
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 60–69,
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Abstract

Standard entity clustering systems commonly
rely on mention (string) matching, syntactic
features, and linguistic resources like English
WordNet. When co-referent text mentions ap-
pear in different languages, these techniques
cannot be easily applied. Consequently, we
develop new methods for clustering text men-
tions across documents and languages simulta-
neously, producing cross-lingual entity clusters.
Our approach extends standard clustering algo-
rithms with cross-lingual mention and context
similarity measures. Crucially, we do not as-
sume a pre-existing entity list (knowledge base),
so entity characteristics are unknown. On an
Arabic-English corpus that contains seven dif-
ferent text genres, our best model yields a 24.3%
F1 gain over the baseline.

1 Introduction
This paper introduces techniques for clustering co-
referent text mentions across documents and lan-
guages. On the web today, a breaking news item
may instantly result in mentions to a real-world entity
in multiple text formats: news articles, blog posts,
tweets, etc. Much NLP work has focused on model
adaptation to these diverse text genres. However, the
diversity of languages in which the mentions appear
is a more significant challenge. This was particularly
evident during the 2011 popular uprisings in the Arab
world, in which electronic media played a prominent
role. A key issue for the outside world was the aggre-
gation of information that appeared simultaneously
in English, French, and various Arabic dialects.

To our knowledge, we are the first to consider clus-
tering entity mentions across languages without a pri-
ori knowledge of the quantity or types of real-world
entities (a knowledge base). The cross-lingual set-
ting introduces several challenges. First, we cannot

assume a prototypical name format. For example,
the Anglo-centric first/middle/last prototype used in
previous name modeling work (cf. (Charniak, 2001))
does not apply to Arabic names like Abdullah ibn
Abd Al-Aziz Al-Saud or Chinese names like Hu Jin-
tao (referred to as Mr. Hu, not Mr. Jintao). Sec-
ond, organization names often require both translit-
eration and translation. For example, the Arabic
	PPñ

�
KñÓ ÈQ	

�g.
�
é»Qå

�
� ‘General Motors Corp’ contains

transliterations of 	PPñ
�
KñÓ ÈQ	

�g. ‘General Motors’,
but a translation of �

é»Qå
�
� ‘Corporation’.

Our models are organized as a pipeline. First, for
each document, we perform standard mention detec-
tion and coreference resolution. Then, we use pair-
wise cross-lingual similarity models to measure both
mention and context similarity. Finally, we cluster
the mentions based on similarity.
Our work makes the following contributions: (1)

introduction of the task, (2) novel models for cross-
lingual entity clustering of person and organization en-
tities, (3) cross-lingual annotation of the NIST Auto-
matic Content Extraction (ACE) 2008 Arabic-English
evaluation set, and (4) experimental results using both
gold and automatic within-document processing. We
will release our software and annotations to support
future research.

1.1 Task Description via a Simple Example
Consider the toy corpus in Fig. 1. The English docu-
ments contain mentions of two people: Steven Paul
Jobs and Mark Elliot Zuckerberg. Of course, the sur-
face realization of Mr. Jobs’ last name in English is
also an ordinary nominal, hence the ambiguous men-
tion string (absent context) in the second document.
The Arabic document introduces an organization en-
tity (Apple Inc.) along with proper and pronominal
references to Mr. Jobs. Finally, the French document
refers to Mr. Jobs by the honorific ‘Monsieur,’ and to
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Jobs program details delayed

Steve Jobs admired Mark Zuckerberg

M. Jobs, le fondateur d'Apple, est mort
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Figure 1: Clustering entity mentions across languages and documents. The toy corpus contains English (doc1 and
doc2), Arabic (doc3), and French (doc4). Together, the documents make reference to three real-world entities, the
identification of which is the primary objective of this work. We use a separately-trained system for within-document
mention detection and coreference (indicated by the text boxes and intra-document links, respectively). Our experimental
results are for Arabic-English only.

Apple without its corporate designation.
Our goal is to automatically produce the cross-

lingual entity clusters E1 (Mark Elliot Zuckerberg),
E2 (Apple Inc.), and E3 (Steven Paul Jobs). Both the
true number and characteristics of these entities are
unobserved. Our models require two pre-processing
steps: mention detection and within-document coref-
erence/anaphora resolution, shown in Fig. 1 by the
text boxes and intra-document links, respectively. For
example, in doc3, a within-document coreference sys-
tem would pre-link 	QK. ñk. joobz ‘Jobs’ with the mascu-
line pronoun è h ‘his’. In addition, the mention detec-
tor determines that the surface form “Jobs” in doc2
is not an entity reference. For this within-document
pre-processing we use Serif (Ramshaw et al., 2011).1

Our models measure cross-lingual similarity of the
coreference chains to make clustering decisions (•
in Fig. 1). The similarity models (indicated by the
= and 6= operators in Fig. 1) consider both mention
string and context similarity (§2). We use the men-
tion similarities as hard constraints, and the context
similarities as soft constraints. In this work, we inves-
tigate two standard constrained clustering algorithms
(§3). Our methods can be used to extend existing sys-
tems for mono-lingual entity clustering (also known
as “cross-document coreference resolution”) to the
cross-lingual setting.

1Serif is a commercial system that assumes each document
contains only one language. Currently, there are no publicly avail-
able within-document coreference systems for Arabic and many
other languages. To remedy this problem, the CoNNL-2012
shared task aims to develop multilingual coreference systems.

2 Mention and Context Similarity

Our goal is to create cross-lingual sets of co-referent
mentions to real-world entities (people, places, orga-
nizations, etc.). In this paper, we adopt the following
notation. LetM be a set of distinct text mentions in a
collection of documents;C is a partitioning ofM into
document-level sets of co-referent mentions (called
coreference chains); E is a partitioning of C into sets
of co-referent chains (called entities). Let i, j be non-
negative integers less than or equal to |M | and a, b be
non-negative integers less than or equal to |C|. Our
experiments use a separate within-document corefer-
ence system to createC, which is fixed. We will learn
E, which has size no greater than |C| since the set of
mono-lingual chains is the largest valid partitioning.
We define accessor functions to access properties

of mentions and chains. For any mentionmi, define
the following functions: lang(mi) is the language;
doc(mi) is the document containingmi; type(mi) is
the semantic type, which is assigned by the within-
document coreference system. We also extract a set
of mention contexts S, which are the sentences con-
taining each mention (i.e., |S| = |M |).
We learn the partition E by considering mention

and context similarity, which are measured with sep-
arate component models.

2.1 Mention Similarity

We use separate methods for within- and cross-
language mention similarity. The pairwise similarity
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Arabic Rules

H. → b �
H→ t �

H→ th h. → j
h→ h p→ kh X→ d 	

X→ th
P→ r 	P→ z �→ s �

�→ sh
�→ s 	

�→ d  → t 	
 → th

¨→ a 	
¨→ g 	

¬→ f �
�→ q

¼→ k È→ l Ð→ m 	
à→ n

è→ h @→ a ð→ w ø→ a
�
è→ ah ø



→ ∅ Z→ ∅

English Rules

k→ c p→ b x→ ks e,i,o,u→ ∅

Table 1: English-Arabic mapping rules to a common or-
thographic representation. “∅” indicates a null mapping.
For English, we also lowercase and remove determiners
and punctuation. For Arabic, we remove the determiner
È@ Al ‘the’ and the elongation character tatwil ‘�’.

of any two mentionsmi andmj is:

sim(mi,mj) ={
jaro-winkler(mi,mj) if lang(mi) = lang(mj)

maxent(mi,mj) otherwise

Jaro-Winkler Distance (within-language) If
lang(mi) = lang(mj), we use the Jaro-Winkler edit
distance (Porter and Winkler, 1997). Jaro-Winkler
rewards matching prefixes, the empirical justification
being that less variation typically occurs at the
beginning of names.2 The metric produces a score in
the range [0,1], where 0 indicates equality.

Maxent model (cross-language) When lang(mi)
6= lang(mj), then the two mentions might be in dif-
ferent writing systems. Edit distance calculations
no longer apply directly. One solution would be
full-blown transliteration (Knight and Graehl, 1998),
followed by application of Jaro-Winkler. However,
transliteration systems are complex and require sig-
nificant training resources. We find that a simpler,
low-resource approach works well in practice.

First, we deterministically map both languages to a
common phonetic representation (Tbl. 1).3 Next, we
align the mention pairs with the Hungarian algorithm,

2For multi-token names, we sort the tokens prior to computing
the score, as suggested by Christen (2006).

3This idea is reminiscent of Soundex, which Freeman et al.
(2006) used for cross-lingual name matching.

Overlap Active for each bigram in
cbigrams(mi,u)

⋃
cbigrams(mj,v)

Bigram-Diff-mi Active for each bigram in
cbigrams(mi)− cbigrams(mj)

Bigram-Diff-mj Active for each bigram in
cbigrams(mj)− cbigrams(mi)

Bigram-Len-Diff Value of abs(size(cbigrams(mi)−
cbigrams(mj)))

Big-Edit-Dist Count of token pairs with
Lev(mi,u, mj,v) > 3.0

Total-Edit-Dist Sum of aligned token edit distances
Length Active for one of:

len(mi) > len(mj) or
len(mi) < len(mj) or
len(mi) = len(mj)

Length-Diff abs(len(mi)− len(mj))
Singleton Active if len(mi) = 1
Singleton-Pair Active if len(mi) = len(mj) = 1

Table 2: Cross-language Maxent feature templates for a
whitespace-tokenized mention pair 〈mi,mj〉 with align-
ment Ami,mj

. Let (u, v) ∈ Ami,mj
indicate aligned to-

ken indices. Define the following functions for strings:
cbigrams(·) returns the set of character bigrams; len(·) is
the token length; Lev(·, ·) is the Levenshtein edit distance
between two strings. Prior to feature extraction, we add
unique start and end symbols to the mention strings.

which produces a word-to-word alignment Ami,mj .4
Finally, we build a simple binary Maxent classifier
p(y|mi,mj ;λ) that extracts features from the aligned
mentions (Tbl. 2). We learn the parameters λ using a
quasi-Newton procedure with L1 (lasso) regulariza-
tion (Andrew and Gao, 2007).

2.2 Context Mapping and Similarity

Mention strings alone are not always sufficient for
disambiguation. Consider again the simple exam-
ple in Fig. 1. Both doc3 and doc4 reference “Steve
Jobs” and “Apple” in the same contexts. Context co-
occurence and/or similarity can thus disambiguate
these two entities from other entities with similar ref-
erences (e.g., “Steve Jones” or “Apple Corps”). As
with the mention strings, the contexts may originate
in different writing systems. We consider both high-
and low-resource approaches for mapping contexts to
a common representation.

4The Hungarian algorithm finds an optimal minimum-cost
alignment. For pairwise costs between tokens, we used the Lev-
enshtein edit distance
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Machine Translation (MT) For the high-resource
setting, if lang(mi) 6=English, then we translate both
mi and its context si to English with an MT system.
We use Phrasal (Cer et al., 2010), a phrase-based
system which, like most public MT systems, lacks a
transliteration module. We believe that this approach
yields the most accurate context mapping for high-
resource language pairs (like English-Arabic).

Polylingual Topic Model (PLTM) The polylin-
gual topic model (PLTM) (Mimno et al., 2009) is
a generative process in which document tuples—
groups of topically-similar documents—share a topic
distribution. The tuples need not be sentence-aligned,
so training data is easier to obtain. For example, one
document tuple might be the set of Wikipedia articles
(in all languages) for Steve Jobs.

Let D be a set of document tuples, where
there is one document in each tuple for each
of L languages. Each language has vocabu-
lary Vl and each document dl

t has N l
t tokens.

We specify a fixed-size set of topics K. The
PLTM generates the document tuples as follows:

Polylingual Topic Model

θt ∼ Dir(αK) [cross-lingual tuple-topic prior]
φl

k ∼ Dir(βVl) [word-topic prior]
for each token wl

t,n with n = {1, . . . , N l
t}:

zt,n ∼ Mult(θt)
wl

t,n ∼ Mult(φl
zt,n

)

For cross-lingual context mapping, we infer the 1-
best topic assignments for each token in all S mention
contexts. This technique reduces Vl = k for all l.
Moreover, all languages have a common vocabulary:
the set of K topic indices. Since the PLTM is not
a contribution of this paper, we refer the interested
reader to (Mimno et al., 2009) for more details.

After mapping each mention context to a common
representation, we measure context similarity based
on the choice of clustering algorithm.

3 Clustering Algorithms

We incorporate the mention and context similarity
measures into a clustering framework. We consider
two algorithms. The first is hierarchical agglomera-
tive clustering (HAC), with which we assume basic
familiarity (Manning et al., 2008). A shortcoming of
HAC is that a stop threshold must be tuned. To avoid

this requirement, we also consider non-parametric
probabilistic clustering in the form of a Dirichlet pro-
cess mixture model (DPMM) (Antoniak, 1974) .
Both clustering algorithms can be modified to ac-

commodate pairwise constraints. We have observed
better results by encoding mention similarity as a
hard constraint. Context similarity is thus the cluster
distance measure.5
To turn the Jaro-Winkler distance into a hard

boolean constraint, we tuned a threshold η on held-out
data, i.e., jaro-winkler(mi,mj) ≤ η ⇒ mi = mj .
Likewise, the Maxent model is a binary classifier, so
p(y = 1|mi,mj ;λ) > 0.5⇒ mi = mj .
In both clustering algorithms, any two chains Ca

and Cb cannot share the same cluster assignment if:

1. Document origin: doc(Ca) = doc(Cb)
2. Semantic type: type(Ca) 6= type(Cb)
3. Mention Match: sim(mi,mj) = false,

wheremi = repr(Ca) andmj = repr(Cb).

The deterministic accessor function repr(Ca) returns
the representative mention of a chain. The heuristic
we used was “first mention”: the function returns the
earliest mention that appears in the associated docu-
ment. In many languages, the first mention is typi-
cally more complete than later mentions. This heuris-
tic also makes our system less sensitive to within-
document coreference errors.6 The representative
mention only has special status for mention similar-
ity: context similarity considers all mention contexts.

3.1 Constrained Hierarchical Clustering
HAC iteratively merges the “nearest” clusters accord-
ing to context similarity. In our system, each cluster
context is a bag of wordsW formed from the contexts
of all coreference chains in that cluster. For each word
inW we estimate a unigram Entity Language Model
(ELM) (Raghavan et al., 2004):

P (w) =
countW (w) + ρPV (w)∑

w′ countW (w′) + ρ

PV (w) is the unigram probability in all contexts in
the corpus7 and ρ is a smoothing parameter. For any

5Specification of a combined similarity measure is an inter-
esting direction for future work.

6These constraints are similar to the pair-filters of Mayfield
et al. (2009).

7Recall that after context mapping, all languages have a com-
mon vocabulary V .
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two entity clusters Ea and Eb, the distance between
PEa and PEb

is given by a metric based on the Jensen-
Shannon Divergence (JSD) (Endres and Schindelin,
2003):

dist(PEa
, PEb

) =
√

2 · JSD(PEa
||PEb

)

=
√
KL(PEa ||M) +KL(M ||PEb

)

where KL(PEa ||M) is the Kullback-Leibler diver-
gence andM = 1

2(PEa + PEb
).

We initialize HAC to E = C, i.e., the initial clus-
tering solution is just the set of all coreference chains.
Thenwe remove all links in the HAC proximitymatrix
that violate pairwise cannot-link constraints. During
clustering, we do not merge Ea and Eb if any pair of
chains violates a cannot-link constraint. This proce-
dure propagates the cannot-link constraints (Klein et
al., 2002). To output E, we stop clustering when the
minimum JSD exceeds a stop threshold γ, which is
tuned on a development set.

3.2 Constrained Dirichlet Process Mixture
Model (DPMM)

Instead of tuning a parameter like γ, it would be prefer-
able to let the data dictate the number of entity clus-
ters. We thus consider a non-parametric Bayesian
mixture model where the mixtures are multinomial
distributions over the entity contexts S. Specifically,
we consider a DPMM, which automatically infers
the number of mixtures. Each Ca has an associated
mixture θa:

Ca|θa ∼ Mult(θa)

θa|G ∼ G
G|α,G0 ∼ DP(α,G0)

α ∼ Gamma(1, 1)

where α is the concentration parameter of the DP
prior and G0 is the base distribution with support V .
For our experiments, we set G0 = Dir(π1, . . . , πV ),
where πi = PV (wi).

For inference, we use the Gibbs sampler of Vla-
chos et al. (2009), which can incorporate pairwise
constraints. The sampler is identical to a standard col-
lapsed, token-based sampler, except the conditional
probability p(Ea = E|E−a, Ca) = 0 if Ca cannot
be merged with the chains in clusterE. This property
makes the model non-exchangeable, but in practice
non-exchangeable models are sometimes useful (Blei

and Frazier, 2010). During sampling, we also learn α
using the auxiliary variable procedure of West (1995),
so the only fixed parameters are those of the vague
Gamma prior. However, we found that these hyper-
parameters were not sensitive.

4 Training Data and Procedures

We trained our system for Arabic-English cross-
lingual entity clustering.8

Maxent Mention Similarity The Maxent mention
similarity model requires a parallel name list for train-
ing. Name pair lists can be obtained from the LDC
(e.g., LDC2005T34 contains nearly 450,000 parallel
Chinese-English names) or Wikipedia (Irvine et al.,
2010). We extracted 12,860 name pairs from the par-
allel Arabic-English translation treebanks,9 although
our experiments show that the model achieves high
accuracy with significantly fewer training examples.
We generated a uniform distribution of training ex-
amples by running a Bernoulli trial for each aligned
name pair in the corpus. If the coin was heads, we
replaced the English name with another English name
chosen randomly from the corpus.

MT Context Mapping For the MT context map-
ping method, we trained Phrasal with all data permit-
ted under the NIST OpenMT Ar-En 2009 constrained
track evaluation. We built a 5-gram language model
from the Xinhua and AFP sections of the Gigaword
corpus (LDC2007T07), in addition to all of the target
side training data. In addition to the baseline Phrasal
feature set, we used the lexicalized re-ordering model
of Galley and Manning (2008).

PLTM Context Mapping For PLTM training, we
formed a corpus of 19,139 English-Arabic topically-
aligned Wikipedia articles. Cross-lingual links in
Wikipedia are abundant: as of February 2010, there
were 77.07M cross-lingual links among Wikipedia’s
272 language editions (de Melo and Weikum, 2010).
To increase vocabulary coverage for our ACE2008
evaluation corpus, we added 20,000 document sin-
gletons from the ACE2008 training corpus. The

8We tokenized all English documents with packages from
the Stanford parser (Klein and Manning, 2003). For Arabic
documents, we used Mada (Habash and Rambow, 2005) for
orthographic normalization and clitic segmentation.

9LDC Catalog numbers LDC2009E82 and LDC2009E88.
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topically-aligned tuples served as “glue” to share top-
ics between languages, while the ACE documents
distribute those topics over in-domain vocabulary.10

We used the PLTM implementation in Mallet (Mc-
Callum, 2002). We ran the sampler for 10,000 itera-
tions and set the number of topicsK = 512.

5 Task Evaluation Framework

Our experimental design is a cross-lingual extension
of the standard cross-document coreference resolu-
tion task, which appeared in ACE2008 (Strassel et
al., 2008; NIST, 2008). We evaluate name (NAM)
mentions for cross-lingual person (PER) and organi-
zation (ORG) entities. Neither the number nor the
attributes of the entities are known (i.e., the task does
not include a knowledge base). We report results for
both gold and automatic within-document mention
detection and coreference resolution.

Evaluation Metrics We use entity-level evaluation
metrics, i.e., we evaluate the E entity clusters rather
than the mentions. For the gold setting, we report:

• B3 (Bagga and Baldwin, 1998a): Precision and
recall are computed from the intersection of the
hypothesis and reference clusters.
• CEAF (Luo, 2005): Precision and recall are
computed from a maximum bipartite matching
between hypothesis and reference clusters.
• NVI (Reichart and Rappoport, 2009):
Information-theoretic measure that uti-
lizes the entropy of the clusters and their mutual
information. Unlike the commonly-used Varia-
tion of Information (VI) metric, normalized VI
(NVI) is not sensitive to the size of the data set.

For the automatic setting, we must apply a different
metric since the number of system chains may differ
from the reference. We use B3

sys (Cai and Strube,
2010), a variant of B3 that was shown to penalize
both twinless reference chains and spurious system
chains more fairly.

Evaluation Corpus The automatic evaluation of
cross-lingual coreference systems requires annotated

10Mimno et al. (2009) showed that so long as the proportion
of topically-aligned to non-aligned documents exceeded 0.25,
the topic distributions (as measured by mean Jensen-Shannon
Divergence between distributions) did not degrade significantly.

Docs Tokens Entities Chains Mentions

Arabic 412 178,269 2,594 4,216 9,222
English 414 246,309 2,278 3,950 9,140

Table 3: ACE2008 evaluation corpus PER and ORG entity
statistics. Singleton chains account for 51.4% of the Arabic
data and 46.2% of the English data. Just 216 entities appear
in both languages.

multilingual corpora. Cross-document annotation
is expensive (Strassel et al., 2008), so we chose the
ACE2008 Arabic-English evaluation corpus as a start-
ing point for cross-lingual annotation. The corpus
consists of seven genres sampled from independent
sources over the course of a decade (Tbl. 3). The
corpus provides gold mono-lingual cross-document
coreference annotations for both PER and ORG enti-
ties. Using these annotations as a starting point, we
found and annotated 216 cross-lingual entities.11

Because a similar corpus did not exist for develop-
ment, we split the evaluation corpus into development
and test sections. However, the usual method of split-
ting by document would not confine all mentions of
each entity to one side of the split. We thus split the
corpus by global entity id. We assigned one-third of
the entities to development, and the remaining two-
thirds to test.

6 Comparison to Related Tasks and Work

Our modeling techniques and task formulation can be
viewed as cross-lingual extensions to cross-document
coreference resolution. The classic work on this task
was by Bagga and Baldwin (1998b), who adapted
the Vector Space Model (VSM) (Salton et al., 1975).
Gooi and Allan (2004) found effective algorithmic
extensions like agglomerative clustering. Successful
feature extensions to the VSM for cross-document
coreference have included biographical information
(Mann and Yarowsky, 2003) and syntactic context
(Chen and Martin, 2007). However, neither of these
feature sets generalize easily to the cross-lingual set-
ting with multiple entity types. Fleischman and Hovy
(2004) added a discriminative pairwise mention clas-
sifier to a VSM-like model, much as we do. More

11The annotators were the first author and another fluent
speaker of Arabic. The annotations, corrections, and corpus
split are available at http://www.spencegreen.com/research/.
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recent work has considered new models for web-scale
corpora (Rao et al., 2010; Singh et al., 2011).

Cross-document work on languages other than En-
glish is scarce. Wang (2005) used a combination of
the VSM and heuristic feature selection strategies to
cluster transliterated Chinese personal names. For
Arabic, Magdy et al. (2007) started with the output of
the mention detection and within-document corefer-
ence system of Florian et al. (2004). They clustered
the entities incrementally using a binary classifier.
Baron and Freedman (2008) used complete-link ag-
glomerative clustering, wheremerging decisions were
based on a variety of features such as document topic
and name uniqueness. Finally, Sayeed et al. (2009)
translated Arabic name mentions to English and then
formed clusters greedily using pairwise matching.

To our knowledge, the cross-lingual entity cluster-
ing task is novel. However, there is significant prior
work on similar tasks:

• Multilingual coreference resolution: Adapt
English within-document coreference models to
other languages (Harabagiu andMaiorano, 2000;
Florian et al., 2004; Luo and Zitouni, 2005).
• Named entity translation: For a non-English
document, produce an inventory of entities in
English. An ACE2007 pilot task (Song and
Strassel, 2008).
• Named entity clustering: Assign semantic
types to text mentions (Collins and Singer, 1999;
Elsner et al., 2009).
• Cross-language name search / entity linking:
Match a single query name against a list of
known multilingual names (knowledge base). A
track in the 2011NIST Text Analysis Conference
(TAC-KBP) evaluation (Aktolga et al., 2008;
McCarley, 2009; Udupa and Khapra, 2010; Mc-
Namee et al., 2011).

Our work incorporates elements of the first three tasks.
Most importantly, we avoid the key element of entity
linking: a knowledge base.

7 Experiments

We performed intrinsic evaluations for both mention
and context similarity. For context similarity, we
analyzed mono-lingual entity clustering, which also
facilitated comparison to prior work on the ACE2008

Genre #Train #Test Accuracy(%)

wb 125 16 87.5
bn 2,720 340 95.6
nw 7,443 930 96.6

all 10,288 1,286 97.1 (+7.55)

Table 4: Cross-lingual mention matching accuracy [%].
The training data contains names from three genres: broad-
cast news (bn), newswire (nw), and weblog (wb). We used
the full training corpus (all) for the cross-lingual clustering
experiments, but the model achieved high accuracy with
significantly fewer training examples (e.g., bn).

CEAF↑ NVI↓ B3 ↑
#hyp P R F1

Mono-lingual Arabic (#gold=1,721)

HAC 87.2 0.052 1,669 89.8 89.8 89.8

Mono-lingual English (#gold=1,529)

HAC 88.5 0.042 1,536 93.7 89.0 91.4

Table 5: Mono-lingual entity clustering evaluation (test
set, gold within-document processing). Higher scores (↑)
are better for CEAF and B3, whereas lower (↓) is better
for NVI. #gold indicates the number of reference entities,
whereas #hyp is the size of E.

evaluation set. Our main results are for the new task:
cross-lingual entity clustering.

7.1 Intrinsic Evaluations
Cross-lingual Mention Matching We created a
random 80/10/10 (train, development, test) split of
the Maxent training corpus and evaluated binary clas-
sification accuracy (Tbl. 4). Of the mis-classified
examples, we observed three major error types. First,
the model learns that high edit distance is predictive
of a mismatch. However, singleton strings that do not
match often have a lower edit distance than longer
strings that do match. As a result, singletons often
cause false positives. Second, names that originate in
a third language tend to violate the phonemic corre-
spondences. For example, the model gives a false neg-
ative for a German football team: 	

àQ
�
KñÊ�P

	Q�
» ú


æ�

	
¬@

(phonetic mapping: af s kazrslawtrn) versus “FC
Kaiserslautern.” Finally, names that require trans-
lation are problematic. For example, the classifier
produces a false negative for 〈God, gd〉 ?

= 〈 é�<Ë

@, allh〉.
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#gold = 3,057 CEAF↑ NVI↓ B3 ↑ B3
target ↑ (#gold = 146)

#hyp P R F1 #hyp P R F1

Singleton 64.9 0.165 5,453 100.0 56.1 71.8 1,587 100.0 9.20 16.9
No-context 57.4 0.136 2,216 65.6 75.2 70.1 517 78.3 41.8 54.5

HAC+MT 79.8 0.070 2,783 84.4 86.4 85.4 310 91.7 69.1 78.8
DPMM+MT 74.3 0.122 3,649 89.3 64.1 74.6 634 93.3 24.3 38.6

HAC+PLTM 72.1 0.110 2,746 76.9 77.6 77.3 506 84.4 44.6 58.4
DPMM+PLTM 57.2 0.180 2,609 64.0 62.8 63.4 715 73.9 22.2 34.1

Table 6: Cross-lingual entity clustering (test set, gold within-document processing). B3
target is the standard B3 metric

applied to the subset of target cross-lingual entities in the test set. For CEAF and B3, Singleton is the stronger baseline
due to the high proportion of singleton entities in the corpus. Of course, cross-lingual entities have at least two chains,
so No-context is a better baseline for cross-lingual clustering.

Mono-lingual Entity Clustering For comparison,
we also evaluated our system on a standard mono-
lingual cross-document coreference task (Arabic and
English) (Tbl. 5). We configured the system with
HAC clustering and Jaro-Winkler (within-language)
mention similarity. We built mono-lingual ELMs for
context similarity.
We used two baselines:

• Singleton: E = C, i.e., the cross-lingual clus-
tering solution is just the set of mono-lingual
coreference chains. This is a common baseline
for mono-lingual entity clustering (Baron and
Freedman, 2008).
• No-context: We run HAC with ρ =∞. There-
fore, E is the set of fully-connected components
in C subject to the pairwise constraints.

For HAC, we manually tuned the stop threshold γ,
the Jaro-Winkler threshold η, and the ELM smoothing
parameter ρ on the development set. For the DPMM,
no development tuning was necessary, and we evalu-
ated a single sample of E taken after 3,000 iterations.
To our knowledge, Baron and Freedman (2008)

reported the only previous results on the ACE2008
data set. However, they only gave gold results for
English, and clustered the entire evaluation corpus
(test+development). To control for the effect of
within-document errors, we considered their gold in-
put (mention detection and within-document coref-
erence resolution) results. They reported B3 for the
two entity types separately: ORG (91.5% F1) and
PER (94.3% F1). The different experimental designs
preclude a precise comparison, but the accuracy of

#gold = 3,057 B3
sys ↑

#hyp P R F1

Singleton 7,655 100.0 57.1 72.7
No-context 2,918 63.3 71.1 67.0

HAC+MT 3,804 75.6 77.8 76.7
DPMM+MT 4,491 77.1 62.5 69.0

HAC+PLTM 6,353 94.1 62.8 75.3
DPMM+PLTM 3,522 64.6 62.0 63.3

Table 7: Cross-lingual entity clustering (test set, automatic
(Serif) within-document processing). For HAC, we used
the same parameters as the gold setting.

the two systems are at least in the same range.

7.2 Cross-lingual Entity Clustering

We evaluated four system configurations on the new
task: HAC+MT, HAC+PLTM, DPMM+MT, and
DPMM+PLTM. First, we established an upper bound
by assuming gold within-document mention detection
and coreference resolution (Tbl. 6). This setting iso-
lated the new cross-lingual clustering methods from
within-document processing errors. Then we evalu-
ated with Serif (automatic) within-document process-
ing (Tbl. 7). This second experiment replicated an
application setting. We used the same baselines and
tuning procedures as in the mono-lingual clustering
experiment.

Results In the gold setting, HAC+MTproduces the
best results, as expected. The dimensionality reduc-
tion of the vocabulary imposed by PLTM significantly
reduces accuracy, but HAC+PLTM still exceeds the
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baseline. We tried increasing the number of PLTM
topics k, but did not observe an improvement in task
accuracy. For both context-mapping methods, the
DPMM suffers from low-recall. Upon inspection, the
clustering solution of DPMM+MT contains a high
proportion of singleton hypotheses, suggesting that
the model finds lower similarity in the presence of a
larger vocabulary. When the context vocabulary con-
sists of PLTM topics, larger clusters are discovered
(DPMM+PLTM).

The effect of dimensionality reduction is also appar-
ent in the clustering solutions of the PLTM models.
For example, for the Serif output, DPMM+PLTM
produces a cluster consisting of “White House”, “Sen-
ate”, “House of Representatives”, and “Parliament”.
Arabic mentions of the latter three entities pass the
pairwise mention similarity constraints due to the
word �Êm.

× ‘council’, which appears in text mentions
for all three legislative bodies. A cross-language
matching error resulted in the linking of “White
House”, and the reduced granularity of the contexts
precluded further disambiguation. Of course, these
entities probably appear in similar contexts.
The caveat with the Serif results in Tbl. 7 is that

3,251 of the 7,655 automatic coreference chains are
not in the reference. Consequently, the evaluation is
dominated by the penalty for spurious system coref-
erence chains. Nonetheless, all models except for
DPMM+PLTM exceed the baselines, and the rela-
tionships between models depicted in the gold exper-
iments hold for the this setting.

8 Conclusion

Cross-lingual entity clustering is a natural step to-
ward more robust natural language understanding.
We proposed pipeline models that make clustering
decisions based on cross-lingual similarity. We inves-
tigated two methods for mapping documents in differ-
ent languages to a common representation: MT and
the PLTM. Although MT may achieve more accurate
results for some language pairs, the PLTM training
resources (e.g., Wikipedia) are readily available for
many languages. As for the clustering algorithms,
HAC appears to perform better than the DPMM on
our dataset, but this may be due to the small corpus
size. The instance-level constraints represent tenden-
cies that could be learned from larger amounts of data.

With more data, we might be able to relax the con-
straints and use an exchangeable DPMM,whichmight
be more effective. Finally, we have shown that sig-
nificant quantities of within-document errors cascade
into the cross-lingual clustering phase. As a result,
we plan a model that clusters the mentions directly,
thus removing the dependence on within-document
coreference resolution.
In this paper, we have set baselines and proposed

models that significantly exceeded those baselines.
The best model improved upon the cross-lingual en-
tity baseline by 24.3% F1. This result was achieved
without a knowledge base, which is required by previ-
ous approaches to cross-lingual entity linking. More
importantly, our techniques can be used to extend
existing cross-document entity clustering systems for
the increasingly multilingual web.
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