP UAs
are all RFC 3261 SIP standard compliant. The end
user SIP UAs are developed using PJSIP stack that
uses PJMedia for RTP packetization of audio and
network transmission. For our testing, we have
implemented the end user SIP UAs to run on Ap-

ple IOS devices. The AS is developed using E4SS
(Echarts for SIP Servlets) software and deployed on
Sailfin Java container. It is deployed on a Linux box
installed with Cent OS version 5. The SIP UAs are
written in python for interfacing with external SIP
devices, and use proprietary protocol for interfacing
with the core AT&T WATSONSM engine.

6 Typical Call Flow

Figure 2 shows the typical call flow involved in set-
ting up the cross-lingual dialog. The caller chooses
the number of the callee from the address book or
enters it using the keypad. Subsequently, the call is
initiated and the underlying SIP channels are estab-
lished to facilitate the call. The users can then con-
verse in their native language with the hypotheses
displayed in an IM-like fashion. The messages of
the caller appear on the left side of the screen while
those of the callee appear on the right. Both the
recognition and translation hypotheses are displayed
incrementally for each side of the conversation. In
our experiments, the caller and the callee naturally
followed a protocol of listening to the other party’s
synthesized output before speaking once they were
accustomed to the interface. One of the issues dur-
ing speech recognition is that, the user can poten-
tially start speaking as the TTS output from the other
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Figure 2: Illustration of call flow. The call is established using SIP and the real-time conversation appears
in the bubbles in a manner similar to Instant Messaging. For illustration purposes, the caller (Spanish) and
callee (English) are assumed to have set their language preferences in the setup menu.

participant is being played. We address the feedback
problem from the TTS output by muting the micro-
phone when TTS output is played.

7 Dialog Data

The system described above provides a natural way
to collect cross-lingual dialog data. We used our
system to collect a corpus of 40 scripted dialogs in
English and Spanish. A bilingual (English-Spanish)
speaker created dialog scenarios in the travel and
hospitality domain and the scripted dialog was used
as reference material in the call. Two subjects partic-
ipated in the data collection, a male English speaker
and female Spanish speaker. The subjects were in-
structed to read the lines verbatim. However, due to
ASR errors, the subjects had to repeat or improvise
few turns (about 10%) to sustain the dialog. The av-
erage number of turns per scenario in the collected
corpus is 13; 6 and 7 turns per scenario for English
and Spanish, respectively. An example dialog be-
tween two speakers is shown in Table 2.

8 Experiments

In this section, we describe speech translation ex-
periments performed on the dialog corpus collected
through our system. We present baseline results fol-
lowed by results of incremental translation.

8.1 Baseline Experiments
The models described in Section 4 were used to es-
tablish baseline results on the dialog corpus. No

A: Hello, I am calling from room four twenty one
the T.V. is not working. Do you think you can send
someone to fix it please?
B: Si, Señor enseguida enviamos a alguien para que
la arregle. Si no le cambiaremos de habitación.
A: Thank you very much.
B: Estamos aqu para servirle. Llámenos si necesita
algo más.

Table 2: Example of a sample dialog scenario.

contextual information was used in these experi-
ments, i.e., the audio utterances were decoded in-
dependently. The ASR WER for English and Span-
ish sides of the dialogs is shown in Figure 3. The
average WER for English and Spanish side of the
conversations is 27.73% and 22.83%, respectively.
The recognized utterances were subsequently trans-
lated using the MT system described above. The
MT performance in terms of Translation Edit Rate
(TER) (Snover et al., 2006) and BLEU (Papineni
et al., 2002) is shown in Figure 4. The MT per-
formance is shown across all the turns for both ref-
erence transcriptions and ASR output. The results
show that the performance of the Spanish-English
MT model is better in comparison to the English-
Spanish model on the dialog corpus. The perfor-
mance on ASR input drops by about 18% compared
to translation on reference text.
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Figure 4: TER (%) and BLEU of English-Spanish and Spanish-English MT models on reference transcripts
and ASR output

Figure 3: WER (%) of English and Spanish acoustic
models on the dialog corpus

8.2 Segmentation of ASR output for MT

Turn taking in a dialog typically involves the sub-
jects speaking one or more utterances in a turn.
Since, machine translation systems are trained on
chunked parallel texts (40 words or less), it is ben-
eficial to segment the ASR hypotheses before trans-
lation. Previous studies have shown significant im-
provements in translation performance through the
segmentation of ASR hypotheses (Matusov et al.,
2007). We experimented with the notion of seg-
mentation defined by silence frames in the ASR out-
put. A threshold of 8-10 frames (100 ms) was found
to be suitable for segmenting the ASR output into
sentence chunks. We did not use any lexical fea-
tures for segmenting the turns. The BLEU scores for
different silence thresholds used in segmentation is
shown in Figure 5. The BLEU scores improvement
for Spanish-English is 1.6 BLEU points higher than
the baseline model using no segmentation. The im-

provement for English-Spanish is smaller but statis-
tically significant. Analysis of the dialogs revealed
that the English speaker tended to speak his turns
without pausing across utterance chunks while the
Spanish speaker paused a lot more. The results in-
dicate that in a typical dialog interaction, if the par-
ticipants observe inter-utterance pause (80-100 ms)
within a turn, it serves as a good marker for segmen-
tation. Further, exploiting such information can po-
tentially result in improvements in MT performance
as the model is typically trained on sentence level
parallel text.
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Figure 5: BLEU score of English-Spanish and
Spanish-English MT models on the ASR output us-
ing silence segmentation

8.3 Incremental Speech Translation Results

Figure 6 shows the BLEU score for incremental
speech translation described in Section 3. In the fig-
ure, partial refers to Eq. 2, continue-partial refers to
Eq. 3 and complete refers to Eq. 4. The continue-
partials option was exercised by using the continue-
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Figure 6: BLEU score (Spanish-English) for incremental speech translation across varying timeout periods
in the speech recognizer

partial-translation parameter in Moses (Koehn et al.,
2007). The partial hypotheses are generated as a
function of speech recognizer timeouts. Timeout is
defined as the time interval with which the speech
recognizer generates partial hypotheses. For each
timeout interval, the speech recognizer may or may
not generate a partial result based on the search path
at that instant in time. As the timeout interval in-
creases, the performance of incremental translation
approaches that of non-incremental translation. The
key is to choose an operating point such that the
user perception of latency is minimal with accept-
able BLEU score. It is interesting that very good
performance can be attained at a timeout of 500 ms
in comparison with non-incremental speech trans-
lation, i.e., the latency can be reduced in half with
acceptable translation quality. The continue-partial
option in Moses performs slightly better than the
partial case as it conditions the decision on prior
source input as well as translation.

In Table 3, we present the latency measurements
of the various components in our framework. We do
not have a row for ASR since it is not possible to get
the start time for each recognition run as the RTP
packets are continuously flowing in the SIP frame-
work. The latency between various system compo-
nents is very low (5-30 ms). While the average time
taken for translation (incremental) is ≈ 100 ms, the
TTS takes the longest time as it is non-incremental
in the current work. It can also been seen that the
average time taken for generating incremental MT

output is half that of TTS that is non-incremental.
The overall results show that the communication in
our SIP-based framework has low latency.

Components Caller Callee Average
ASR output to MT input 6.8 0.1 3.4
MT 100.4 108.8 104.6
MT output to TTS 22.1 33.1 27.6
TTS 246 160.3 203.1

Table 3: Latency measurements (in ms) for the S2S
components in the real-time SIP framework.

9 Conclusion

In this paper, we introduced the problem of incre-
mental speech-to-speech translation and presented
first of a kind two-way real-time speech-to-speech
translation system based on SIP that incorporates
the notion of incrementality. We presented details
about the SIP framework and demonstrated the typ-
ical call flow in our application. We also presented
a dialog corpus collected using our framework and
benchmarked the performance of the system. Our
framework allows for incremental speech transla-
tion and can provide low latency translation. We
are currently working on improving the accuracy of
incremental translation. We are also exploring new
algorithms for performing reordering aware incre-
mental speech-to-speech translation, i.e., translating
source phrases such that text-to-speech synthesis can
be rendered incrementally.
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