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Abstract

Many works (of both fiction and non-fiction)
span multiple, intersecting narratives, each of
which constitutes a story in its own right. In
this work I introduce the task of multiple nar-
rative disentanglement (MND), in which the
aim is to tease these narratives apart by assign-
ing passages from a text to the sub-narratives
to which they belong. The motivating exam-
ple I use is David Foster Wallace’s fictional
text Infinite Jest. I selected this book because
it contains multiple, interweaving narratives
within its sprawling 1,000-plus pages. I pro-
pose and evaluate a novel unsupervised ap-
proach to MND that is motivated by the theory
of narratology. This method achieves strong
empirical results, successfully disentangling
the threads in Infinite Jest and significantly
outperforming baseline strategies in doing so.

1 Introduction

Both fictional and non-fictional texts often com-
prise multiple, intersecting and inter-related narra-
tive arcs. This work considers the task of identifying
the (sub-)narratives latent within a narrative text and
the set of passages that comprise them. As a mo-
tivating example, I consider David Foster Wallace’s
opus Infinite Jest (Wallace, 1996),1 which contains
several disparate sub-narratives interleaved through-
out its voluminous (meta-)story. By sub-narrative
I mean, loosely, that these threads constitute their
own independent stories, coherent on their own (i.e.,

1No relation.

without the broader context of the overarching narra-
tive). I refer to the task of identifying these indepen-
dent threads and untangling them from one another
as multiple narrative disentanglement (MND).

The task is of theoretical interest because disen-
tanglement is a necessary pre-requisite to making
sense of narrative texts, an interesting direction in
NLP that has received an increasing amount of atten-
tion (Elson et al., 2010; Elson and McKeown, 2010;
Celikyilmaz et al., 2010; Chambers and Jurafsky,
2008; Chambers and Jurafsky, 2009). Recogniz-
ing the (main) narrative threads comprising a work
provides a context for interpreting the text. Disen-
tanglement may thus be viewed as the first step in
a literary processing ‘pipeline’. Identifying threads
and assigning them to passages may help in auto-
matic plot summarization, social network construc-
tion and other literary analysis tasks. Computational
approaches to literature look to make narrative sense
of unstructured text, i.e., construct models that relate
characters and events chronologically: disentangle-
ment is at the heart of this re-construction.

But MND is also potentially of more pragmatic
import: disentanglement may be useful for identify-
ing and extracting disparate threads in, e.g., a news-
magazine article that covers multiple (related) sto-
ries.2 Consider an article covering a political race.
It would likely contain multiple sub-narratives (the
story of one candidate’s rise and fall, a scandal in a
political party, etc.) that may be of interest indepen-
dently of the particular race at hand. Narrative dis-

2While narrative colloquially tends to refer to fictional texts,
the narrative voice is also frequently used in non-fictional con-
texts (Bal, 1997).
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entanglement thus has applications outside of com-
putational methods for fiction.

In this work, I treat MND as an unsupervised
learning task. Given a block of narrative text, the
aim is to identify the top k sub-narratives therein,
and then to extract the passages comprising them.
The proposed task is similar in spirit to the prob-
lem of chat disentanglement (Elsner and Charniak,
2010), in which the aim is to assign each utterance in
a chat transcription to an associated conversational
thread. Indeed, the main objective is the same: dis-
entangle fragments of a monolithic text into chrono-
logically ordered, independently coherent ‘threads’.
Despite their similarities, however, narrative disen-
tanglement is a qualitatively different task than chat
disentanglement, as I highlight in Section 3.

I take inspiration from the literary community,
which has studied the theoretical underpinnings of
the narrative form at length (Prince, 1982; Prince,
2003; Abbott, 2008). I rely especially on the seminal
work of Bal (1997), Narratology, which provides
a comprehensive theoretical framework for treating
narratives. This narratological theory motivates my
strategy of narrative modeling, in which I first ex-
tract the entities in each passage of a text. I then
uncover the latent narrative compositions of these
passages by performing latent Dirichlet allocation
(LDA) (Blei et al., 2003) over the extracted entities.

The main contributions of this work are as fol-
lows. First, I introduce the task of multiple narrative
disentanglement (MND). Second, motivated by the
theory of narratology (Section 2) I propose a novel,
unsupervised method for this task (Section 5) and
demonstrate its superiority over baseline strategies
empirically (Section 6). Finally, I make available a
corpus for this task: the text of Infinite Jest manually
annotated with narrative tags (Section 4).

2 Narratology

I now introduce some useful definitions and con-
cepts (Table 1) central to the theory of narratology
(Bal, 1997). These constructs motivate my approach
to the task of disentanglement.

These definitions imply that the observed narra-
tive text has been generated with respect to some
number of latent fabulas. A story is a particular
telling of an underlying fabula, i.e., a sequence of

Actor an agent that performs actions. Ac-
tors are not necessarily persons.

Fabula a series of logically and chronolog-
ically related events that are caused
or experienced by actors.

Story an instantiation of a fabula, told in
a particular style (a story tells a fab-
ula). Stories are not necessarily told
in chronological order.

Focalizer a special actor from whose point of
view the story is told.

Table 1: A small glossary of narratology.

events involving actors. Figure 1 schematizes the
relationships between the above constructs. The
dotted line between author and fabula implies that
authors sometimes generate the fabula, sometimes
not. In particular, an author may re-tell a widely
known fabula (e.g., Hamlet); perhaps from a dif-
ferent perspective. Consider, for example, the play
Rosencrantz and Guildenstern are Dead (Stoppard,
1967), a narrative that re-tells the fabula of Hamlet
from the perspective of the titular characters (both
of whom play a minor part in Hamlet itself). From
a narratological view, this story is an instantiation of
the Hamlet fabula imbued with novel aspects (e.g.,
the focalizers in this telling are Rosencrantz and
Guildenstern, rather than Hamlet). In non-fictional
works the fabula corresponds to the actual event se-
quence as it happened, and thus is not invented by
the author (save for cases of outright fabrication).

Fabulas are essentially actor-driven. Further, ac-
tors tend to occupy particular places, and indeed Bal
(1997) highlights locations as one of the defining el-
ements of fabulas. Given these observations, it thus
seems fruitful to attempt to identify the agents and
locations (or entities) in each passage of a text as a
first step toward disentanglement. I will return to
this intuition when I present the narrative modeling
method in Section 5. First, I place the present work
in context by relating it to existing work on mining
literature and chat disentanglement.

3 Relationship to Existing Work

Most similar to MND is the task of chat disentan-
glement (Shen et al., 2006; Elsner and Charniak,
2010; Elsner and Charniak, 2011), wherein utter-
ances (perhaps overheard at a cocktail party) are to
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Figure 1: A schematic of the narratology theory. The
dotted line between author and fabula implies that when
generating a narrative text, an author may invent a fabula,
or may draw upon an existing one. Together, the author
and fabula jointly give rise to the story, which is commu-
nicated via the text.

be assigned to conversational threads. There are,
however, important differences between these two
tasks. Notably, utterances in a chat belong to a single
discussion thread, motivating ‘hard’ assignments of
utterances to threads, e.g., using graph-partitioning
(Elsner and Charniak, 2010) or k-means like ap-
proaches (Shen et al., 2006). Narratives, however,
often intersect: a single passage may belong to mul-
tiple narrative threads. This motivates soft, proba-
bilistic assignments of passages to threads. More-
over, narratives are inherently hierarchical. The lat-
ter two observations suggest that probabilistic gen-
erative models are appropriate for MND.

There has also been recent interesting related
work in the unsupervised induction of narrative
schemas (Chambers and Jurafsky, 2008; Chambers
and Jurafsky, 2009). In this work, the authors pro-
posed the task of (automatically) discovering the
events comprising a narrative chain. Here narrative
event chains were defined by Chambers and Juraf-
sky (2008) as partially ordered sets of events involv-
ing the same protagonist. While similar in that these
works attempt to make sense of narrative texts, the
task at hand is quite different.

In particular, narrative schema induction pre-
supposes a single narrative thread. Indeed, the au-
thors explicitly make the assumption that a single
protagonist participates in all of the events forming
a narrative chain. Thus the discovered chains de-

scribe actions experienced by the protagonist local-
ized within a particular narrative structure. By con-
trast, in this work I treat narrative texts as instan-
tiations of fabulas, in line with Bal (1997). Fab-
ulas can be viewed as distributions over charac-
ters, events and other entities; this conceptualiza-
tion of what constitutes a narrative is broader than
Chambers and Jurafsky (2008). inducing narrative
schemas (Chambers and Jurafsky, 2009) may be
viewed as a possible next step in a narrative induc-
tion pipeline, subsequent to disentangling the text
comprising individual narrative threads. Indeed, the
latter task might be viewed as attempting to auto-
matically re-construct the fabula latent in a specific
narrative thread.

Elsewhere, Elson et al. (2010) proposed a method
for extracting social networks from literary texts.
Their method relies on dialogue detection. This is
used to construct a graph representing social inter-
actions, in which an edge connecting two charac-
ters implies that they have interacted at least once;
the weight of the edge encodes the frequency of
their interactions. Their method is a pipelined pro-
cess comprising three steps: character identification,
speech attribution and, finally, graph construction.
Their results from the application of this method to
a large collection of novels called into question a
long-held literary hypothesis: namely that there is
an inverse correlation between the number of char-
acters in a novel and the amount of dialogue it con-
tains (Moretti, 2005) (it seems there is not). By an-
swering a literary question empirically, their work
demonstrates the power of computational methods
for literature analysis.

4 Corpus (Infinite Jest)

I introduce a new corpus for the task of multiple nar-
rative disentanglement (MND): David Foster Wal-
lace’s novel Infinite Jest (Wallace, 1996) that I have
manually annotated with narrative tags.3 Infinite
Jest is an instructive example for experimenting with
MND, as the story moves frequently between a few
mostly independent – though ultimately connected
and occasionally intersecting – narrative threads.

3Available at http://github.com/bwallace/computationaljest.
I also note that the text comprises ∼100 pages of footnotes, but
I did not annotate these.
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Annotation, i.e., manually assigning text to one
or more narratives, is tricky due primarily to hav-
ing to make decisions about new thread designation
and label granularity.4 Start with the first. There
is an inherent subjectivity in deciding what consti-
tutes a narrative thread. In this work, I was lib-
eral in making this designation, in total assigning 49
unique narrative labels. Most of these tell the story
of particular (minor) characters, who are themselves
actors in a ‘higher-level’ narrative – as previously
mentioned, narrative structures are inherently hier-
archical. This motivates my liberal introduction of
narratives: lesser threads are subsumed by their par-
ent narratives, and can thus simply be ignored during
analysis if one is uninterested in them. Indeed, this
work focuses only on the three main narratives in the
text (see below).

Granularity poses another challenge. At what
level ought the text be annotated? Should each sen-
tence be tagged with associated threads? Each para-
graph? I let context guide this decision: in some
cases tags span a single sentence; more often they
span paragraphs. As an example, consider the fol-
lowing example of annotated text, wherein the AFR
briefly narrative intersects the story of the ETA (see
Table 2).

<AFR>Marathe was charged with this opera-
tion’s details ... <ETA>A direct assault upon the
Academy of Tennis itself was impossible. A.F.R.s
fear nothing in this hemisphere except tall and steep
hillsides. ... </ETA></AFR>

Here the ellipses spans several paragraphs. Precision
probably matters less than context in MND: identi-
fying only sentences that involve a particular sub-
narrative, sans context, would probably not be use-
ful. Because the appropriate level of granularity de-
pends on the corpus at hand, the task of segmenting
the text into useful chunks is a sub-task of MND.
I refer to the segmented pieces of text as passages
and say that a passage belongs to all of the narrative
threads that appear anywhere within it. Hence in the
above example, the passage containing this excerpt
would be designated as belonging to both the ETA
and AFR threads.

4These complexities seem to be inherent to disentanglement
tasks in general: Elsner and Charniak (2010) describe analogues
issues in the case of chat.

AFR This is the tale of the wheelchair assassins, a
Quèbècois terrorist group, and their attempts to
seize an original copy of a dangerous film. Fo-
calizer: Marathe.

EHDRH The Ennet House Drug Recovery House (sic).
This narrative concerns the going-ons at a drug
recovery house. Focalizer: Don Gately.

ETA This narrative follows the students and faculty
at the Enfield Tennis Academy. Focalizer: Hal.

Table 2: Brief summaries of the main narratives compris-
ing Infinite Jest.

narrative # of passages prevalence
AFR 30 16%
EHDRH 42 23%
ETA 69 38%

Table 3: Summary statistics for the three main narratives.

Infinite Jest is naturally segmented by breaks,
i.e., blank lines in the text which typically indicate
some sort of context-shift (functionally, these are
like mini-chapters). There are 182 such breaks in
the book, demarcating 183 passages. Each of these
comprises about 16,000 words and contains an av-
erage of 4.6 (out of 49) narratives, according to my
annotations.

There are three main narrative threads in Infinite
Jest, summarized briefly in Table 2.5 I am not alone
in designating these as the central plot-lines in the
book.6 Nearly all of the other threads in the text are
subsumed by these (together the three cover 72%
of the passages in the book). These three main
threads are ideal for evaluating an MND system, for
a few reasons. First, they are largely independent of
one another, i.e., overlap only occasionally (though
they do overlap). Second, they are relatively unam-
biguous: it is mostly clear when a passage tells a
piece of one of these story-lines, and when it does
not. These narratives are thus well-defined, provid-
ing a minimal-noise dataset for the task of MND.
That I am the single annotator of the corpus (and
hence inter-annotator agreement cannot be assessed)
is unfortunate; the difficulty of finding someone both
qualified and willing to annotate the 1000+ page
book precluded this possibility. I hope to address

5I include these only for interested readers: the descriptions
are not technically important for the work here, and one may
equivalently substitute ‘narrative 1’, ‘narrative 2’, etc.

6e.g., http://www.sampottsinc.com/ij/file/IJ Diagram.pdf.
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Figure 2: The three main narratives in Infinite Jest. A colored box implies that the corresponding narrative is present
in the passage at that location in the text; these are scaled relative to the passage length.

this shortcoming in future work.
Figure 2 depicts the location and duration of these

sub-narratives within the text. Passages run along
the bottom axis. A colored box indicates that the
corresponding narrative is present in the passage
found at that location in the book. Passages are nor-
malized by their length: a wide box implies a long
passage. The aim of MND, then, is to automatically
infer this structure from the narrative text.

5 Narrative Modeling for Multiple
Narrative Disentanglement

The proposed method is motivated by the theory
of narratology (Bal, 1997), reviewed in Section 2.
Specifically I assume that passages are mixtures of
different narratives with associated underlying fabu-
las. Fabulas, in turn, are viewed as distributions over
entities. Entities are typically actors, but may also
be locations, etc.; they are what fabulas are about.
The idea is to infer from the observed passages the
probable latent fabulas.

This is a generative view of narrative texts, which
lends itself naturally to a topic-modeling approach
(Steyvers and Griffiths, 2007). Further, this genera-
tive vantage allows one to exploit the machinery of
latent Dirichelet allocation (LDA) (Blei et al., 2003).
LDA is a generative model for texts (and discrete
data, in general) in which it is assumed that each
document in a corpus reflects a mixture of (latent)
topics. The words in the text are thus assumed to be
generated by these topics: topics are multinomials
over words. Graphically, this model is depicted by
Figure 3. All of the parameters in this model must
be estimated; only the words in documents are ob-
served. To uncover the topic mixtures latent in doc-

LATENT DIRICHLET ALLOCATION

! z w"
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N

Figure 1: Graphical model representation of LDA. The boxes are “plates” representing replicates.
The outer plate represents documents, while the inner plate represents the repeated choice
of topics and words within a document.
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The LDA model is represented as a probabilistic graphical model in Figure 1. As the figure
makes clear, there are three levels to the LDA representation. The parameters ! and # are corpus-
level parameters, assumed to be sampled once in the process of generating a corpus. The variables
"d are document-level variables, sampled once per document. Finally, the variables zdn and wdn are
word-level variables and are sampled once for each word in each document.

It is important to distinguish LDA from a simple Dirichlet-multinomial clustering model. A
classical clustering model would involve a two-level model in which a Dirichlet is sampled once
for a corpus, a multinomial clustering variable is selected once for each document in the corpus,
and a set of words are selected for the document conditional on the cluster variable. As with many
clustering models, such a model restricts a document to being associated with a single topic. LDA,
on the other hand, involves three levels, and notably the topic node is sampled repeatedly within the
document. Under this model, documents can be associated with multiple topics.

Structures similar to that shown in Figure 1 are often studied in Bayesian statistical modeling,
where they are referred to as hierarchical models (Gelman et al., 1995), or more precisely as con-
ditionally independent hierarchical models (Kass and Steffey, 1989). Such models are also often
referred to as parametric empirical Bayes models, a term that refers not only to a particular model
structure, but also to the methods used for estimating parameters in the model (Morris, 1983). In-
deed, as we discuss in Section 5, we adopt the empirical Bayes approach to estimating parameters
such as ! and # in simple implementations of LDA, but we also consider fuller Bayesian approaches
as well.

997

Figure 3: The graphical model of latent Dirichlet allo-
cation (LDA; Figure from Blei et al. (2003)). Θ param-
eterizes the multinomial governing topics, i.e., zs. The
observed words w are then assumed to be drawn from a
multinomial conditioned on z. Here the plates denote that
there are N (observed) words and M topics.

uments, standard inference procedures can be used
for parameter estimation (Jordan et al., 1999).

I propose the following approach for MND, which
I will refer to as narrative modeling. (This pipeline
is also described by Figure 4).

1. Segment the raw text into passages. It is at the
level of this unit that narratives will be assigned: if
a given narrative tag is anywhere in a passage, that
passage is deemed as being a part of said narrative.7

In many cases (including the present one) this step
will be relatively trivial; e.g., segmenting the text
into chapters or paragraphs.

2. (Automatically) extract from each of these seg-
ments named entities. The idea is that these include
the primary players in the respective narratives, i.e.,
important actors and locations.

3. Perform latent Dirichelet analysis (LDA) over
the entities extracted in (2). When this topic mod-

7This is analogous to a multi-label scenario.
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eling is performed over the entities, rather than the
text, I shall refer to it as narrative modeling.

As mentioned above, Step (1) will be task-
specific: what constitutes a passage is inherently
subjective. In many cases, however, the text will
lend itself to a ‘natural’ segmenting, e.g., at the
chapter-level. Standard statistical techniques for
named entity recognition (NER) can be used for
Step (2) (McCallum and Li, 2003).

Algorithm 1 The story of LDA over extracted enti-
ties for multiple narrative disentanglement.

Draw a mixture of narrative threads θ ∼ Dir(α)
for each entity in the passage ei do

Draw a narrative thread ti ∼Multinomial(θ)
Draw ei from p(ei|ti)

end for

segmenter

narrative text

passages 

NER 
extractor

extracted entities 
for passages 

narrative 
modeling

Figure 4: The MND
pipeline.

For the narrative model-
ing Step (3), I use LDA
(Blei et al., 2003); the
generative story for nar-
rative modeling is told
by Algorithm 1.8 This
squares with the narra-
tological view: entities
are observed in the text
with probability propor-
tional to their likelihood
of being drawn from the
corresponding latent fabu-
las (which we are attempt-
ing to recover). Focus-
ing on these entities, rather
than the raw text, is cru-
cial if one is to be compat-
ible with the narratological

view. The text is merely a particular telling of the
underlying fabula, made noisy by story specific as-
pects; extracting entities from the passages effec-
tively removes this noise, allowing the model to op-
erate over a space more closely tied to the fabulas.
In the following section, I demonstrate that this shift
to the entity-space substantially boosts MND perfor-
mance.

8Liu and Liu (2008) have also proposed topic models over
NEs, though in a very different context.

The aim is to uncover the top k most salient nar-
rative threads in a text, where k is a user-provided
parameter. Indeed one must specify the number of
threads he or she is interested in identifying (and dis-
entangling), because because, due to the hierarchical
nature of narratives, there is no single ‘right number’
of them. Consider that the input block of text con-
stitutes a perfectly legitimate (meta-)narrative on its
own, for example. A related issue that must be ad-
dressed is that of deciding when to assign a passage
to multiple threads. That is, given the (estimated)
narrative mixtures for each passage as an input, to
which (if any) narrative threads ought this passage
be assigned?

My approach to this is two-fold. First, I set a
threshold probability α such that a passage pi can-
not be assigned to a narrative thread t if the esti-
mated mixture component is≤ α. I use α = 1/k, as
this value implies that the passage is dominated by
other threads (in the case that all k threads contribute
equally to a passage, the corresponding mixture el-
ements would all be 1/k). Second, I enforce a con-
straint that in order to be assigned to the narrative t,
a passage must contain at least one of the top l enti-
ties involved in t (according to the narrative model).
This constraint encodes the intuition that the main
actors (and locations) that constitute a given fabula
are (extremely) likely to be present in any given pas-
sage in which it is latent. I set l = 100, reflecting
intuition. These were the first values I used for both
of these parameters; I did not tune them to the cor-
pus at hand. I did, however, experiment with other
values after the primary analysis to assess sensitiv-
ity. The proposed algorithm is not terribly sensitive
to either parameter, though both exert influence in
the expected directions: increasing α decreases re-
call, as passages are less likely to be assigned to nar-
ratives. Decreasing l has a similar effect, but does
not substantially impact performance unless extreme
values are used.9

5.1 Focalizer Detection

Recall that the focalizer of a narrative is the agent
responsible for perception: it is from their point of
view that the story is told (Bal, 1997). One can eas-
ily exploit the narrative modeling method above to

9Fewer than 10 or more than 500, for example.
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automatically identify the (main) focalizer of the un-
covered narratives.10 To this end, I simply identify
the highest ranking entity from each narrative that
has also been labeled as a ‘person’ (as opposed, e.g.,
to an ‘organization’).

6 Empirical Results

I now present experimental results over the Infinite
Jest corpus, described in Section 4. The task here is
to uncover the three main narratives in the text, de-
picted in Figure 2. To implement the proposed nar-
rative modeling method (Section 5), I first chunked
the text into passages, delineated in Jest by breaks
in the text. I performed entity extraction over these
passages using the NLTK toolkit (Bird et al., 2009).
I then performed LDA via Mallet (McCallum, 2002)
to estimate the narrative mixture components of each
passage.

recall = TP/(TP + FN) (1)

precision = TP/(TP + FP ) (2)

F = 2 · precision · recall
precision+ recall

(3)

I compare the narrative modeling approach pre-
sented in the preceding section to three baselines.
The simplest of these, round-robin and all-same
are similar to the baselines used for chat disentan-
glement (Elsner and Charniak, 2010). Respectively,
these strategies designate each passage as: belong-
ing to the next narrative in a given sequence (‘narra-
tive 1’, ‘narrative 2’, ‘narrative 3’), and, belonging
to the majority narrative. In both cases I show the
best result attainable using the method: thus in the
case of the former, I report the best scoring results
from all 3! possible thread sequences (with respect
to macro-averaged F-score) and in the latter case I
use the true majority narrative.

I also evaluate a simple topic-modeling baseline,
which is the same as narrative modeling, except that:
1) LDA is performed over the full-text (rather than
the extracted entities) and, 2) there is no constraint
enforcing that passages reference an entity associ-
ated with the assigned narrative. I evaluate results
with respect to per-narrative recall, precision and
F-score (Equations 1-3) (where TP=true positive,

10Technically, there may be multiple focalizers in a narrative,
but more often there is only one.

FN=false negative, etc.). I also consider micro- and
macro-averages of these.

To calculate the micro-average, one considers
each passage at a time by counting up the TPs, FPs,
TNs and FNs therein for each narrative under con-
sideration (w.r.t. the model being evaluated). The
micro-average is then calculated using these tallied
counts. Note that in this case certain narratives may
contribute more to the overall result than others, e.g.
those that are common. By contrast, to calculate the
macro-average, one considers each narrative in turn
and calculates the average of the metrics of interest
(recall, precision) w.r.t. this narrative over all pas-
sages. An average is then taken over these mean per-
formances. This captures the average performance
of a model over all of the narratives, irrespective
of their prevalence; in this case, each thread con-
tributes equally to the overall result. Finally, note
that none of the methods explicitly labels the narra-
tives they uncover: this assignment can be made by
simply matching the returned narratives to the thread
labels (e.g., ETA) that maximize performance. This
labeling is strictly aesthetic; the aim is to recover the
latent narrative threads in text, not to label them.

Table 4 presents the main empirical results. Nei-
ther of the simple baseline methods (round-robin
and all-same) performed very well. Both cases, for
example, completely failed to identify the EHDRH
thread (though this is hardly surprisingly in the all-
same case, which identifies only one thread by def-
inition). The macro-averaged precisions and F-
measures are thus undefined in these cases (these
give rise to a denominator of 0). With respect to
micro-averaged performance, all-same achieves a
substantially higher F-score than round-robin here,
though in general this will be contingent on how
dominated the text is by the majority thread.

Next consider the two more sophisticated strate-
gies, including the proposed narrative modeling
method. Start with the performance of full-text
TM, i.e., performing standard topic-modeling over
the full-text. This method improves considerably on
the baselines, achieving a macro-averaged F-score
of .545.11 But the narrative modeling method (Sec-
tion 5) performs substantially better, boosting the

11In the full-text case, I evaluated the performance of every
possible assignment of topics to threads, and report the best
scoring result.
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Figure 5: The unsupervised re-construction of the three main narratives using the narrative modeling approach.
Hatched boxes denote false-positives (designating a passage as belonging to a narrative when it does not); empty
boxes false negatives (failing to assign a passage to narrative to which it belongs).

Figure 6: Results using full-text topic modeling (see above caption).

macro-averaged F-score by over 15 points (a percent
gain of nearly 30%).

Figures 5 and 6 depict the unsupervised re-
construction of the narrative threads using narrative
modeling and the full-text topic modeling approach,
respectively. Recall that the aim is to re-construct
the narratives depicted in Figure 2. In these plots, an
empty box represents a false negative (i.e., implies
that this passage contained the corresponding narra-
tive but this was not inferred by the model), and a
hatched box denotes a false positive (the model as-
signed the passage to the corresponding narrative,
but the passage did not belong to it). One can see
that the narrative modeling method (Figure 5) re-
constructs the hidden threads much better than does
the full-text topic modeling approach (Figure 6).
Once can see that the latter method has particular
trouble with the EHDRH thread.

I also experimented with the focalizer detection
method proposed in Section 5.1. This simple strat-
egy achieved 100% accuracy on the three main nar-
ratives, correctly identifying by name each of the
corresponding focalizers (see Table 2).

6.1 A More Entangled Thread

The preceding results are positive, insofar as the pro-
posed method substantially improves on baselines
and is able to disentangle threads with relatively
high fidelity. These results considered the three main
narratives that comprise the novel (Figure 2). This
is the sort of structure I believe will be most com-
mon in narrative disentanglement, as it is likely that
one will mostly be interested in extracting coherent
threads that are largely independent of one another.

That said, I will next consider a more entangled
thread to see if the method handles these well. More
specifically, I introduce the narrative INC, which re-
lates the story of the Incandenza family. This family
is (arguably) the focus of the novel. The story of
the Incandenza’s overlaps extremely frequently with
the three main, mostly independent narratives con-
sidered thus far (see Figure 6). This thread is thus
difficult from an MND perspective.

I apply the same methods as above to this task, re-
questing four (rather than three) sub-narratives, i.e.,
k = 4. Results are summarized in Table 5.12 We ob-

12I omit the two baseline strategies due to space constraints;
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round-robin all-same full-text TM narrative modeling
narrative recall prec. F recall prec. F recall prec. F recall prec. F

AFR 0.433 0.210 0.283 0.000 undef. undef. 0.900 0.300 0.450 0.933 0.359 0.519
EHDRH 0.000 undef. undef. 0.000 undef. undef. 0.786 0.402 0.532 0.929 0.736 0.821
ETA 0.369 0.348 0.393 1.000 0.375 0.545 0.667 0.639 0.653 0.855 0.694 0.766
macro-avg. 0.260 undef. undef. 0.333 undef. undef. 0.752 0.447 0.545 0.906 0.596 0.702
micro-avg. 0.262 0.300 0.280 0.489 0.375 0.425 0.752 0.434 0.551 0.894 0.583 0.706

Table 4: Empirical results using different strategies for MND. The top three rows correspond to performance for
individual narratives; the bottom two provide micro- and macro-averages, which are taken over the individual passages
and the narrative-level results, respectively.

Figure 7: The INC narrative thread (green, top). This narrative is substantially more entangled than the others, i.e.,
more frequently intersects with the other narratives.

full-text TM narrative modeling
narrative recall prec. F recall prec. F

AFR 0.60 0.30 0.40 0.83 0.50 0.63
EHDRH 0.83 0.57 0.67 0.79 0.75 0.77
ETA 0.67 0.69 0.68 0.67 0.89 0.76
INC 0.57 0.46 0.51 0.43 0.75 0.54
macro-avg. 0.67 0.50 0.56 0.68 0.72 0.67
micro-avg. 0.65 0.50 0.57 0.62 0.72 0.67

Table 5: Results when the fourth narrative, more entan-
gled narrative (INC) is added.

serve that the narrative modeling strategy again bests
the baseline strategies, achieving a macro-averaged
F-score of about 10 points greater than that achieved
using the full-text TM method (a ∼20% gain).

Focalizer identification is tricky in this case be-
cause there are multiple focalizers. However I note
that using the proposed strategy, four members of
the Incandenza clan rank in the top five entities as-
sociated with this narrative, an encouraging result.13

both performed worse than the displayed methods.
13The fifth top-ranking entity is Joelle, a girl who plays an

important part in the family saga.

7 Conclusions

I have introduced the task of multiple narrative dis-
entanglement (MND), and provided a new annotated
corpus for this task. I proposed a novel method
(narrative modeling) for MND that is motivated by
the theory of narratology. I demonstrated that this
method is able to disentangle the narrative threads
comprising Infinite Jest and that it substantially out-
performs baselines in terms of doing so. I also ex-
tended the method to automatically identify narra-
tive focalizers, and showed that it is possible to do
so with near-perfect accuracy.

Interesting future directions include exploring
supervised narrative disentanglement, combining
MND with narrative induction (Chambers and Juraf-
sky, 2009) and applying MND to non-fictional texts.
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